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CHAPTER TWO
Bond topology, bond valence
and structure stability
Frank C. Hawthorne

2.1 Introduction

There are approximately 3500 known minerals, varying from the simple (native
iron) to the complex (mcgovernite has approximately 1200 atoms in its unit
cell) and spanning a wide range in bond type, from metallic (native gold)
through ‘covalent’ {pyrite), to ‘fonic’ (halite). Most of us uncensciously divide
the minerals inte two groups: rock-forming and other. The rock-forming
minerals are quantitatively dominant but numerically quite minor, whereas the
other minerals are the reverse. Although this may seem a rather [rivolous basis
for such a division, there are actually some fairly important features to it that
bear further examination.

First let us look at the rock-forming minerals. Each of these is stable over a
wide range of conditions (pressure, temperature, pH, etc). In response to
changing external conditions, some adjust their structural state (degree of
cation and/or anion ordering over non-equivalent structural sites), chemical
composition, and the geometrical details of their crystal structure; others retain
the same state of internal order and bulk chemistry, adjusting just their
structural geometry. The commen factor that is characteristic of all these
minerals is that the topological details of their bond networks do not change
very frequently, i.e. the mineral retains its structural integrity over a wide range
of temperature, pressure, and component activities. By and large, the basic
bond networks of these structures tend to be quite simple, and we usualiy
follow changes in conditions of equilibration via changes in structural state
and/or bulk composition.

Similar considerations for the other minerals lead to a totally different set of
generalizations. Each of these minerals tends to be stable over a very limited
range. In response to changing external conditions, these minerals usually
break down and form new phases. Thus, the topological characteristics of the
bond networks change very rapidly, and this is complicated by the fact that
these structures tend to be very complex. Further difficulties arise from the
widespread and varied structural role of (H,0}, a component that has not been
well understood in the past.
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Progress in understanding the behaviour of the other group has been
hindered in the past by the lack of a standard approach to the problem. With
the rock-forming minerals, we know what to do. We make field observations,
analyse the minerals to delermine their bulk composition, determine their
crystal structure and structural state, measure the thermodynamic properties,
do phase-equilibria studies; the result is a fairly good understanding of their
behaviout in pgeological processes, and a good basis for developing compu-
tational methods for structure-property calculations. With the other minerals,
the complexity of the problem (e.g. rocks containing 50 or so minerals in an
obviously non-equilibrium assocjation) defies complete anatysis along standard
lines.

Extensive ficld observations have shown that there is consistency of mineral
occurrence in these complex environments. Systematic work has shown that
consistent crystallization/alteration sequences of minerals can be recognized
{e.g. see Fisher, 1958, for an analysis of pegmatitic phosphate minerals), but the
geochemical thread linking these minerals together was not apparent. The
increase in speced and power of crystallographic techniques provided new
impetus, and work by Moore (1973; 1982) has shown that general features of
phosphate paragenesis arc paralieled by structural trends in the constituent
minerals. Since then, efforts have been made to generalize these ideas, introduce
guantitative arguments and provide some sort of theoretical underpinnings to
this approach. Here, we will develop the important basic ideas and show how
they may be used to understand the behaviour of structurally complex
minerals.

22 Structures as graphs

One of the problems with thinking about structures is that our normal
representations of a crystal come in two forms:

1. alist of atom coordinates with unit cell and symmetry information; this is
the representation used by tbe physicist;

2. a view ol the structure based on assumptions as to which atom is bonded
1o which; this is the representation of the chemist.

Using representation (1), we can do afl sorts of structure-property calculations,
provided that we have appropriate potentials and sufficient computing power;
the problem with this is that it cannot be used for many complex minerals, and
offers little or no intuitive feel for the behaviour of minerals in geological
processes. Using representation (2), we can make qualitative arguments 4 la
Pauling’s rules, but we do not have a quantitative expression of the important
features of a structure. it is with these problems in mind that graph theory can
help us.

‘Consider the four atoms shown in Figure 2.1, in which the lines represent
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Figure 2.1 A hypothetical molecule consisting of four atoms (e} joined by chemical bonds (—-);
a5 drawn, this is o lobelled graph (left}. An nlgebraic representation of this graph is the adjacency
mairix (right).

chemical bonds between the atoms. This representation, a series of points
joined by a series of lines, is the visual representation of a graph. Formally, we
may define a graph as a non-empty set of elements, V(G), called vertices, and
a non-empty set of unordered pairs of these vertices, E(G), called edges. If we
let the vertices of the graph represent atoms (as in Figure 2.1) or groups of
atoms, and the edges of the graph represent chemical bonds {or linkages
between groups of atoms), then our graph may represent a molecule.

However, we need some sort of digital representation of this graph, some-
thing that we can manipulate algebraically. To do this, we introduce an
algebraic representation of the graph in the form of a matrix (Fig. 2.1). Each
column and row of the matrix is associated with a specific (labelled) vertex, and
the corresponding matrix entries denote whether or not two vertices are
adjacent, that is joined by an edge. I the edges of the graph are weighted in
some form such that the matrix elements denote this weighting, then this
matrix is called the adjacency matrix. Thus the adjacency matrix is a digital
representation of the graph, which is in turn an analogue representation of the
structure. The adjacency matrix does not preserve the geometrical features of
the structure; information such as bond angles is lost. However, it does
preserve information concerning the topological features of the bond network,
with the possibility of carrying additional information concerning the strengths
{or orders) of chemical bonds. Thus, we have a way of quantifying the
topological aspects of the bond network of a molecular group. It remains to
determine the significance of this information. To do this, we will now examine
some of the connections that have recently developed between contemporary
theories of chemical bonding and topological {or graphical) aspects of struc-
ture. I shall only sketch the outlines of the molecular orbital arguments, except
where they serve to emphasize the equivalence or similarity between energetics
of bonding and topological aspects of structure. Excellent reviews are given by
Burdett (1980}, Hoffman (1988), and Albright e al. (1985).
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2.3 Topological aspects of molecular orbital theory
2.3.1 Molecules

Molecules are built [rom atoms, and a reasonable first approach to the
clectronic structure and properties of molecules is to consider a molecule as the
sum of the electronic properties of the constituent atoms, as modified by the
interaction between these atoms. The most straightlorward way of doing this
is 10 construct the molecular orbital wave function [rom a Linear Combination
of Atomic Orbitals, the LCAO method ol the chemist and the tight-binding
method of the physicist. These molecular orbital wave lunctions are eipenstates
ol some (unspecified) effective one-electron Hamiltonian, H®, that we may
write as:

HY =Ey (1)

where E is the energy {eigenvalue) associated with , and the LCAO malecular
orbital wave [unction is writlen as

v= Z cith (2)

where {@;} are the valence orbitals of the atoms of the molecule, and c; is the
contribution of a particular atomic orbital to a particular molecular orbital.

The total electron energy of the state described by this wave lunction may
be written as

w*H:r[dJ dr ar
EJ _CIH 3

-I'wwdt gl

in which the integration is over ali space. Substilution: of (2) into (3) gives

X2 el H" ¢y
J

E= Z Z ff"j(‘ﬁﬂ‘f’j)
i

4

This equation may be considerably simplified by various substitutions and
approximations:

1. The term (;|¢;> is the overlap integral between atomic orbitals on
different atoms; we will denote this as S;;, and note that it is always <1;
when i=j, {¢|¢;>=1 for a normalized (atomic) basis set of orbitals.

2. We write (P H|p>=H,; this is called the Coulomb integral, and
represents the energy of an electron in orbital ¢;; it can be approximated
by the orbital ionization potential,
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3. We write (¢;|H""|¢;)=H,; it represents the interaction between orbitals
¢ and ¢y, and is called the resonance integral; it can be approximated by
the Wolfsberg-Helmholiz relationship H;;= KS;(Hy+ H;,)/2 (Gibbs et al.,
1972),

The molecular orbital energies are obtained from eguation {4} via the vari-
ational theorem, minimizing the energy with respect to the coefficients ¢;. The
most familiar form is the following secular determinant equation, the eigen-
values (roots) of which give the molecular orbital energy levels:

[Hi—8;E[=0 {5)

Here we will consider the Hiickel approximation (Trinajstic, 1983), as this most
simply demonstrates the topological content of this approach. In the Hiickel
approximation, all Hy; values for the pn orbitals are set equal to o, all H,; are
set equal to B, and all §;,(i+/) are set equal to zero. As a very simple example,
let us consider cyclobutadiene (Fig. 2.2). Writing out the secular determinant
equation in full, we get:

=0 (6)
B 0 f  o—E

Let us compare the matrix entrics in equation (6) with the cyclobutadiene
structure of Figure 2.2. The diagonal terms {a— E) can be thought ol as the
‘self-interaction’ terms; in the absence ol any off-diagonai # terms, there are no
chemical bonds formed, and the roots of the equation are the energies of the
electrons in the atomic orbitals themselves. When chemical bonding occurs,

-2 —
-2 —
Poam o
E
a2  @-2fpb—
Cyclobutadiene —t
plE)

Density of states

Fipure 2.2 The cyclobutndiene molecule {left); 1o the right arc the four roots of equation {6}, the
electron cnergy levels expressed in the usual form {cenire) and as o density of states form {right),
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these energies are modified by the off-diagonal § terms. Thus, when two atoms
are bonded together (i.e. atoms 1 and 2 in Figure 2.2), there is non-zero value
at this particular (1,2) entry in the secular determinant; when two atoms are
not bonded together {i.e. atoms | and 3 in Figure 2.2), then the corresponding
determinant entry {1, 3) is zero. Referring back to Figure 2.1, we see that this
description is very similar to the adjacency matrix of the corresponding graph.
If we use the normalized form of Hiickel theory, in which 8 is taken as the
energy unit, and a is taken as the zero-energy reference point (Trinajstic, 1983),
then the determinant of equation (6) becomes identical to the corresponding
adjacency matrix. The cigenvectors of the adjacency matrix are identical to the
Hiickel molecular orbitals. Hence it is the topological (graphical) characteristics
of a2 molecule, rather than any geometrical details, that determine the form of
the Hiickel molecular orbitals. For cyclobutadiene, the orbital energies found
from the secular determinant (ie. the four roots of equation ({6)) are
E=a+28,a(x2), and o —2f. These are shown in Figure 2.2 both in a conven-
tional energy representation, and as a density of states diagram; the latter
shows the ‘density’ of electrons as a function of electron energy.

2.3.2 Molecular building blocks

When we consider very complicated problems, we like to resolve them into
simple (usually additive) components that are easier to deal with. Molecular
and crystal structures are no exception; we recognize structural building
blocks, and build hierarchies of structures using these ‘molecular bricks’. Let
us consider this from a graph theoretic point of view.

A graph G’ is a subgraph of a graph G if the vertex- and edge-sets V(G') and
E(G") are subsets of the vertex- and edge-sets V(G) and E(G); this is illustrated
in Figure 2.3. We may express any graph as the sum of a set of subgraphs. The
eigenvalues of cach subgraph G’ are a subset of the eigenvalues of the main
graph G, and the eigenvalues of the main graph are the sum of the eigenvalues
of alt the subgraphs. In the last section, we saw that the eigenvalues of an
adjacency matrix are identical to the Hiickel molecular orbitals. Now let us
consider the construction of large molecules from smatller building blocks. This
provides us with a convenient visual way of analysing the connectivity of our
molecule, and of relating molecules together. But this is not all. The fact that
the eigenvalues of the graphs of our building blocks are contained in the
eigenvalues of the graph of the complete molecule indicates that we may
consider our building blocks as orbital or energetic building blocks. Thus, there
is an energetic basis for the use of fundamental building blocks in the
representation and hierarchical analysis of complex structures.

233 Crystals

So far, we have been considening molecules; however, crystals are far more
interesting. particulasly of they are minerals. We can envisage construcling a
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Figure 23 The relationship hetween a pruph G and a subgraph G' expressed in terms of the
retevant vertex and edge sels,

crystal from constituent molecular building blocks, in this way considering the
crystal as a giant molecule. However, it is not clear what influence translational
periodicity will have on the enerpetics of this conceptual building process.
Consequently, we will now examine the enerpetic differences between a
molecule and a crystal.

Consider what would happen if we were able to solve the secular determi-
nant equation (6) for a giant molecule; the results are sketched in Figure 2.4
Solution of the secular determinant will give a very large number of molecular
orbital energies, and obviously their conventional representation solely as a
function of energy is not very useful; such results are more usefully expressed
as a density of states diagram {Fig. 2.4), in which the electron occupation of a
specific energy interval (band) is expressed as a function of orbital energy.

So what happens in a crystal which has transiational symmetry? Obviously,
we cannoi deal with a crystal using exactly the same sort of calculation, as

Iy ]

L

plE)

—
Figure 24 The cleciron energy levels for a giant molecule expressed in the usual way {left) wnd
as a density of states {right}.
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there are approximately Avogadro's number of atoms in a {macroscopic)
crystal, far beyond any foresesable compulational capabitity. Instead, we must
make use of the translational symmetry to reduce the problem 1o a manageable
size. We do this by using what are called Bloch orbitals (Ziman, 1965), in which
the orbital content of the unit cell is constrained to the periodicity of the
crystal. The secular determinant is solved at a representative set of points
within the Brillouin zone (the special points method), giving a (hopefully)
representative sampling of the orbital energy levels that may be used as the
basis of a density of states diagram; this may be smoothed (o give the usual
density of states diagram. The total orbital energy can then be calculated by
integrating the electronic energy density of states up to the Fermi level.

We may summarize the differences between a molecule and a crystal as
follows: in a molecule, there is a discrete set of orbital energy levels; in a crystal,
these levels are broadened into bands whose occcupancies as a function of
energy is represenied by the corresponding clectronic energy density of states.

234  The method of moments

The traditional method for generating the electronic energy density of states
has little intuitive conneclion to what we usually think of as the essential
features of a crystal structure, the relative positions of the atoms and the
disposition of the chemical bonds. In this regard, Burdett et al. (1984) have
come up with a very important method of deriving the electronic energy
densitly of states using the method of moments. Here, T will give a brief outline
of the method; interested readers should consult the original paper for
mathematical details, and are also referred to Burdett (1986; 1987) for a series
of applications in solid-state chemistry,

When we solve the secular determinant {equation (6)), we diagonalize the
Hamillonian matrix. The trace of this matrix may be expressed as [ollows:

TrH)=Y ¥ HyHp...H,. )

P jk...m

A topological (graphical} interpretation of one termin this sum is shown in
Figure 2.5. Each Hj; term is the interaction integral between orbitals i and j,
and hence is equal to f (if the atoms are bonded) or zero (if the aioms are not
bonded, or if i=j when a=0). Thus a single term {H;;H,...H,,} in equation
(7) is non-zero only if all H; terms are non-zero. As the last H;; term is the
interaction between the nth orbital and the first orbital, the {H;;H ;... H,}
term represenis a closed path of length n in the graph of the orbitals {molecule).
Thus in Figure 2.5, the term {H;H  HyHy;} represents the clockwise path of
length 4 around the cyclobutadiene pr orbitals. Thus the complete sum of
equation (7) represents all circuits of length n through the graph of the (orbitai
structure of} the molecule.
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Hj

Hy; Hy,

Hy

Figore 2.5 Topological interpretation of a single term in the sum of equation 7; for each orbital
i, the non-zero lerms are a series of circuits of length n with orbital i 15 the origin; the term shown
here has n=4 {for cyclobutadiene).

The trace of the Hiickel matrix remains invariant under diagonalization, and
thus ’

THH")=Tr(E"}=y, (8)

where E is the diagonal matrix ol eigenvalues (cnergy leveis) and p, is the nth
moment of E, formally denoted by

=3 E. v

[

The collection of moments {,} may be inveried (see Burdett ef al, 1984 [or
mathematical details) to give the density ol staies. As we can evaluate TH{H")
directly from the topology of the orbital interactions (bond topology), we thus
derive the electronic energy density of states directly from the bond topology.
Of course, we have already shown that this is the case by demonstrating the
equivalence of the secular determinant and the adjacency matrix of the
molecule. However, this method of moments genecralizes quite readily to
infinite systems (i.e, crystals),
For an infinite system, we can define the nth moment of E as

p,,:J.E"p(E)dE (10)

where p(E) is the density of states. In principle, the moments may be evaluated
as before, and inverted to give the electronic energy density of states. Thus, we
see in principle the topological content of the electronic energy density of states
in an infinite system, which in turn emphasizes the energetic content of a
topological (graphicai) representation of (periodic) structure. However, we can
go further than this. Burdett (I986) has shown that the energy difference
between two structures can be expressed in terms of the first few disparate
moments of their respective electronic energy density of states. Thus, when
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comparing two structures, the important energetic terms are the most local
topelogical differences between the structures. Putting this in structural terms,
the important energetic terms involve differences in coordination number and
differences in local polyhedral linkage. Furthermore, in structures with bonds
of different strengths, each edpe of each path (walk) that contributes to each
moment will be weighted according to the value of the strength (resonance
integral) of the bond defining that edge. Thus, strongly bonded paths through
the structure will contribute most to the moments of the electronic energy
density of states. The most important energetic features of a structure are thus
not only the local connectivity, but the local connectivity of the slrong!_y
bonded coordination polyhedra in the structure. This provides an encrgetic
justification for the hypothesis that will be introduced later on, that structures
may be ordered according to the polymerization of the more strongly bonded
coordination poiyhedra (Hawthorne, 1983).

2.4 Topological aspecis of crystal chemistry

There are some emnpirical rules that {(sometimes weakly) govern the behaviour
of minerals and inorganic crystals, rules that date back to early work on the
modern eiectronic theory of valence and the structure of crystals. The most
rigorous rule is that of electroneutrality: the sum of the formal charges of all the
ions in a crystal is zero. Although we tend to take this rule for granted, it is an
extremely powerful constraint on possible chemical variations in crystals. The
other rules prew out of ohservations on a few mineral and inorganic structures.
In 1920 the idea was first put forward that atoms have a certain size, and a
table of atomic radii was produced; in 1927 the idea of coordinalion number
was introduced, and silicate minerals were considered as polymerizations of
coordination polyhedra. These ideas were refined by Pauling (1929; 1960), who
systematized them into his well-known rules for the behaviour ol ‘complex
ionic crystals”

1. A coordination polyhedron of anions is formed about each cation, the

cation-anion distance being determined by the radius sum, and the ligancy

{coordination number) of the cation being determined by the radius ratio,

The strength of a bond [rom a cation to an anion is equal o the cation

charge divided by the cation coordination number; in a stable {ionic)

structure, the formal valence of each anion is approximately equal to the
sum of the incident bond-strengths,

1. The presence of shared faces and edges between coordination polyhedra
decreases the stability of a structure; this effect is large for cations of large
valence and small ligancy.

4, Inacrystal containing different cations, those with large valence and small
coordination number fend not to share polyhedral elements with each
other.

ta
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These rules put some less rigorous constraints on the behaviour of mineral
structures, constraints that are traditionally associated with the ionic model of
the chemical bond; they allow us to make the following statements about the
structure and chemistry of minerals:

I.  the formula is electrically neutral;

2. we may make (weak) predictions of likely coordination numbers from the
radius ratio rules;

3. we can make fairly good (<0.02A) predictions of mean bond lengths in
crystals.

Compared with the enormous amount of structural and chemical data avail-
able for minerals, our predictive capabilities concerning this information are
limited in the extreme. The following questions are pertinent in this regard:

1. Within the constraint of electroneutrality, why do some stoichiometries
occur while others do not?

2. Given a specific stoichiometry, what is its bond connectivity {(bond
topology)?

3. Given a specific stoichiometry and bond connectivity, what controls the
site occupancies?

4. What is the role of ‘water’ of hydration in minerals?

These are some of the basic questions that need answering if we are going to
understand the stability of minerals and their role in geological processes [rom
a mechanistic point of view,

24.1  Pauling’s rules and bond topology

Here I will briefly consider each of Pauling’s rules, and indicate how they each
relate to the topology of the bond connectivity in structures.

l.  The mean interatomic distance in a coordination polyhedron can be
determined by the radius sum. This point has been extensively developed
up to the present time (Shannon, 1976; Baur, 1987), topether with con-
sideration of additional factors that also affect mean bond lengths in
crystals (Shannon, 1975). The first rule also states that the coordination
number is determined by the radius ratio. This works reasonably well for
small hiph-valence cations, but does not work well for large, low-valence
cations. For example, inspection of Shannon's (1976) table of ionic radii
shows Na radii listed for coordination numbers from [4] to [12] with
oxygen ligands, whereas a radius ratio criterion would indicate that any
cation can have (at the most) only two coordination numbers for a specific
anion. It is important to note that the coordination number of an atom is
one of the lowest moments of the electronic energy density of states.

2. This is also known (rather unfortunately) as the electrostatic valence rule.
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It has been further extended by Baur (1970; 1971}, who developed a
scheme for predicting individual bond lengths in crystals given the bond
connectlivily, and by Brown and Shannon (1973}, who quantitatively
related the length of a hond to #s strength {bond-valence). The latier
scheme has proved a powerflul a posteriori method ol examining crystal
structures for crystal chemical purposes. This rule relates strongly to the
local connectivity of strong bonds in a structure, and again involves
significant low-order moments of the electronic energy density of states.

3.4. Both of these rules again relate to the local connectivity in a structure, and
strongly affect the important low-order moments, both by different short
paths resuiting from different local bond topologies, and [rom diflerences
in anion coordination numbers.

The bottom line is that Pauling’s rules can all be intuitively related to bond
topology and its effect on the low-order moments of the electronic energy
density of states.

2.4.2  lonicity, covalency, and bond topology

Pauling's rules were initially presented as ad hoc generalizations, rationalized
by qualitative arpuments based on an electrostatic model of the chemical bond.
This led to an association of these rules with the ionic model, and there has
been considerabie criticism of the second rule as an ‘unrealistic’ model for
bonding in most solids. Nevertheless, these rules have been too useful to
disgard, and in various modifications, continue 1o be used to the present day.
Clearly, their proof is in their applicability te real structures rather than in the
details of somewhal vague ionic arguments {Burdett and McLarnan, 1984). In
this regard, 1 will use the terms cation and anion to denote atoms that are of
lesser or greater electronegativity, respectively; here, these terms carry no
connotation as to models of chemical bonding.

For the past 15 years, Gibbs, Tossell, and coworkers {e.g. Gibbs, 1982; Tossell
and Gibbs, 1977) have approached the structure of minerals from a molecular-
orbital viewpoint, and have made significant progress in both rationalizing and
predicting geometrical aspects of structures. In particular, they have shown
that many of the geometrical predictions of Pauling’s rules can also be
explained by molecular-orbital calculations on small structural fragments,
Burdett and McLarnan {1984) show how the same predictions of Pauling’s
rules can be rationalized in terms of band-structure calculations, again locusing
on the covalent intcractions, but doing so for an infinile structure. It is
interesting to note how these two approaches parallel the arguments given
previously concerning the relationship between bond topology and energetics:

1. The cnergy of a molecular fragment is a function of its graphical/topologi-
cal characteristics via the farm of the sccular determinant.
2. The clectronic energy density of states of a conlinuous structure can be
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expressed in terms of the sum of the mements of the energy densily of
states, which is related to the 1opological properties of its hond network.

The underlying thread that links these ideas together is the lopology of the
bond network via its effect on the energy of the system. This conclusion aiso
parallels our earlier conclusion that all of Pauling’s rules relate 1o the
graphical/topological characteristics ol the bond network of a crystal.

We can take this argument a little further. Consider two {dimerphic)
structures of the same stoichiemetry but diflerent atomic arrangement. As the
chemical formulae of the two structures are the same, the atomic components
of the energy of each structure must be the same, and the difference in energy
between the two struclures must relate completely 1o the difference in bond
connectivity. This ‘general principles’ argument emphasizes the importance of
bond tepology in structural stability, and finds more specific expression in the
method of moments developed by Burdett et al. (1984), Thus we come to the
general conclusion that arguments of ionicity andfor covalency in structure dare
secondary to the overriding influence of bond topology on the stability and
energetics of structure.

25 Baond-valence theory

From Pauling’s second rule and its more quantitative generalization by Brown
and Shannon (1973), Brown (1981} has developed a coherent approach to
chemical bonding in inerganic structures. Although the empirical bond-vaience
curves are now widely used, the general ideas of bond-valence theory have not
yel seen the use that they deserve. Consequently, 1 shall review these ideas in
detail here, particularly as they can be developed further to deal in a very
simple way with the complex hydroxy-hydrated oxysalt minerals.

2.5.1 Bond-valence relationships

According to Pauling’s second ruie, bond-strength, p, is defined as
p=calion valence/cation coordination number=2Z/cn. (1)

Il we sum the bond-strengths around the anions, the second rule states that the
sum should be approximately equal to the magnitudc of the anion valence:

z p~'znniun]- (12)

anion

Table 2.1 shows the resuits of this procedure for lorsterite and diopside; as is
apparent, the rule works well for forsterite but poorly for diopside, with
deviations of 0.40 v.u. (valence units { ~20% for the ({2) anion in diopside).
Many people have noticed the correlation between deviations [rom Pauling'’s
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Table 2.1 Pauling bond-strenglh tables for forsterite and

diopside
Forsterite
Mg} Mg{2) Si Sum
01} e 3 I 200
012) it - 1 2.00
o) he {2 1-2 200
Sum 2 2 4
Diopside
Ca Mg Si Sum
Gt} 33 1 1 192
M2 ) ) ! I.58
oM N (e 2.50
Sum 2 2 4

second rule and bond-length variations in crystals (see Alimann, 1975), and
have parameterized this variation for specific cation-anion bonds. For such
schemes, I vuse the term hond-valence, in contrast Lo the Pauling scheme lor
which I use the term hond-strength; this is merely a convenient nomenclature
without any further significance.

The most useful bond-valence-bond-length relationship was introduced by
Brown and Shannon (1973). They expressed bond-valence, s, as a function of
bond-length, R, in the lollowing way:

S=SQ|R/ROE-~ (13)

whete sy, Ry and N are constants characteristic of each cation-anion pair, and
were derived by fitting such equations to a large number of well-refined crystal
structures under the constraint that the valence-sum rule work as closely as
possible. Values of 545, Ry and N are given in Table:2.2. Table 2.3 shows the
application of this relationship to the forsterite and diopside structures.
Although the valence-sum rule is not obeyed exactly, comparison with Table
2.1 shows great improvement over the simple Pauling bond-strength model.

in equation (13), Ry is nominally a refined parameter, but is obviously equal
to the grand mean bond-length for the particular bond pair and cation
coordination number under consideration; also s, is equal to the Pauling
bond-strength. Thus (R/Ry)~ 1, and s is actually a scaling factor that ensures
that the sum of the bond-valences around an atom is approximately equal to
the magnitude of its valence.
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Table 23 Bond-valence lables for forsterite and diopside

Table 2.2

Individual bond-valence purameters for
some genlogically relevant cation-anion- pairs

Calion splvau} Ry{A) N

H* 0.50 L.184 22
Li* 0.25 1.954 39
et 0.50 1.619 43
B3* 1,00 1,375 19
Na* 0.166 1449 5.6
Mp?* 0333 2098 50
AP 0.50 1.909 50
Sit? 100 1.625 45
p3! 1.25 1.534 32
ge? 1.50 1.466 40
K1 0.125 2833 50
Ca?* 0.25 2468 6.0
Sc3t 0.50 2131 6.0
Ti¢* 0.666 1,552 4.0
v 125 1.714 5.1
Crt+ 1.50 1.648 49
Mnt* 0.333 2.186 55
Fe'! 0.50 2012 53
Fe?* 0.133 2.155 55
Co®' 0.331 2118 50
Cu?! 0333 2,084 53
Zntt 050 1.947 50
Gu'* 0.75 1.837 48
Get? 1.0 1.750 54
As®t 1.25 1.68I 4.1

Forsterite
Me(l) Mgi2) Si Sum
0f1) 034172 (.289-2 1.01g 1.938
0(2) 0.348<2 037072 0.954 2042
0(3) (.302=2 0.266 09{7+2 1.895
0.356
Sum 1.982 1.940 1915
Diopside
Ca Mg Si Sum
on 0316+ 0.31877 1.055 1048
.359"2
0{2} 0.329°1 0.365"1 1.092 1.786
o) 02052 0.845 2.245
0.234-2
Sum 2168 2084 1953
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Let us suppose that there is a delocalization of charge into the bonds,
together with a reduction in the charge on each atom. For an A-B bond, let
the residual charges change by Z.p, and Z,py respectively. The {Pauling)
bond-strength [ =scaling constant s, in equation (13}] is given by Z.pa/cn,
where cn js the coordination number of atom A. Inserting these values into
equation (13} and summing over the bonds around B gjves:

2,=Pa),SolR/Ro| ™" = pg| Zy]. (14)

Il ps~py, these terms cancel and the bond-valence equation works, provided
the relative delocalization of charge [rom each fermally ionized atom is not
radically different. Thus the bond-valence equation will apply from ‘very ionic’
to ‘very covalent’ situations.

Brown and Shannen (1973) alse introduce what they cail universal curves for
bond-valence relationships. These are parameterized such that a single curve
applies to all the atoms of an isoelectronic series in the periodic table, and are
of the form

$=|R/Ry|™". (15)

The censtants R; and » are given in Table 2.4, and the curves are illustrated
in Figure 2.6. These work as well as the individual curves of equation (13), and
are often more convenient to use as it is nol necessary to distinguish between
cations of the same isoelectronic series (e.g. Si and Al, or Mg and Al). A new
form of the bond-valence relationship is also given by Brown (1981), but this
does not affect the basic ideas of the theory itselll

20
8 \
3
2z
b
'El FO \\
o b
3 o 2 X\&\B
o \ \
= I \
oo %;h.
10 3 20 25 30
Bond length {A}
Figme L6 | naversal bond valenve curves {Brown and Shannon, 1973)
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Table 24  Universal bond-valence curves for isoelectronic serics

Cations # of core R,(A) N,
electrons

H* 0 0.86 217
Li*Be?*B3* 2 1.378 40465
Na*Mgi* AP 54 pi+gs+ 10 1.622 4.290
K*Ca?*Sc*Tit v it 18 1.799 4.483
Mn?*Fe’* 23 1.760 5117
Zn?'Ga'tGettAsY 28 1.746 6.050

2.5.2 The conceptual basis of bond-valence theory

We start by defining a crystal, liquid, or molecule as a network of atoms
connected by chemical bonds. For the materials in which we are interested (i.e.
minerals), any path through this network contains alternating cations and
anions, and the total network is subject to the law of electroneutrality: the total
valence ol the cations is equal to the total valence of the anions. A bond-
valence can be assigned to each bond such that the valence sum rule is obeyed:
the sum of the bond-valences at each atom is equal to the magnitude of the atomic
valence. Il the interatomic distances are known, then the bond-valences can be
calculated from the curves ol Brown (1981); il the interatomic distances are not
known, then the bond-valences can be approximated by the Pauling bond-
strengths.

This lar, we are dealing just with formalizations from and extensions of
Pauling’s rules. Although these ideas are important, they essentially involve a
posteriori analysis: the structure must be known in detail before we can apply
these ideas. This is obviously not satislactory, We need an a priori approach
to structure stability il we are to develop any predictive capability, In this
regard, Brown (1981} introduced a very important idea that abstracts the basic
ideas of bond-valence theory, and associates the resulting quantitative para-
meters with ions rather than with bonds {between specific alom pairs). This
means that we can examine what would happen il atoms were to bond together
in a specific configuration.

If we examine the bond-valences around a specific cation in a wide range of
crystal structures, we find that the values fie within ~20% of the mean value;
this mean value is thus characteristic of that particular cation. Il the cation
only occurs in one type of coordination, then the mean bond-valence for that
cation will be equal to the Pauling bond-strength; thus P (phosphorus) always
occurs in tetrahedral coordination in minerals, and will hence have a mean
bond-valence of 1.25 v.u. (Table 2.2). I the cation occurs in more than one
coordination number, then the mean bond-valence will be equal to the
weighted mean of the bond-valences in all the observed structures. Thus Fe**
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occurs in various coordinations from [4] to [8]; the tendency is for {4] and
[5] to be more common than [7] and [8], and hence the mean bond-valence is
0.40v.u. As the mean bond-valence correlates with formal charge and cation
size, then it should vary systematically through the periodic table; this is in fact
the case. Table 2.5 shows these characteristic values, smoothed across the
periods and down the groups of the periodic table.

The mean bond-valence of a cation correlates quite well with the elec-
tronegativity, as shown in Figure 2.7. Conceptually this is not surprising. The
electronegativity is a measure of the electrophilic strength (electron-accepting
capacity) of the cation, and the correlation with the characteristic bond-valence
{Fig. 2.7) indicates that the latter is a measure of the Lewis acid strength of the
cation. Thus we have the following definition (Brown, 1981):

The Lewis acid strength of a cation=characteristic (bond-)valence

=atomic (formaljvailence/mean coordi-

nation number

We can define the Lewis base strength of an anion in exactly the same way—
as the characteristic valence of the bonds formed by the anion. However,
it is notabie that the bond-valence variations around anions are much
greater than those around cations. For example, the valences of the bonds
to O®~ vary between nearly zero and 20vu.; thus in sodium alum
(Na[Al{§0,);(H,0)s] {H;O};, Cromer et al, 1967), Na is in [12]-coordi-
nation, and the oxygen to which it is bonded receives 0.08 v.u. [rom the Na-O
bond; conversely in CrO, {a pyroxeneike structure without any [6]-coor-
dinated cations), one oxygen is bonded only to Cr®* and receives 2.00 v.u. [rom
the Cr-O bond. With this kind of variation, it is not particularly useful to
define a Lewis base strength for a simple anion such as O*~. However, the
siluation is entirely different il we consider complex oxyanions. Consider the

Table L5 Lewis acid strengths {vu) for cations

Li 0 Sc 0.50 Cu?* 0.45
Be 0,50 Tid! 0.50 Zn 0.6
i .88 Tit* 0.7% Ga 0.50
C .30 V3! 0.50 Ge 0.75
N 1.75 vir 1.20 As La2
Na 0,16 crt 0.50 Se 1.30
Mg 036 Ccr*t 1.50 Rb 0.10
Al 0.63 Mn?! 0.36 Sr 0.24
Si 0.95 Mn?! 0.50 Sn 0.66
P 1,30 Mn** 0.67 Sh 046
] 1.65 Fel* 0.36 Te 1.06
Cl 200 Fel* 0,50 Cs 0.08
K 0.13 Co?* 0.40 Ba 0.20
Ca 0.29 Ni?* 0.50 Pb* 0,20

Values taken from Srown (1981), except Pb* ' which was estimated
from several oxysall mineraf structures.
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Figure 2.7 Lewis acid strength {mean bond-valence for a specific cation) ns a function of cation
electronegativity {Brown, 1981).

{50,)?" oxyanion shown in Figure 2.8. Each oxygen receives 1.5 v.u. from the
central $°* cation, and hence each oxygen of the group needs an additional
0.5v.u. to be supplied by additional cations. Il the oxygen coordination
number is [n], then the average valence of the bonds to O*~ {exclusive of the
5-O bond) is 0.5/(n~¥) v, thus il #=234, or 5, then the mean bond-

[} »
'

017 | 047
0.17

Figure 2.8 Bond-valence structure of the (SQ,)?~ oxyanion, with the individual bond-valences
shown in vu; s=sulphur, 0=oxygen.
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valencies to the oxygen are 0.50, 0.25, 0.17, or 0.11 v.u., respectively. As all of

the oxygens in the (50.)*” oxyanion have the same environment, then the
average bond-valence received by the oxyanion is the same as the average
bond-valence received by the individual oxygens. In this way, we can define the
Lewis basicity of an oxyanion. Note that for the (SO,)*~ oxyanion discussed
above, the possible average bond-valences are quite tightly constrained (0.50-
0.11 vau.), and we can easily calculate a useful Lewis basicity, Table 2.6 lists
Lewis basicities for peologically relevant oxyanions.

These definitions of Lewis acid and base strengths lead to a specific criterion
for chemical bonding, the valence-matching principle:

The most stable structures will form when the Lewis acid strength of the cation
closely matches the Lewis base strength of the anion. We can consider this as the
chemical analogue of the handshaking principle in combinatorial mathematics,
and the ‘kissing’ principle in social relationships. As a chemical bond contains
two ends, then the ends must maich up for a stable confipuration to form.

2.5.3 Simple applications of the valence-matching principle

Thenardite {Na,SO, (Hawthorne and Ferguson, 1975a)) illustrates both the
utility of defining a Lewis base-strength for an oxyanion, and the working of
the valence-matching principle (Fig, 2.8). As outlined above, the bond-valences
10 0%~ vary between 0.17 and 1.50 v.u. Assuming a mean oxygen coordination
number of [4], the Lewis base strength of the (SO,)®~ oxyanion is 0.17 v.u,,
which matches up very well with the Lewis acidity of 0.16 v.u. for Na given in
Table 2.5. Thus the Na—+{SO,) bond accords with the valence-matching
principle, and thenardite is a stable mineral.

Let us consider the compound Na,Si0Q,. The Lewis basicity of the (Si0,)*~
oxyanion is 033 vau, (Table 2.6); the Lewis acidity of Na is 0.16 v.u. These
vajues do not match up, and thus a stable bond cannot form; consequentiy
Na,SiQ, is not a stable mineral.

Let us consider Ca,Si0Q;. The Lewis basicity of (5i0,)?~ is 0.33 v.u. and the
Lewis acidity of Ca is 0.29 v.u.; these values match up reasonably well, and
Ca,Si0, is the mineral farnite.

Consider CaSQ,. The relevant Lewis basicity and acidity are 0.17 and

Table 2.6 Lewis basicilics for oxyanions of geological

interest

(BOL*~ 0.33 (CO,P- 0.25
(Si0.) 0.33 (NQ,)*~ 013
(A0 - 042 (VO 0.5
(PO~ 0.23 {80.%" 0.17
(AsQL " 025 (Cr0y)t- 017
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0.29 v.u., respectively; thus according (o the valence-maltching principle, we do
not expect a stable structure to form. However, the mineral anhydrite is stable,
the cation and anion coordination numbers both reducing to ailow the
structure to satisly the valence-sum rule (Hawthorne and Ferguson, 1975h),
However, anhydrite is not very stable, as it hydrates in the presence of water
to produce gypsum, CaSO,.2H,0; this instability (and as we will show Ilater,
the hydration mechanism) is suggested by the violation of the valence-matching
principle as considered with Lewis acidity/basicity parameters.

Thus we sce the power of the valence-matching principle as a simple way in
which we can consider the possibility of cation-anion interactions of interest.
It is important to recognize that this is an a priori analysis, rather than the g
pasteriori analysis of Pauling’s second rule and its various modifications.

2.5.4 Bond-valence theory as a molecular orbital model

As noled above, there has been considerable criticism of Pauting’s second rule
and its more recent extensions, criticisms based on its perception as a
description of jonic bonding. This viewpoint is totally wrong. In their original
work, Brown and Shannon {1973) emphasize the difference between bond-
valence theory and the ionic model. In bond-valence theory, the structure
consists of a series of atomic cores held together by valence electrons that are
associated with the chemical bonds between atoms; they also explicitly state
that the valence eiectrons may be associated with chemical bonds in a
symmetric {(covalent) or asymmetric {ionic) position. However, a priori knowl-
edge of the efectron distribution is not necessary, as it is quantitatively derived
from the application of the bond-valence curves to the observed structure.
Indeed, Burdett and Hawthorne (1992} show how the bond-valence bond-
length relationship may be derived algebraically from a molecular orbital
description of a selid in which there is a significant energy gap between the
interacting orbitals on adjacent atoms. Thus we may consider bond-valence
theory as a very simple form of molecular orbital theery, parameterized via
interatomic distance rother than electronegativity or fonization potentinl, and
{arbitrarily) scaled via the valence-sum rule.

2.6 Structural hierarchies

The need to organize crystal structures into hierarchical sequences has long
been recognized. Bragg (1930) classificd the silicate minerals according to the
way in which the (8i0,) tetrahedra polymerize, and this was developed lurther
by Zoltai (1960) and Liebau (1985). The paragenetic implications of this are
immediately apparent by comparing this scheme with Bowen’s discontinuous
reaction series in a fractionating basaltic magma (Fig. 2.9). This supgests that
structure has a major influence on mineral paragenesis. Further developmenis
along similar lines are the classification of the aluminium hexaftuoride minerals
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Bowgn N Tetrahedral
reaction linkage
series
olivine isolated tetrahedra
pyroxene single-chain
amphibole double-chain
mica sheet
feldspar framework

Figure 29 Bowen’s reaction serics shown as a function of the polymerization characteristics of
the structures involved,

{Pabst, 1950; Hawthorne, 1984a) and the borate minerals (Christ, 1960; Christ
and Clark, 1977), both of which focus on the mades of polymerization of the
principal oxyanions. Such an approach to hierarchical organization is of little
use in minerals such as the phosphates or the sulphates, in which the principal
oxyanion does not self-polymerize. Moore (1984) developed a very successful
classification of phosphate minerals, based on the polymerization of divalent
and trivalent metal octahedra, and apain showed the influence of structure on
mineral paragenesis (Moore, 1973). However, ail these hierarchical schemes
focus on specific chemical classes of minerals. From a paragenetic point of
view, this introduces divisions between different chemical classes of minerals,
divisions that the natural parapeneses indicate to be totally artificial.

2.6.1 A general hypothesis

Hawthorne {1983) has proposed the following hypothesis: structures may he
(hierarchically) ordered according to the polymerization of the coordination
polyhedra with higher bond-valences. There are three important points to be

46

F. C. HAWTHORNE

made with regard to this idea:

1. We are defining the structurai elements by bond-valences rather than by
chemistry; consequently, there is no division of structures into different
chemical proups except as occurs naturally via the different ‘strengths’ of
the chemical bonding.

2. We can rationalize this hypothesis from the viewpoint of bond-valence

theory. First, let us consider the cations in a structure. The cation
bond-valence requirements are satisfied by the formation of anion co-
ordination polyhedra around them. Thus, we can think of the structure as
an array of complex anions that polymerize in order to satisly their
(simple) anion bond-valence requirements according to the valence-sum
rule. Let the bond-valences in an array of coordination polyhedra be
represented by 5% (i=1,n) where sh>s§t!. The valence-sum rule indicates
that polymerization can occur when

Sé+s£l<|ynninnl (16)

and the valence-sum rule is most easily satisfied when
S[1)'|'S{]=|"/ul:linnl (17)

This suggests that the most important polymerizations involve those
coordination polyhedra with higher bond-vaiences, subject to the con-
straint of equation (16), as these linkages most easily satisfy the valence-
sum rule (under the constraint of maximum volume}.

3. Earlier we argued that the topology of the bond network is a major feature
controlling the energy of a structure. The polymerization of the principal
coordination polyhedra is merely another way of expressing the topology
of the bond network, and at the intuitive level, we can recognize an
energetic basis for the hierarchical organization of structures according to
the details of their polyhedral poiymerization.

2.6.2  Structural specifics

Many classifications of complex structures recognize lamilies of structures
based on different arranpements of a fundamental building block (FBB). This is
a tightly bonded unit within the structure, and can be envisaged as the
inorganic analogue of a molecule in an organic structure. The FBB is usually
a homo- or heteropolyhedral cluster of coordination polyhedra that have the
strongest bond-valence linkages in the structure. The FBB is repeated, usually
polymerized, to form the structural unit, a complex anionic polyhedral array
whose charge is balanced by the presence of large low-valence iterstitial
cations {usually alkalis or alkaline earths). These definitions are illustrated for
the mineral torncbohmite in Figure 2.10. The various structural units can be

47



BOND TOPOLOGY, BOND YALENCE AND STRUCTURE STABILITY

structural unit

interstitial cations

structural unit

— b —

Figure 210 The structural unit {as shaded polyheden) and interstitinl cations (as Fircles) for
tornebohmile, (RE); [ ASiO4};(OH)); for clarity, not all honds from the interstitial cations to the
structural unit are shown.

arranged according to the mode of polymerization:

unconnected polyhedra
finite clusters

infinile chains

infinite sheets

infinite frameworks

IS

Most work has focused on minerals with tetrahedra, triangles, and octahedra
as principal components of the structurat unit (Hawthorne, 1979; 1984a; 1985a;
1986; 1990; Moore, 1970a, b; 1973; 1974; 1975; 1984), although there has been
some nolable work (Moore, 1981) on structures with important higher co-
ordinations. Here we will examine minerals based on tetrahedra and octa-
hedra, concentrating specifically on the general stoichiometries M(T¢ 4)¢ ,,_and
M(T¢ ,)2¢ o (M=[6]-coordinate, T=[4]-coordinate, ¢ =unspecified amqn);
these are quantitatively and petrologically most important, as well as showing
the most structural diversity.

2.6.3 Uncomnected polyhedra

Minerals of this class are [isted in Table 2.A1 (Appendix p. 77): Thc {c'lrahedra
and octahedra are linked together by large low-valence intcrsu-lml cattcps and
by hydrogen bonding; thus the (H,O) group: plays a major role in the
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structurai chemistry of this particular ciass of minerals. The tetrahedral cations
are coordinated by oxygens, and the octahedral cations are coordinated
predominantly by (H,O) groups; the exceptions to the latter are khademite
and the minerals of the fleischerite group (Table 2.A1), in which the octahedral
groups are (Al(H,0);F) and (Ge(OH)s), respectively. It is notable that
khademite is the only M(T¢,)¢, structure (in this class) with a trivalent
octahedral cation; all other minerals have divalent octahedral cations, Similar-
ly, the fleischerite group mincrals are the only M(Tehy)2¢h, minerals (in this
class) with ftetravalent octahedral cations; all other minerais of this
stoichiometry have trivalent octahedral cations.

There is one very notable generalization that comes from an inspection of
Table 2.A1. All M(T¢,);¢, structures have interstitial cations, whereas vir-
tually none of the M(T¢,)¢, structures have interstitial cations. The one
exception to this is struvite, NH,[Mg(H,0)s1[PO, ], in which the cation is
the complex group (NH4)* which links the isolated polyhedra together via
hydrogen bonds, as is the case for the rest of the M(T¢,)d, unconnected
polyhedra structures. For the other cases in which the stoichiometry would
suggest that an interstitial cation is needed for electroneutrality reasons (e.g.
M**=Mg, T°* =P, As), we get an acid phosphate or arsenate group instead
{e.g. as in phosphorroesslerite and roesslerite, Table 2.A1). Thus for reasons
that are as yet unclear, the M(T¢, )¢, isolated polyhedra structures seemingly
will not accept interstitial cations, in contrast to the M(T¢;).¢, structures
which always have interstitial cations.

Although this is not the place to go into the details of the hydrogen-bonding
schemes in these structures, it should be emphasized that in all structures, the
(H20) groups participate in an ordered network of hydrogen bonds, and hence
are a fixed and essential part of the structure. There has been a tendency in
mineralogy to regard (H,O) as an unimportant component of minerals.
Nothing could be further from the truth. Non-occluded (H;0) is just as
important a component as {SiO4)*~ or (PO4)" in these minerals, and is the
‘glue’ that often holds them together.

264 Finite cluster structures

Minerals of this class are given in Table 2.A2 (Appendix). The different types
of clusters found in these minerals are illustrated in Figure 2.11.

In jurbanite, the cluster consists of an octahedral edpe-sharing dimer of the
form [Al,(OH),{(H;0)s] and an isolated {50.) tetrahedron (Figure 2.11{a)).
These two fragments are bound together by hydrogen bonding from the
octahedral dimer (donor) to the tetrahedron {(acceptor), and hence jurbanite is
actually transitional between the unconnected polyhedra structures and the
finite cluster structures.

‘In the M(Td¢,)¢, minerais, the structures of the members of the rozenite
Broup are based on the [M,(T,),¢4] cluster (Fig. 2.11(b)), linked solcly by
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(b)

Figure 211 Finite polyhedral clusters in [M(Terader,] and [M(Tdha)z4hs] structures: (@) the
[M2(Ter)aeh,, 1 cluster in jurbanite; {b) the [M{T¢hs)2p5 ] cluster in the razenile group minerals;
{c) the M ;(Tebs )z 4] cluster in morinite; {d) the cis [M{Tdia )z, ] cluster in rocmerile; (e} the trans
[M(T¢.)2¢4] cluster in anapaite, bloedile, leonite, and schertelite; {f} the [M ;(Tdha)g 4] cluster in
metavoltine.

hydrogen bonding between adjacent clusters. The morinite structure is based
on the [M3(Td) -] cluster (Fig. 2.11{c)), linked by interstitial cations as well
as inter-unit hydrogen bonds. Hawthorne (1983) derived all possible finite
clusters of the form [M{Tes)zh,] with no linkage between tetrahedra and
with only corner-sharing between tetrahedra and octahedra. Based on the
conjecture that the more stable clusters are those in which the maximum
number of anions have their bond-valences most nearly satisfied, lour clusters
were predicted to be the most stable; two of these are the clusters of Figures
2.11{b}(c}.

There is far more structural variety in the M(T¢y);¢, minerals (Tabie
2.A2). Anapaite, bloedite, leonite and schertelite are based on the simple
[M{Tds)aps] cluster of Figure 2.11(d), linked by a variety ol interstitial
cations and hydrogen-bond arrangements. Roemeriic is also based on an
[M({Tes)26h.] cluster, but in the cis rather than in the trans arrangement (Fig.
2.1t{e}}. Metavoltine is built from a complex but elegant [M (T )sdby] cluster
{(Fig. 2.11(T1 that is also found in a series of synthetic compounds investigated
by Scordar (1980, [981). Again it is notable that the M(T¢h,),¢b, minerals in
this class are charactenized by iterstitial cations, whereas the bulk of the
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M(Tp ), minerals are not, as was the case for the unconnected polyhedra
structures.

The energetic considerations outlined previously supgest that the stability of
these finite-cluster structures will be dominated by the topological aspects of
their connectivity. Nevertheless, it is apparent [rom the structures of Table 2.A2
that this is not the only significant aspect of their stability. Figure 2,12 shows
the structures of most of the minerals of Table 2.A2. It is very striking that
these clusters are packed in essentially the same fashion, irrespective of their
nature, and irrespective of their interstitial species. Although a mare detailed
examination of this point is desirable, its very observation indicates that not
only does Nature choose a very small number ol flundamental building blocks,
but she also is very economical in her ways of linking them together.

2.6.5 Infinite chain structures

A large number of possible [M(T¢s)¢,] and [M(T¢s)2¢,] chains can be
constructed [rom fundamental building blocks involving one or two octahedra
and one, two or four tetrahedra. Only a lew of these possible chains have
actually been found in mineral structures, and these are shown in Figure 2.13.
Minerals with structures based on these chains are listed in Table 2.A3
{Appendix).

First let us consider the M(Tg, ), minerals, focusing in particular on the
first three chains (Figures 2.13(a),(b}{c)). These are the more important of the
chains in this group, and it is notable that:

1. they all have a lairly simple connectivity;
2. there is just one particular chain for each type of connectivity between
octahedra.

Thus in the first chain, there is no direct linkage between octahedra; in the
second chain, there is corner-sharing between octahedra; in the third chain,
there is edge-sharing between octahedra.

The more complex chains of Figures 13{d)(e){[) are found in a smaller
number of {far less common) minerals. In addition, there seems to be a trend
emerging, that the most complex structural units tend to occur for the ferric
tron sulphates. '

If we examine the structural units of the M{T¢,);¢, minerals, the same
sort of hierarchy is apparent, perhaps ecven more so than for the M{(T¢)d,
minerals. Again the three most common and important types of [M(T¢a); ¢ ]
chains are those which show the simplest connectivity. It is significant that they
also show the same distribution of connectivities: there is one chain for each
of the possible octahedral-octahedral linkages (i.e. no linkage, corner-sharing,
and cdge-sharing). As indicated in Tabie 2.A3, these dominate as structural
units in the M(T¢;)s ¢, minerals, with the remaining more complex chains just
being found in a few very rare and complicated ferric iron sulphates.
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2.6.6 Infinite sheet structures

i Minerals of this class are given in Table 2.A4 {Appendix). As the degrec of
| polymerization of the structural unit increases, the number of possible bond-
connectivities becomes enormous. However, Nature stili seems to favour only
a fairly small number of them; these are illustrated in Figures 2.14, 2.15, and

2.16.
There is [ar more variety in the sheet structures of the M{Tdr )@, minerals.
Notable in the less-connected structural units is that of minyulite (Fig. 14(b}),
which is built by condensation (via corner-linkage between octahedra and
tetrahedra) of [M(Tds);¢-] clusters that are the structural unit in morinite

i (Fig. 2.11{c}}. The structures of the laueite, stewartite, pseudolaueite, strunzite,
\ and metavauxite groups (Fig. 2.14(c)«[)) are based on sheets formed from
! condensation ol the vertex-sharing, octahedral-tetrahedral chains of the sort
: shown in Figures 2.13{b),(h). The tetrahedra cross-link the chains into sheels,
and there is much possible variation in this type of linkage; for more details,
see Moore (1975). The five structural groups ol these minerals are based on the
four sheets of Figures 2.14(c}-([). These shcets are linked through insular
divalent-metal octahedra, either by direct corner-linkage to phosphate tet-
rahedra plus hydrogen bonding, or by hydrogen bonding alone. There is great
potential for stercoisomerism in the ligand arrangement of these linking
octahedra, but only the trans corner-linkages occur in these groups.

More condensed sheets [rom the M(Te 4)¢ , minerals are shown in Figure
2.15. Again il is notable that we can identily [ragments of more primitive (less
condensed) structural units in these sheets, In the whitmoreite group sheet (Fig.
2.15a), we can see both the [Mz(T¢ 4)a¢ 7] cluster of the morinite structure
and the [M{T4 4)2¢ &] cluster of the rozenite group structures (Fig 2.1 Hc){b)).
Similarly in the [M(T¢ ;)¢ ] sheet of the bermanite and tsumcorite structures
(Fig. 2.15(b)), we can scc the [M(T¢ 4)¢ ;] chain that is the structural unit in

the minerals of the linarite group (Fig. 2.13(e}).

l The structural sheet units found in the M(T¢ 4),¢ , minerals are shown in
Figure 2.16. Again we see this structural building process, whereby our
structural units of more primitive conneclivities act as fundamental building
blocks for the more condensed structural units of corresponding composition.

' Thus the [M{T¢ ,)2¢ 2] sheet found in rhomboclase (Fig. 2.16(a)) is construc-
ted from the cis [M{T¢ 4)2¢ o] cluster that is the structural unit of roemerite

; (Fig. 12(c)). Similarly, the [M(T¢ 4)2¢ 2] sheet of olmsteadite (Fig. 2.16(b)) is
based on the trans [M(T¢ 4)a¢h 4] cluster (Fig. 2.12(d)) found in anapaite,
bloedite, leonite and schertelite. Note that the rhomboclase and olmsteadite
sheets are actually geometrical isomers (Hawthorne, 1983).

Analogous relationships are obvious for the [M(T¢ 4);) merwinite-type

| sheet and the [M(T2¢ )¢ 2], balertisite-type sheet (Fig. 2.16(c),(d)). Both are
based on the [M(T¢ 4)2¢h 2] krohnkite chain of Figure 2.13{(g), but in each

sheet, the chains are cross-linked in a diflerent fashion. In the merwinite sheet,

Figure 2.12 Selected finite cluster structures of [M(Te.)d,] and IM(Tdu)a ¢.] stoichiometry: (a) rozenite; {b) morinite; (c) bloedite; (d), (e} leonite;

(F) schertelite; (g) anapaite.

53



‘uaBo4tioq ur puna) ureya [Sor(Te1)? ] 2y (¥) taisnely pur SHWOSURL U Umya [bI{*p )] ays (N} ‘sdnoid anuganbnea
pur F1IATILIO] ‘FIASNQIYIBLG SUI U pUnaj uleyd [P W] ayr (1) tausngk puw ‘itp(nd 'sdnoid suafaBas pue aysuyel sy} ‘aINEUOIPIS '3y0auT)
ut pungy uteygs [P IA] 2 () sdnosd aupRmaie pue ‘anssA| R ‘aIRUyosy Ay ul uregd [Td (P 1) 4] aut (3} fajuuewgay pun UBRITUE Ul
puna;p ureya [S¢r{rd1)TN] oy () sseasunu dnoad ;ueay ay) uf ufeqa [Zo(re W] 2yt {2) ‘;ruenoroqya ul uteya [#{*¢ 1] 2u1 (p) ‘uajoiqqy
w ured [C¢{*¢ 1] a1 (o) SUAOHSUD[HN PUR ‘dnoid anuasppy2 a1 ‘auspingeled ‘sjpapng Ul pUMo) uIoga [Ep{*¢ )] ays (q) ‘anssesq pur
anuooed ‘sypsouny dnoxf ayyiueaieqo ay w oreys [*H{TPLIN] 3 (=) sarmionas Coi(*p UMY pun [“P(*P1)A] ut suroya auuyuy g7 2mdry




H—b;—nﬂ

Figure 214 Selected infinite sheets in [M({T'¢.)@,] and [M{Td,)s¢,] structures: (n) the [M(T¢,)¢4] sheet in newberyite; (b) the [M{Te )25 ]

sheet in minyulite; (c) the [M(T¢,)¢,] sheet in the laueite group; (d) the [M(T¢4 )¢ ;] sheet in pseudotausite; (e) the [M(T¢,)¢.] shest in stewartite;

(fY the (M(T¢.)¢h,] sheet in metavouxite.
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Figure 215 Selected infinile sheets in [M{Tey )] and [M(Tdhahtpa] structures: {a) the
[Ma{Teba)app;] sheel in whitmoreite; (b) the [M(Te4)ib] sheet in tsumcorite and bermanite.

tetrahedra from one chain share cormers with octahedra of adjacent chains,
with neighbouring tetrahedra peinting in opposite directions refative to the
plane of the sheet. In the bafertisite sheet, the [M(T¢ 4)2¢ 2] chains link by
sharing corners between tetrahedra. Thus both sheets are *built’ from the same
more primitive structural unit, and these two sheets are in fact graphical

isomers (Hawthorne, 1983).

2.6.7 Framework structures

Minerals of this class are listed in Table A5 {Appendix). Unfortunately, the
topological aspects of the framework structures cannot be easily summarized
in a graphical fashion, partly because of their number, and partly because of
the complexity that results from polymerization in all three spatial dimensions.
Consequently, we will consider just a few examples that show particularly
clearly the different types of linkages that can occur.

The structure of bonattite is shown in Figure 2.17(a) Now bonattite is quite
hydrated (Table 2.A3), and comparison with the minerals of Table 2.A4 .
suggests that it should be a sheel structure (c[. newberyite, Table 2.A4}.
Prominent in the structure are the [M{T 4)¢ 4] chains {Fig. 2.13{a)} that also
occur as fragments of the newberyite sheet (Fig. 2.14(a)). In bonattite, adjacent
chains are skew and link to form a framework; in newberyite, the chains are
parallel, and with the same number of interchain linkages, they link to form
sheets rather than a framework. Thus bonattite and newberyile are graphical
isomers, and provide a good illustration of how dilferent modes of linking the
same fundamental building block can lead to structures of very dillerent
conneclivities and properties.

57



BOND TOPOLOGY, BOND VALENCE AND STRUCTURE STABILITY

.%%%
2 2

TATA
N

Figure 116 Sclected infinite sheets in [M{T#a)d,] and [M(Te, )] structures: {n) the
[M{Tda)yeft2] sheet found in thombociase; (b) the [M(T}z¢h2 ] sheet found in olmsteadite; {c) the
[M(Tibs}.] sheel found in the merwinite group and yavapaite; (d) the [M{T ;)] sheet found
in bafertisite.

The structure of titanite is shown in Figure 2.17b; this basic arrangement is
fjound in a considerable number of minerals (Table 2.A5) of widely diflering
chemistries. The [M(T¢ )] framework can be constructed from
[M(T¢ 4)¢p ] vertex-sharing chains of the sort found in butlerite, parabutlerite,
the childrenite group, and uklonskovite (Table 2.A3, Fig. 2.13(b)). The chains
pack in a C-centered array and cross-link by sharing corners between oc-
{ahedra and tetrahedra of adjacent chains. It is notable that this chain is also
a fundamental building block of the sheets (Fig: 2.14(c)-{f)) in the laueite,
stewartite, pseudolaucite, strunzite, and metavauxite groups (Table 2.Ad).
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Figure 217 Selected framework structurcs in [M{Téabn] und [M{Tei)adh] minerals: {a) the
[M{T4)e+] framework structure of bonalltite; (b} the [M(Teb. )¢ ] framework structure of titanite;
(c) the [M{Te4 )] framework structure of descloizite.

The structure of descloizite is shown in Figure 2.17(c); again this is a popular
structural arrangement (Table 2.A5). Prominent features of the tetrahedral-
octahedral framework are the edge-sharing chains of octahedra fanked by
staggered letrahedra that link along the chain. This [MiTdh 4)ep ] chain is found
in the structures of the minerals of the linarite group (Figure 2.13(e)}, and is
also a fundamental building block for the [M(T¢ ;)¢ ] sheet (Figure 2.15(b)y
that is the structural unit in tsumcorite and bermanite (Table 2.A4).

These three examples show the type of structural variability we find in the
framework structures, and also the small number of polyhedral linkage
patierns (fundamenial building blocks) that occur and seem common to a wide
range of structural types. This sugpests that these patterns of bond connectivity
are very stable, and hence tend to persist from one structure to another. In
addition, the incorporation of relatively primitive [ragments into more highly
condensed structural units tends to support the conceptual approach of
considering a large structurc both topologically and energetically as an
assemblage of smaller structural fragments.

2.7 (OH) and {H;O) in oxysalt structures

In inorganic minerals, the hydrogen cation H* most commonly has a coor-
dination number of [2]; higher coordination numbers are not rare, but for
simplicity we will consider the former, as the arguments presented here can
ensily be generalized to higher coordination numbers, Usually this arrange-
ment undergoes a spontaneous distortion, with the hydrogen ion moving
oll-centre towards one of the two coordinating anions. The geometry of this
arrangement has been very well-characterized by neutron diflraction {Ferraris
and Franchini-Angela, 1972); the typical arrangement is shown in Figure 2.18.
Brown (1976) has shown that the most common bond-valence distribution is
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Figure 218 Typical geometry of hydrogen coordination: the hydrogen is [23-coerdinated, and
spoantancously moves ofl-centre 10 form twe honds of the approximute valence shown, and a bent
O-H-0 angle; the anien closer (o the hydrogen is called the *donor” anion, and the anion furiher
from the hydrogen is ealled the “acceptor” anion.

about 0.80 v.u. to the closer oxygen, and approximately 0.20 v.u. to the further
oxygen; this generally leads to the stronger bond being subsumed within
(H,0)" or (OH}™ groups that now become complex anions, and the longer
(weaker) bond being referred to as a hydrogen bond. The oxygen closer to the
hydrogen is called the (hydrogen bond) donor, and the oxygen [urther [rom the
hydrogen is called the {hydropen bond) acceptor (Fig. 2.18).

There are four different hydrogen-bearing groups in minerals: (OH)",
{H,O)°, (H;0)*, and (H,0;)"; skeiches of typical bond-valence distributions
for these groups are shown in Figure 2.19. The positively charged groups act
as calions and are extremely uncommon, although they have been identified in
such minerals as hydronium jarosite {{H,0}[Fe}*(580,}:(0H}s]. Ripmeester
et al., 1986} and rhomboclase ({HsO,}[Fe®*(SO4):(H;0);], Mereiter, 1974).

02 10.2 02
08
08 08
OH H,0

Figure L19  Dspual bond valence istobutons for the hydrogen-bearing  groups found in
mnctals HE g0 (HEL Ot amd (HL )t

o)

IO HAWTHORNI

On the other hand, the (QH}  and (HLON groups play @ vers important role
in the structures of the oxysait minerals, particularly with regard 1o the topo-
logical properties of their bond networks. The reason for this stems from the
extremely directional nature of the bonding associated with these two groups.
On the oxygen side of cach group, they lunction as an anion, whereus on the
hydrogen side of each group, they function as a cation (Fig. 2.18); it is because
of this unusual property that they play such a unique role in the structurc and
chemistry of minerals.

2.7.1 (OH) and (H,0) as components of the structural unit

The very important role of these groups in the constitution of the structural
unit of a mineral stems [rom their bond-valence distribution (Fig. 2.19). On the
anionic side of each group, the bond-valence is relatively strong, approximate-
ly 1.2 v.u. for (OH) and 04 v.u. for (H,0); the remainder of the bond-valence
requirements of the central oxygen is satisfied by the hydrogens, and on the
cationic side of the group, the bond-valence is relatively weak, about 0.2 v
for each group (Fig. 2.19). Thus, on the anionic side of the group, the strong
bonding constitutes part of the bonding network ol the structural unit;
conversely, on the cationic side of the group, the hydrogen bond is too weak
to form a part of the bonding network of the structural unit. The role of both
(OH) and (H,0) is thus to ‘tie off* the polymerization of the structural unit in
specific directions. Consequently, these groups play a crucial role in controlling
the class of the polymerization of the structural unit {(Hawthorne, 1985a), and
hence control many of the physical and chemical properties of a mineral.

An excellent example of this is the structure ol newberyite {Sutor, 1967),
[Mg(PO;OH)(H,0);]. The structural unit is a sheet of corner-sharing {MgO)
octahedra and {PO,) tetrahedra, with the polyhedra arranged at the vertices
ol a 65 net, as iitustrated in Figure 2.14{a); the bond-valence structure is shown
in Table 2.7. In the (PO,) tetrahedra, three of the ligands link to (MgOg)
octahedra within the sheet. The other ligand is ‘tied ofl” orthogonal to the sheet

Table 27 Bond-valence table for newheryite

Mg P Hi&) H(71) W72 HEN  H{E2)  HEY  HH2)  Sum
{3y 0389 1399 {788
0{4) 0349 1242 020 020 149t
0(5) 0364 1232 0.20 0.20 1.996
0{6) 1095 080 0.20 2495
omn 0.326 0.0 0.80 0.20 2126
0(8) 0.316 (.80 (.40 0.20 2116
0(9) 0313 Q.80 (.30 1913
Sum 2057 4968 18 L0 1.0 1.0 1.0 1.0 L0
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by the fact that the oxygen is stronply bonded to a hydrogen atom (i.e. it is a
hydroxyl group); the long P—0O bond of 1.59 A contributes a bond-valence of
1.10v.u. to the oxygen, and the remaining 0.90 v.u. is contributed by the
hydrogen atom which then weakly hydrogen-bonds {bond-valence of about
0.10v.u) to the neighhouring sheet in the Y-direction. In the {MgO) oc-
tahedra, three of the lipands link to (PO,) tetrahedra within the sheets. The
other ligands are ‘tied off* by the fact that they are (H;0) groups; the Mg—0
bonds of 2.11, 212 and 2.13 A contribute a bond-valence of approximately
0.32 v.u. to each oxygen, and the remaining 1.68 v.u. is contributed by the two
hydrogen atoms which then weakly hydrogen-bond (bond-valences of about
0.16 v.u. for each hond) to the neighbouring sheets in the Y direction. The
chemical formula of the structural unit is also the chemical formuia of the
mineral, and the sheel-like nature of the structural unit is controlled by the
number and distribution of the hydrogen atoms in the structure.

In newberyite, all intra-unit linkage was stopped at the (OH) and (H.O)
groups. This is not necessurily the case; for specific topologies, both (OH)
and {H.Q) can allow intra-unit linkage in some directions and prevent it in
olhers. A pood example of this is the mineral artinite {Akao and Awai, 1977),
[Mg,(CO;)OH);3(H;0);5], the structure of which is shown in Figure 2.20; the
bond-valence structure is shown in Table 2.8. The structural unit is a ribbon
(chain) of edge-sharing (MgO¢) octahedra, flanked by (CO,) triangles linked to
alternate ouler octahedral vertices of the ribbon, and occurring in a staggered
arrangement on either side of the ribbon. The anions bonded te Mg and running
down the centre of the ribbon are bonded to three Mg cations; they receive
about 0.36 x 3=1.08 v.u. from the Mg cations, and thus receive 0.92 v.u, from
their associated hydrogen atoms which then weakly hydrogen-bond (bond-
valence approximately (.08 v.u.) to an adjacent ribbon. The (OH)}™ group thus
allows linkage in the X and Y directions but prevents linkage in the Z direction.

S
G

® HO ® OH

Fipore 220 The structural unit in arinite, a ribbon of (MgO,} octahedra and (CO,) triangles; all
simple unions not bonded (o curbon are either {OH) or (H,0).
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Table 28  Bond-valence table for arlinite

Mg C Hi{1) H{2) H{3) H{4) Sum
1) 0.391 0.08 0.80"2 2071
o1y 0.391 1.678 0.08 2.149
02} 1264"2 0.30 0.30 1.864
OH 0.372%2 0.92 2018
0.350
ow 0.28372 0.70 0.70 1.966
2051 4.206 1.00 .00 1.0 1.00

*0{1} and O{1) are disordered, and are both hali~occupied.

The anions bonded to Mg and running along the edge of the ribbon are
bonded to either one Mg, two Mg, or one Mg and one C, with bond-valence
conributions of about 0.3, 0.6, and 1.7 v.u., respectively. The former two ligands
are therefore (H,O} groups which hydrogen bond fairty strongly to anions in
the same structural unit and in adjacent structural units. Thus the (H;O) group
bonded to one Mg prevents further unit polymerization in all three directions,
whereas the (H,O) group bonded to two Mg atoms allows polymerization in
the Y direction but prevents polymerization in the other two directions. The
bond-valence requirements of the two anions just bonded to C are satisfied by
hydrogen bonding involving donor atoms both in the same structurai unit and -
in different structural units. Thus in artinite, all linkage between structural
units is through hydrogen bonding via {(OH) and (H,O) groups of the
structural units; in addition, the (OH) groups allow polymerization in two
directions within the structural unit, whereas the two types of (H,0) groups
allow polymerization in one and no directions, respectively, within the struc-
tural unit.

The (OH) and (H;0) groups play a crucial role in controlling the polymer-
ization of the structural unit in oxysalt minerals. Because of its very asymmetric
distribution of bond-valences, the hydrogen atom can link to any strongly
bonded unit, essentially preventing any further polymerization in that direc-
tion. Thus the dimensionality of the structural unit in a mineral is primarily
controlled by the amount and role of hydrogen in the structure.

2.7.2 (H,0) groups bonded to interstitial cations

Interstitial cations are usually large and of low charge. Generally, they are
alkali or alkaline earth cations with Lewis acidities significantly fess than those
of the cations belonging to the structural unit. Consequently, (H,O) can
function as a ligand lor these cations whereas (OH) cannot, as the cation to
which it must bond cannot contribute enough bond-valence (i.e. about 1.0 v.u.)
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for ils bond-valence requirements 1o be satisfied. There are (at least) three
possible reasons for {H,0) groups to act as ligands for interstitial cations:

1. to salisfy the bond-valence requirements around the interstitial cation in

cases where there are insufficient anions available [rom adjacent structural

units;

to carry the bond-valence from the intersiitial cation lo a dislant unsatis-

fied anion of an adjacent structural unit;

3. 1o act as bond-valence transformers between the interstitial cation and the
anions of the structural unit; this is a mechanism of particular importance,
and will be discussed separately later on.

!\J

A good example of {H;0) of this kind is found in the structure of stringhamitc
(Hawthorne, 1985b), [CaCu(Si0,)]J{H,0), the structure of which is illustrated
in Figure 2.21. The structural unit is a sheet of corner-sharing (5i0,) tetrahedra
and square-planar (CuQ,) polyhedra, arranged parallel to {(010). These sheets
are linked together by interstitial Ca atoms; each Ca links to four anions [rom
one sheet and one anion from the adjacent sheet. Presumably the Ca coordi-
nation number of [5], a value that is rare for Ca, is not adequate with regard
to the satisfaction of local bond-valence requirements, and two (H;O} groups
complete the Ca coordination polyhedron. As shown in Figure 2.21, each

Figure 221 The crystal structure of stringhamite projected on Lo (001); interstilinl species ure
omitied Lo the left of the diagram 1o emphasize the sheet-like nalure of the structural unit.
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(H,0) group bonds to two Ca atoms, and also_hydrogen bonds to anions in
adjacent sheets, carrying the Ca bond-valence to anions which otherwise it
could not reach. Thus the (H,0) groups of this type, that is bonded only to
interstitial cations, play a very different role [rom those (H,0) groups that form
part of the structural unit.

2.7.3 Hydrogen-bonded interstitinl (H,0) groups

In some structures, there are interstitial (H,O}) groups that are not bonded to
any interstitial cations and yet participate in a well-defined hydrogen-bonding
network. The (H;O) groups of this sort act as both hydrogen-bond donoss and
hydrogen-bond acceptors. Any hydrogen-containing group (both (OH) and
{H,0) of the structural unit, interstitial {H;0) bonded to interstitial cations,
and interstitial (H.O} groups not bonded to the structural unit or interstitial
cations) can act as a hydrogen-bond donor to (H,O} groups of this sort, and
any anion or {H;0) group can act as hydrogen-bond acceptor for such (H20)
groups. Minerals with such hydrogen-bonding networks can be thought of as
intermediate between anhydrous structures and clathrate structures.

A good example of such a structure is the mineral mandarinoite {(Hawthomne,
1984b), [Fel*(Se0;)3(H,0)11(H:0);, the structure of which is illustrated in
Figure 2.22. The structural unit is a heteropolyhedral [ramework of corner-
linking (Se05) triangular pyramids and (FcOg) octahedra, with large cavitics
that are occupied by hydrogen-bonded (H2O) groups in well-defined positions.
Thus of the six {H,0) groups in the formula unit, three are bonded 1o Fe'”
and are part of the structural unit; the three remaining (H,O) groups are
interstitial and not bonded to any cation at all, but held in place solely by a
network of hydrogen bonds.

2.7.4 Occluded (H,0) groups

Some structures contain (H,0) groups that are not bonded to any cation and
are not associated with any hydrogen-bonding scheme; normally such {H,0)
groups are located in holes within or between structural units. Such groups can
occupy well-defined crystallographic positions, but their interaction with the
rest of the structure is solely through a Van der Waals interaction.

A good example of such (H;0) groups occurs in the structure of beryl
Alkali-free beryl can have non-bonded (H,0) groups accurring in the channels
of the ramework structure. Most natural beryls contain alkali cations partly
occupying sites within these channels, and these cations are bonded to channei
(H,0) groups. However, Hawthorne and Cerny (1977) have shown that most
natural beryls contain (H,O) groups in excess of that required to coordinate
the channel cations, and hence some of the (H,O) groups must be occluded
rather than occurring as bonded components of the structure. Although such
(H,0) does not play a significant structural role, it can have important effects
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Figure 222  The crystal structure of mandurinoite projected on to (001); note the two diflerent
types of {(H,0) groups, one banded to eations of Lthe structural: unit, and the other held in the
- structure by hydrogen-bonding only.

on such physical properties as specific gravity, optical properties (Cerny and
Hawthorne, 1976) and dielectric behaviour.

28 {H,0) ns a bond-valence transformer

Consider a cation, M, that bonds to an anien X (Fig. 2.2)a)); the anion X
receives a bend-valence of v valence units from the cation M. Consider a
cation, M, that bonds to an (H,0) group which in turn bonds to an anion X
(Fig. 2.23(b)). In the second case, the oxygen receives a bond-valence of v
valence units from the cation M, and its bond-valence requirements are
satisfied by iwo short O—H bonds of valence (1 — v/2) valence units. To satisfy
the bond-valence requirements around each hydrogen atom, each hydrogen
forms at least one hydrogen bond with its neighbouring anions. In Figure
2.23({b), one of these hydrogen bonds is to the X anion which thus receives a
bond-vaience of one hall what it received when it was bonded directly to the
M cation. Thus the (H,O) group has acted as a bond-valence transformer,
causing one bond (bond-valence=v v.u.) to be split into two weaker bonds
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Figure 223 The transformer effect of {H, 0} groups: a calion bonds to un oxygen of an (H,0)
group, and the strong bond is split into two weaker bonds (hydrogen bonds) via the bond-valence
requirements of the constituent H' and Q- ions; this is shown for both M2* and M** catjons.

{bond-valence=v/2 v.u.). It is this transformer cffect that is the key to under-
standing the role of interstitial {H,0) in minerals.

2.9 Binary structural representation

It has been proposed (Hawthorne, 1985a; 1986) that the structural unit be
treated as a (very) complex oxyanion. Within the [ramework of bond-valence
theory, we can thus define a Lewis basicity lor the structurat unit in exactly the
same way as we do for a more conventional oxyanion. We may then use the
valence-matching principle to examine the interaction of the structural unit
with the interstitial cations. In this way, we can gel some quantitative insight
into the weak bonding in minerals, It is worth emphasizing here that we have
developed a binary representation that gives us a simple quantitative model of
even the most complicated structure. We consider structures in this way not to
convey the most complete picture of the bond tepology, but to express
structure in such a way that we may apply bond-valence arguments in an a
priori fashion to problems of structural chemistry.

Let us look at poedkenite, Sr.[AI{PO,),(OH)], the structural unit of which
is shown in Figure 2.13(i). The bond network in the structural unit is shown in
Figure 2.24 as a sketch of the smailest repeat ragment in the structural unit.
There are 9 oxygens in this [ragment (as indicated by the general [M(Teby)2¢1]
form of the structural unit), and the residual anionic charge is 4. in order to
calculate the basicity ol this structural unit, we musl assign simple anion
coordination numbers to the unit. Obviously, we must have an objective
process [or doing this, as the calculation of structural unit basicity hinges on
this assipnment. Fortunately, this assignment is fairly well-constrained by the
general observation that most minerals have oxygen in [3]- or [4]-coordi-
nation; of course, it is easy to think ol exceptions, quartz for example, but the
fact that these exceptions are few ‘proves the ruie’. Normally it is adequate to
use the coordination number {4]; however, there are the foliowing exceptions:

1. Minerals with M=3* and T=6", for which the coordination number [3]
is more appropriale,

2. A coordination number ol [3] (including H atoms) is more appropriate for
{H;0), and is also used lor (OH} when it is bonded to M*¥ cations.
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Figure 2.24 The bond network in the structural unit of goedkenite.

To attain an oxygen coordination number of [4], the cluster shown in Figure
224 needs an additional number of bonds Irom the interstitial cations. From
the connectivity of the structural unil, the clusier of Figure 2.24 needs an
additional 20 bonds; however, it will receive one (hydrogen) bond from an
adjacent chain, which leaves 19 bonds to be received [rom the interstitial
cations. These 19 bonds must come lrom 4% charges, and thus the average
bond-valence required by the cluster is 4/19=0.22v.u, this is the basicity of
the structural unit in poedkenite. Examination of the table of Lewis acid
strengths (Table 2.5) shows that the cations ol appropriatc Lewis acidity are
Pb{0.20v.u.), Sr(0.24 v.u.), and Ba(0.20 v.u); in agreement with this, St is the
interstitial cation in goedkenite. Note that Ca, with a Lewis basicity of 0.29 v.u,,
dees not match with the Lewis basicity of the structural unit, and thus the
valence-matching principle accounts for the fact that goedkenite has Sr rather
than (the more common} Ca as the interstitial cation.

In this way of treating minerals, we have a simple binary interaction: the
structura! unit bonds with the interstitia} cation{s) We may evaluate the
stability of this interaction via the valence-matching principle, using the Lewis
basicity of the structural unit and the Lewis acidity of the interstitial cation(s}
as measurcs of their interaction. This reduces the most complex structure (o it
fairly simple representation, and looks at the interaction of its component
features in a very simple but guantitative fashion.
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2.10 Interstitial (H,O) in minerals

So far, we have seen that {H,0) plays a major role in controlling the character
(dimensionality) of the structural unit; such (H,O) is part of the structural unit
and is stoichiometrically fixed by the topology of the unit connectivity. Inter-
stitial {(H,O) is obviously very different in character, As we discussed previous-
ly, it may coordinate interstitial cations or it may occur solely as a component
of a hydrogen-bonded network. Whichever is the case, the (H,0) occupies fixed
atomic positions and must play a role in the stability of the structure. The key
to understanding this roie is found in two distinct ideas of bond-valence theory:

1. the role of (H,0O) as a bond-valence transformer:
2. application of the valence-matching principle to the interaction between
the structural unit and the interstitial cations.

Ideally, the valence of the bonds from the interstitial cations to the structural
unit must match the Lewis basicity of that structural unit; il they do not maich,
then there cannot be a stable interaction and that particular structural
arrangement will not occur. However, il the Lewis acidity of the interstitiai
cation is ioo large, the cation may bond to an interstitial {H;O) group which
acts as a bond-valence transformer (see Section 2.9), taking the strong bond
and transforming it into two weaker bonds (Fig. 2.23). In this way, in-
corporation of interstitial (H;0) into the structure can moderate the Lewis
acidity of the interstitial cations such that the valence-matching principle is
satisfied.

A good example of this is the ferric iron sulphate mineral botryogen,
Mgz [Fed ¥ (§0.)4(OH),(H,0);1{H10),0; why does this mineral have 10 inter-
stitial (H,0) groups per structural formula? The structural unit of botryogen
is illustrated in Figure 2.13(k), and the coordinations of the various anions in
the structural wnit are shown in Table 2.9. Using the ideal coordination
numbers discussed earlier {=[3] lor all the simple anions in botryogen), the
structural unit ol botryogen needs an additional 26 bonds (o achieve ideal
coordination of all its simple anions. Six ol these bonds will be hydropen bonds
from (OH) and (H,0) groups within or in adjacent structural units, ieaving 20
bonds needed from interstitial cations. Thus the Lewis basicity of the structural
unit in botryogen is the charge divided by the number of required bonds:
4/20=0.20 v.u. The interstitial cations in botryogen are Mg, with a Lewis
acidity of 0.36 v.u. The valence-matching principle is violated, and a stable
structure should not form. However, the interstitial Mg atoms are coordinated
by {5(H,O}+ 0O}, and this will moderate the eflective Lewis acidity of the
cation via the transformer eflect of {H,0O). Thus, the effective Lewis acidity of
the ‘complex cation’ {Mg(H,0}50} is the charge divided by the number of
bends: 2/(5x2+1)=0.19 v.u. The moderated Lewis acidity of the complex
interstitial cation thus malches the Lewis basicity of the structural unit, and a
stable mineral is formed.
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Table 29 Details of H,0 ‘of hydration' in botryogen

Botryogen: M Bz[Fci *{80.4)4(OH);(H,0); 1H, 004

Bonded Number of Ideal Bonds necded
atoms unions coord. no, for ideul coord.
5 10 k) 2x 10

S+Fe*t 6 3 Ix6

2Fe*t +H 2 3 1}

Fedt 4+ 2H 2 k] 0

Bonds needed to structural unit=2x [0+ 1x6=26
No. of H bonds to structural unil=2x2+2x | =6
Na. of additionul bonds needed =26—6=20
Charge on structural unit=4"

Lewis basicily of structural unit=4/20=0.20v.u.

Interstitial cation{s) is Mg

Mg courdination = {5(H,0)+0)

Bonds from Mg to siructural unit=5x2+1=11

Effective Lewis acidity of Mg=2/{5»x 2+ 1} =019 v.u.

The interstitinl {H;0} has moderated the Lewis acidity of the interstitial
cation such that the valence-matching principle is satislied

2.11 Bond-valence conirols on interstitial cations

The structural unit is (usualiy) of anionic character, and thus has negative
charge; this is neutralized by the presence of interstitial cations. Apart from the
requirement of electroneutrality, the factors that govern the identity of the
interstitial cations have been obscure. However, inspection of Tables 2.A2,
2.A3, and 2.A4 indicates that there must be controls on the identity of the
interstitial cation. It is immediately apparent that different structural units are
associated with different interstitial cations; thus [M“(T5+04)2(H10)1]
chains {Fig. 2.13(a), Table 2.A3} always have Ca as the interstitial cation,
whereas [M2*(T3*04)2(H,0)] chains {Fig. 2.13(b), Table 2.A3) always have
Pb?* as the interstitial cation. Why is this so? If we were dealing with one or
two very rare minerals, we might suspect that the difference is peochemically
controlled: however, these are reasonably common minerals with significantly
variable chemistry and paragenesis. We are forced to conclude that-the control
on interstitial cation type is crystal chemical rather than geochemical.

We find the answer to this problem in the application of the valence-
malching principle (o our binary representation of structure. The Lewis acidity
of the interstitial cation must match up with the basicity of the structural unit.
Thus 11 15 not enough that the interstitial cation has the right valence; it must
also have the nght Lewrs acidity. Let us cxamine the example outlined in the
previous paragraph, that s the identity of the interstitial cations in the
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[M2*{T**0,);(H,0);] and T i
tite and bmckcbuschi)tfa]as exaE'nN::rIcs(.T OO structures, vsing brand-

The situation ﬁ.Jl' brandtite is shown in Table 2.10; counting the bonds within
the structural unit indicates that an additional 20 bonds to the structural unit
are needed to attain the requisite simple anion coordination numbers. Four of
these bonds are hydrogen bonds from other structural units, leaving 16 bonds
to be contn!)u}ed by the interstitial cations. The residu:'ll charge on the
structural unit is 4~ (per [Mn?*(AsO,),(H,0),] unit), and hence the basicity
of the structural unit is 4/16=0.25 v.u. Inspection of the Lewis acidity table
{Table 2_.5) shows that Ca has a Lewis acidity of 0.29 v.u.,, matching up with
‘lhe Lf:w:s basicity of the structural unit. Hence the valence-matching principle
is sahsﬁftd, :{nd Ca,[Mn?*{As0,),(H,0),] is a stable structure,

The situation for brackebuschite is also shown in Table 2.10; an additional
20 honds are needed to satisfy the requisite simple anion coordi:mlion require-
mens. Twao of these bonds are hydrogen bonds from adjacent structural units
leaving 18 bonds to be satisfied by the interstitial cations. The residual churgr:
on the structural Pnit is 47, and hence the basicity of the structural unit is
;/;f+=022 v.u, This value matches up quite well with the Lewis basicity of

. (0'201 v.u., see Table 2.5), the valence-matching principle is satisfied, and
Pb2*[Mn?*(V310,),(H;0)] is a stahle structure. ,

Table 210 Calculation of structural unit basicity for brandtite

Brandtite =Ca,[Mn® *(As0,),(H;0),] Structural unit=[Mn'¢{As"i0,),(H*,0),]
:umxr ufrbonds in structural unit=1x[6]+2x[4]+2 x[2] =18 ’ T
umber of bonds needed for [43-c inali i i
I eoondintion & migncd)ig}u [(:J:]ri:;::l;;]l :gsull simple anions (except (H,O) for which
Number of additional bonds to structuril unit {o achicve this coordination =20
Number of hydrogen bonds to structural unit=2 x2 =4 -
Thercfore the number of bonds required from interstitial cations =20—4=16
Chm"gc on the structural unit [Mn?*'{AsQ,),(H,0},] in brandtite=4"
Le\:ws basicity of structural unit =charge/bonds =4/16=10.25 v.u.
This basicity matches most closcly with the Lewis acidily of Ca at 0.27 vu
Thus the formuln of brandtite is Caz[Mi(AsO,}H,0),] o

Brackebuschite = Pb,[Mn?* (VO,},(H,0}] Structural unit =[Mal*{Vi40, L, iHRI05}

:umzr ofrhtl::nds in structural unit=1 = [6f+2x [4]+2x[1]=16 *
umber ol bonds needed for [4]-coordinuti i i i i i
is [4}-coordinated in this s!rut!:tu]rul u:till)nzut‘;c:-:n[‘;]]r;;[ﬁ simple tufors (ncluding {H,0) which

Number of additional bands 10 structural unit to nchieve this coordination =20

Number of hydrogen bonds to structural unit=2 )

Number of bonds required from interstitial cations = 18

C'hm:gc on the stractural unit [Mn2*(VO,4},(H,01] in brackebuschite=4"

Lc\.vls basicily of struetural unit =charge/bonds =4/18 =022 v.u.

This basicity mutches most closely with the Lewis acidity of Ph at .20 v.u

Thus the formula of brackebuschite is Phy[Mn{VO,},(H,0] o
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Now that we understand the basis of this selectivity of interstitial cations,
some very interesting geological questions become apparent. Does the form of
the structural unit dictate the identity of the interstitial cations, or does the
availability of a particular interstitial cation dictate the form of the structural
unit? Does the pH of the environment affect the form of the structural unit or
the amount ol interstitial {H,0) incorporated into the structure? Are there
synergetic interaclions between these factors? Using bond-valence theory in
conjunction with the topological characteristics of the structural unit, we can
begin o investipate some of these questions that previously we have had no
concepiual basis o think about.

2.12  Structural controls on mincral paragenesis

2.12.1 Magnesium sulphate minerals

The magnesium sulphate minerals are important phases in many marine salt
deposits, and these parageneses can be very complicated. Common minerals in
these deposits are given in Table 2.1, together with an indication of the
character of the struciural unit and its Lewis basicity. The paragenetic scheme
shown in Figure 2.25 was constructed [rom an examination of natural occur-
rences, logether with consideration of their phase relations in aqueous sol-
utions. The arrows in Figure 2.25 indicate a change in the crystallizing phase
[rom an agqueous solution of the bulk composition of the previously crystalliz-
ing phase, and/or an alteration sequence. Obviously, these equilibria will be
specifically dependent on temperature, bulk compaosition and pH, but the
natural assemblages suggest that the scheme of Figure 2.25 corresponds
reasonably well to the peneral case.

Table 211 Common magnesium sulphate mineruls

Mineral Formula Structural unit Unit
basicity
{v.u)
Langbeinite K, Mg;(504); Infipite framework 0.1t
Locweite Na,;Mg4{SO4h;* 15H;0 Infinite framework 0.14
Vanthoflite Na ,Mg(SO,}, Infinite sheet 0.14
Polyhalite K ,Ca;Mg(50,}, 2H,;0 Finitc cluster 0.2t
Kicserite Mp(S0;)-H,0 Infinite framework 0.00
Leonite K,Mg(SO,}), - 4H,O Finile clusier 0.14
Blocediic Nu;Mp(50,); - 4H,0 Finitc. clusler 0.14
Pentahydrite MpiS0,)-5H,0 Infinite chain 0.00
Hexahydrite Mg(80,)-6H .0 Isolated polyhedra 0.00
Picromerite K,Mg(50,);-6H,0 solated polyhedra 0.13
Epsomite MEg(80,)- TH, 0 Isolated polyhedra 0.00
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L Langbeinitej l_ Loeweile—l L Vanthoffite —l

[ Polyhalite —l:—

Bloedite

L Pentahydrite "
V4
Hexahydrite ]

L Picromerite —I

Fipare 2.25 A{meximu!e paragenetic scheme for A, [Mg,(50,),¢,] salt mincrals. The arrows
denote progressive crystallization and/or alteration.

Epsomite

It is apparent from inspection of Table 2,11 that there is a gradual
depollymerization of the structural unit down through the paragenetic sequence
of Figure 2.25. This change is effected by the incorporation of increasing
amounts of (H;O) into the structural units, the (H.0) groups essentially
blocking further polymerization where they attach to the structural unit. This
decrease in the polymerization of the structural unit is also accompanied by a
decrease in the basicity of the structural unit (Table 2.1t, Fig. 2.26). This
has the effect of changing the character of the interstitial cations, which are
gradually decreasing in Lewis acidity, until at the last stages of the crystalliz-

T 0.151

Madule  0.10-
basicity 0.05 -
0.00

Progressive crystallization ———pe

Figure 226 Change in character of structural unit with progressive crystallization for the
minerals of Figure 2.25.
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ation sequence, there are no interstitial cations left, and the structural units are
neutral. )
Figure 2.27 shows the evolution of the character of l.he §lruclural units. For
a specific Lewis basicity, there is a gradual dc-polymcnz'al.mn of lhe.slruclurul
unit with progressive crystallization. The pattern cxhxblled'b‘y Flgyre 2.27
suggests a specific control on the character of the cryslalh;mg mme.ral(s).
Crystallization begins with the formation of a structural unit 91’ maximum
conneclivity and the highest possible Lewis basicity consonant w1lh th_c Lewis
acidity of the most acid cation available. With continued crystallization, t!le
dimension ol polymerization ol the structural unit gradually dccreas.es whlle
the Lewis basicity of the structural units is maintained. As the most acid cation

Framework = |
Sheet ]
Chain -]

Cluster ¢ \
[ —

Isopoly S

Framework — Q
Sheet -
Chain - Q

Cluster +

Isopoly - Q

T T T T T 1
Progressive crystollization ————=
Fipure 2.27 Change in characier of structural unit with progressive crystallizalion for the

minerals of Figure 2.25; the upper figure is for minerals with u Lewis basicity of ~0.15 v.u. for their
structural units, the lower. igure is for minerals with a Lewis busicity of zero for their slrycturul

unils,
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becomes depleted, there is the beginning of crystallization of structural units of
lower basicity and the incorporation of less acid cations inte the structure.
Again the degree of polymerization of the structural units decreases with
progressive crystallization, but the basicity of the structural units is maintained
until the cations of corresponding acidity are gone. This process repeats itsell
with structural units and interstitial cations of progressively decreasing basicity
and acidity respectively, until we reach the final stage when the structural units
have zero basicity and there are no interstitial cations in the resulting minerals.
Note that at any stage in the crystallization process structural units of differing
basicities may be crystallizing simultaneously, the resulting minerals incorpor-
ating very different interstitial cations; however, the connectivities (dimensions
of polymerization) of the structural units are very different. This scheme seems
to work quite well for these minerals, and one can make all sorts of inferences
about possible complexing in solution and crystallization mechanisms. It will
be interesting (o see how well this scheme works in more complicated systems.

213  Summary

Here I have tried 1o develop a global approach Lo questions of stability and
paragenesis of oxide and oxysall minerals. The fundamental basis of the
approach relates to the energetic content of the bond topology of a structure.
Bond topology has a major effect on the energetics of a structure, suggesting
that major trends in structure stabilily, properties, and behaviour should be
systematically related to the coordination geometry and polyhedral tinkage of
a structure. Combination of these ideas with bond-valence theory (a very
simple form of molecular orbital theory) allows a simple binary representation
of even the most complex structure: a (usually anionic) structural unit that
interacts with (usually cationic or neutral) interstitial species to form the
complete structure. This interaction can be quantitatively examined in terms of
the Lewis basicities and acidities of the binary components, and such chemical
variables as interstitial cation chemistry and ‘water’ of hydration can be
quantitatively explained. Examination of a few complex mineral parageneses,
together with the topelogical character of the structural unit, indicates that the
latter has a major control on the sequence of crystallization of the constituent
minerals. In addition, the persistence of particular fundamental building blocks
in scries of associated minerals suggests that such cluslers may occur as
complex species in associated hydrothermal and safine fluids.

The principal idea behind this work is to develop an approach that is
reasonably transparent to chemical and physical intuition, and that can be
applied to large numbers of very complex structures in geological environ-
ments, Mineralogy is currently absorbing a large number of ‘thcoretical’
techniques from physics and chemistry, examining aspects of (fairly simple)
minerals. One of the dangers with this is that it is easy to become lost in the
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Appendix

Table 2A1 M(T¢.)e, and M(T¢,),¢, minerals based on isolated Mg; octahedra and Te, tetrahedra

M(Td,.)p, mineral Formuta M{Teh, }2e, mineral Formula
Bianchite [Zn{H;01,](50.] Amarilie Na[Fe> (S0, :{H:01,]
mn_._d_._nan._.;_n_:ﬁ {Fe' {H, 0}, J[S0.] Tamarugite Na[AlISO.}2(H,0),]
Hexahydrite [Me(H,0),][50.]
. Mendozite Ma[AHSO.}2(H10), Y HA0)4
Moaorhouseite [Co(H,0)]{50.]
Kalinite

Nickel-hexahydrite
Retgersile
Khademite
Epsomite

Goslarite
Maorenosite

Bierberite

Boothite
Mallardite

Meinnterite
Zinc-melantesite

Phosphorroesslerite
Roesslerite

Struvite

[Ni{H10)s][S0.]
[Ni{H,0),][50.]

[AI(H,0)sF][S0.}

[Mg{H,0)][SO,){H.0)

[Zn(H,0),][30,XH.0)
[Ni(H0),][SO,](H,0)

[CalH;0},1[5C.](H,O}

£CulH;0)][SO.]J(H,0)

[Mn{H,0),}{S0.J(H

20)

[Fe'*{H,0),][S0.](H,0)

[Zn(H;0),]{SO.]H,

O}

[Mg{H,0)]{PO(OH)J{H,0)

[MgH O J[AsO(OH)J(H O

NH.[MgH,0),][PO.]

Sodium alum

Potassivm alum
Tschermigite
Apjohinite
Bilinite
Dietrichite
Halatrichite

Pickeringite
Redingtonite

Aubertite

Boussingaultite
Cyanochroite

Mohrite
Picromerite
Diespujolsite

Fleischerite
Schouertite

K[AIS04):4H; 01 1(H, O}y
NafAlSO,),(H,0)](H;0},

K[ANSO, J:(H,0)JH,0),
NH.[ASO,);(H,0L]tH,0),
Mn[AlSO,),(H,0)J(H,0)4p
Fe*[Fe? T{SO4 }2(H 1005 ](H,0);0
Zn[AlISO,.}{H; 0 J(H:O%0

Fe? *[AKSO,){H:0)41(H, O

Mg[Al(SO,},{H,0)](H,000
Fe*[CrSO.){H,0kIH;0) 0

Cu?*{AliSO, );(H, 0} JCHH 0},

{NH,);[MgS0, }(H,0),]
K;[Cu*(50,)4(H.0)]

(NH,),[Fe** (SO, J2tH,0)¢]
K [Mg(50,),(H,0)4]
Cay[Mn**(S0,};{OH)sJ(H. O,

Po,{GetS0,){0H);1(H0),
Ca,[Ge{30,),(0H),](H,0)
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technical complexities of the computational approach, and the basic physics
and chemistry of what is going on can become lost; one is merely doing a

numerical experiment. By and large,
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Formula

M(Td,)z¢, mineral

M(T, ), mineral

Furmu]a_

Pb[Mn(VO,)OH]

Pyrobelonite

{Mg(5i0;)]

Orthoenstatite

BalAlPO,)OH],

Jagowerite

(Mg Fe? " )(5i0,}]
[Fe**(8i0;)]

[Mg(Si04))

Hypersthene

QOrtholerrosilite

Ca[Fe**Fe?*(PQ,},0H]

CaLi,fAlPO,)OH].
SrLi;[Al(PO,)OH],

Melonjosephite

Clinoensiatite

Bertossaite

[(Mg, Fe?*){Si05)]
[Fe2*(5i05)]

Clinohypersthene
Clinoferrosilite

Paiermoite

Pb[Fel *{As0,)OH],

Carminite

K{Fel*{PO,){0H}HO)}(H,0);

Leucophosphite

Ca,[Al;(Al, Fe?*}(8i0,)(81;0, XOH),(OH, H,0)]

Ferropumpellyite

Jugoldite

Ca,[Fed*(Fe?*, Fe*}(Si0,)(5i 0 )(OH),{OH, H,0))

Cas[Aly(Al Mg)Si0,}(5i,0-)(OH),(OH, H,0)]

Pumpellyite
Shuiskite

Ca[Cra(Al, MEHSIO,)(5i; 0, OH),(OH, H,0}]

(M, Ca)a[Al{ME, Al}2(Si04):(Si;0,HAsO,, VO HOH),]

Ardennite
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