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A MINERAL OR A CRYSTAL STRUCTURE
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ABSTRACT

An endmember formula must be: (1) conformable with the crystal structure of the mineral, (2) electroneutral (i.e., not carry

a net electric charge), and (3) irreducible [i.e., not capable of being factored into components that have the same bond topology

(atomic arrangement) as that of the original formula]. The stoichiometry of an endmember formula must match the

‘‘stoichiometry’’ of the sites in the structure; for ease of expression, I denote such a formula here as a chemical endmember. In

order for a chemical endmember to be a true endmember, the corresponding structure must obey the valence-sum rule of bond-

valence theory. For most minerals, the chemical endmember and the (true) endmember are the same. However, where local

order would lead to strong deviation from the valence-sum rule for some local arrangements, such arrangements cannot occur

and the (true) endmember differs from the chemical endmember. I present heuristic and algebraic proofs that a specific

chemical formula can always be represented by a corresponding dominant endmember formula. That dominant endmember

may be derived by calculating the difference between the mineral formula considered and all of the possible endmember

compositions; the endmember formula which is closest to the mineral formula considered is the dominant endmember.

Keywords: endmember, component, mineral formula, endmember charge-arrangement.

INTRODUCTION

There exists a persistent belief that a mineral

cannot always be expressed in terms of a dominant

endmember chemical formula. It is easy to see where

this belief originated: many minerals are extremely

complicated from both chemical and structural per-

spectives, and analytical difficulties can make the

derivation of accurate chemical formulae quite chal-

lenging. Moreover, chemical data for an incompletely

characterized mineral obviously cannot be correctly

interpreted, as all the constituents of that mineral have

not been identified or quantitatively measured. How-

ever, inadequate characterization does not provide

proof that a mineral does not have a dominant

endmember formula. Here, I will examine these issues

and provide both heuristic and rigorous algebraic

proofs that one can always (1) express a chemical

formula in terms of a dominant-endmember chemical

formula and (2) express a crystal structure in terms of a

dominant structural endmember.

ENDMEMBERS

The concept of an endmember is central to

mineralogy and petrology, and it is also central to

the issue to be considered here. Hawthorne (2002) has

discussed the properties of endmembers: (1) they must

be conformable with the crystal structure of the

mineral, (2) they must be neutral (i.e., not carry a

net electric charge), and (3) they must be irreducible

within the system considered [i.e., they should not be

capable of being factored into components that have

the same bond topology (atomic arrangement) as that

of the original formula]. It also must be realized that

‘‘endmember’’ is an abstract concept: it corresponds to

an ideal chemical formula and an ideal atomic

arrangement; it does not correspond to a real mineral

sample (although a mineral sample may have a

composition that corresponds closely to the formula

of the dominant endmember). Point (1) needs further

discussion, as there are two separate conditions that

are necessary for this requirement.
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AN ENDMEMBER MUST BE CONFORMABLE WITH THE

ATOMIC ARRANGEMENT OF THE MINERAL

For this statement to be true, the following two

conditions must hold: (1) the stoichiometry of the

endmember formula must match the ‘‘stoichiometry’’
of the sites in the structure (i.e., the ratios of the

different occupied sites in the unit cell of the structure)

and (2) the atomic arrangement with that endmember

chemical formula must be physically possible, i.e., it

must accord with the valence-sum rule (Brown 2016,

Hawthorne 2012, 2015).

Condition (1)

The stoichiometry of an endmember formula must

match the ‘‘stoichiometry’’ of the sites in the

corresponding structure; for ease of expression in this

paper, I denote such a chemical formula as a chemical

endmember. Note that this requirement includes

vacancies. For example, the general stoichiometry of

the C2/m amphiboles may be written as follows:

AB2C5T8O22W2 with the following correspondence to

sites in the structure: A¼A; B¼M(4), C¼M(1), M(2),

M(3); T¼ T(1), T(2); W¼O(3); italics indicate cation

sites (Hawthorne et al. 2012). The endmember formula

for fluoro-edenite is NaCa2Mg5(Si7Al)O22F2 and the

endmember formula for tremolite is ACa2Mg5

Si8O22(OH)2 where A denotes a vacancy at the A site

and within the A group of cations.

For the majority of atomic arrangements and

chemical formulae, the properties of endmembers

(see above) result in endmember formulae which have

a single constituent at each site [e.g., diopside,

CaMgSi2O6: M(1) ¼ Mg2þ, M(2) ¼ Ca2þ, T ¼ Si4þ,

O(1) ¼ O(2) ¼ O(3) ¼ O2–] or group of sites [e.g.,

forsterite, Mg2(SiO4): M(1), M(2) ¼ Mg2þ, T ¼ Si4þ,

O(1) ¼ O(2) ¼ O(3) ¼ O(4) ¼ O2–] in the structure.

Where the constituents of the sites are neutral (e.g., in

native metals and alloys), the dominant element at a

site may be assigned as completely occupying that site

and applying this procedure to each site in the structure

in turn results in the dominant endmember formula.

Where the atoms in a mineral occur as ions,

Hawthorne (2002) has shown that the constraint of

electroneutrality can require that some endmembers

have two constituents of different valence and in a

fixed ratio at one site in their structure (the remaining

sites having only one constituent each). Thus, the

dominant endmember formula for richterite, Na(Na

Ca)Mg5Si8O22(OH)2, has a single ion at each site in

the structure except for the M(4) site, which is

occupied by Ca2þ and Naþ in equal amounts; this

double occupancy of one site is necessary for electro-

neutrality of the endmember formula.

Condition (2)

The stoichiometry of a chemical formula may

match with the ‘‘stoichiometry’’ of the sites in a crystal

structure, but this does not ensure that the correspond-

ing atomic arrangement with that chemical formula is

physically possible. For example, let us consider a

rather extreme case. Consider the C2/m amphibole

formulae represented by the composition of endmem-

ber fluoro-tremolite: ACa2Mg5Si8O22F2, and the unit

exchange vector CAl1
CMg–1

TAl1
TSi–1. Operation of

the vector 5(CAl1
CMg–1

TAl1
TSi–1) gives the composi-

tion ACa2
CAl5

T(Si3Al5)O22F2, with site occupancies

M(1)¼M(2)¼M(3)¼1.0 Al3þ, T(1)¼1.0 Al3þ, T(2)¼
0.75 Si4þ þ 0.25 Al3þ. This formula fits both the

general formula and the stoichiometry of the sites in

the C2/m amphibole structure and conforms to

condition (1) for the definition of an endmember (see

above). Can this set of ions adopt the C2/m amphibole

arrangement? We may test this using the valence-sum

rule together with Pauling bond-strengths (Pauling

1929) replacing the bond valences, as we do not have

observed bond-lengths from which to calculate bond

valences. As is apparent in Table 1, the sums of the

Pauling bond-strengths incident at the anions depart

strongly from the valence-sum rule, particularly for the

TABLE 1. PAULING BOND-STRENGTH (vu) TABLE FOR C2/m AMPHIBOLE OF

HYPOTHETICAL COMPOSITION ACa2Al5(Si3Al5)O22F2

M(1) M(2) M(3) M(4) T(1) T(2) Sum

Zþ 3 3 3 2 3 3.75

O(1) 0.50x2� 0.50x2� 0.50x4� 0.75 2.25

O(2) 0.50x2� 0.50x2� 0.25x2� 0.94 2.44

F 0.50x2�� 0.50x2� 1.50

O(4) 0.50x2� 0.25x2� 0.94 1.69

O(5) 0.25x2� 0.75 0.93 1.93

O(6) 0.25x2� 0.75 0.93 1.93

O(7) 0.75x2� 1.50

Sum 3.00 3.00 3.00 2.00 3.00 3.75
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anions at the F [” O(3)] and O(7) sites. Thus, although

the formula ACa2
CAl5

T(Si3Al5)O22F2 matches the

‘‘stoichiometry’’ of the C2/m amphibole structure, it

cannot occur as an amphibole because the resultant

atomic arrangement is not physically possible, as

indicated by the departure of the incident bond-

strengths from the valence-sum rule.

Let us now consider a more realistic example.

Lyalina et al. (2015) refined the crystal structure of a

hainite-(Y) from the Sakharjok nepheline syenite

pegmatite, Kola Peninsula, Russia. Table 2 lists the

site-specific composition and the corresponding ideal

structural formula of Sokolova & Cámara (2017). The

relevant chemical endmember formulae that corre-

spond to the ‘‘stoichiometry’’ of the structure are as

follows:

NaNa2Ca2 CaYð ÞTi Si2O7ð Þ2F2F2 ðFormula 1Þ

NaCa2Ca2 CaYð ÞTi Si2O7ð Þ2O2F2 ðFormula 2Þ

In Formula (1), the XO
M site is fully occupied by

F–, whereas in Formula (2), the XO
M site is fully

occupied by O2–. Hawthorne (1997) showed that bond-

valence theory can be used to examine short-range

(local) arrangements of ions in crystal structures and

that local arrangements occur in order to minimize

local deviations from the valence-sum rule. Of interest

here are the local arrangements of ions at and around

the XO
M site for Formulae (1) and (2), together with

the resulting bond-valences. As we do not know

interatomic distances in an endmember, we must use

Pauling bond-strengths to do this. Table 3 shows the

short-range arrangements around the XO
M site for

Formulae (1) and (2). As the MH site is occupied

equally by Ca2þ and (YþREE)3þ (Table 3), there are

two short-range (local) ion arrangements around XO
M,

one involving Ca2þ (arrangement A, Table 3) and one

involving Y3þ (arrangement B, Table 3). The Pauling

bond-strengths are shown, together with the sums

around XO
M for each short-range arrangement in each

formula: [1]A, [1]B, [2]A, and [2]B. For Formula (1),

the XO
M site is occupied completely by F–, and for

Formula (2), the XO
M site is occupied completely by

O2–. Inspection of the bond-strength sums shows a

major deviation from the valence-sum rule at the XO
M

site (bolded in Table 3): an incident bond-strength sum

of 1.50 vu for arrangement [1]B where the anion site is

occupied by F–. This indicates that Formula (1) cannot

form a physically possible structure of this type, as it

shows major violation of the short-range valence-sum

rule at the XO
M site for local arrangement [1]B. Can

Formula (2) form a structure of this type? This

question is somewhat more involved, as the maximum

deviation from the valence-sum rule is considerably

less than for arrangement 1[B]: 0.34 vu for arrange-

ment [2]A (Table 3), similar to arrangement [1]A

(Table 3), and there are many structures in which such

deviations from the valence-sum rule for Pauling

bond-strengths is compensated by shortening or

lengthening of the corresponding bond lengths. Hainite

belongs to the rinkite group of the seidozerite-

supergroup minerals (Sokolova & Cámara 2017), and

inspection of the formulae of these minerals can give

us an indication of whether or not Formula (2) can

form a possible structure. All rinkite-group minerals

except seidozerite (Christiansen et al. 2003) and

grenmarite (Bellezza et al. 2004) have XO
M ¼ OF;

seidozerite and grenmarite have XO
M ¼ O2. Seidozer-

ite, ideally Na2Zr2Na2MnTi(Si2O7)2O2F2, and gren-

marite, ideally Na2Zr2Na2MnZr(Si2O7)2O2F2, have the

anion at XO
M (¼O2) coordinated by Zr4þ, Ti4þ, Mn2þ,

and Naþ and Zr4þ, Zr4þ, Mn2þ, and Naþ, respectively,

for a Pauling bond-strength sum at XO
M of 1.83 vu.

Thus, seidozerite and grenmarite have two tetravalent

cations bonded to the XO
M anions for XO

M ¼ O2,

whereas hainite and the other rinkite-group minerals

have only one tetravalent cation bonded to the XO
M

anions for XO
M ¼ OF (see Table 3), indicating that

TABLE 2. SITE POPULATIONS (APFU) IN HAINITE-(Y)

Site1 Site2
Assigned

site-populations1 (apfu)

Simplified

formula2

(apfu)

M4 MO(2) Na0.87 Ca0.13 Na

M2 MO(3) Na1.22 Ca0.78 NaCa

M3 AP Ca2.00 Ca2

M1 MH Ca1.06 Y0.66 REE0.26 Mn0.02 CaY

M5 MO(1) Ti0.60 Zr0.23 Nb0.14 Fe0.03 Ti

X8 XO
M F1.06 O0.94 FO

F9 XO
A F2.00 F2

1 From Lyalina et al. (2015).
2 From Sokolova & Cámara (2017).

TABLE 3. SHORT-RANGE ION ARRANGEMENTS (A

AND B) AND LOCAL BOND-VALENCES* (vu) AROUND

THE XO
M SITE IN CHEMICAL ENDMEMBERS [1] AND

[2] (SEE TEXT) FOR HAINITE-(Y)

[1]A [1]B [2]A [2]B

MH Ca2þ 0.33 Y3þ 0.50 Ca2þ 0.33 Y3þ
0.5 0.50

MO(3) Naþ 0.17 Naþ 0.17 Ca2þ 0.33 Ca2þ 0.33

MO(3) Naþ 0.17 Naþ 0.17 Ca2þ 0.33 Ca2þ 0.33

MO(1) Ti4þ 0.67 Ti4þ 0.67 Ti4þ 0.67 Ti4þ 0.67

R 1.34 R 1.50 R 1.66 R 1.83

Ideal charge 1 1 2 2

* Using Pauling bond-strengths (Pauling 1929).
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XO
M ¼ O2 is not physically possible where the site is

coordinated only by one tetravalent cation. Thus,

although the local Pauling bond-strengths of Table 3

are not conclusive, the correlations with the chemical

compositions of the minerals of the rinkite group

indicate that Formula (2) is also not a possible

structure. If arrangement [2]A is not possible, how

can arrangement [1]B occur if it shows the same

deviation from the valence-sum rule? We may

examine this question by looking at the structure of

mosandrite (Sokolova & Hawthorne 2013), as mosan-

drite has XO
M¼ (OH)2 (i.e., is completely occupied by

a monovalent anion) and we may examine the

coordination of the XO
M anion without problems of

local (short-range) order. In mosandrite, three of the

four bonds to XO
M are significantly longer than the

mean cation–XO
M distances, indicating that for a

monovalent XO
M anion, the structure can relax by

shortening the bonds to that anion. Thus, the structures

of the rinkite-group minerals can relax to accommo-

date the local arrangement [1]B whereas it cannot

relax to accommodate the local arrangement [2]A. In

conclusion, Formulae (1) and (2) are not physically

possible as crystal structures.

Consider the simplified formula of hainite-(Y)

given above: Na(NaCa)Ca2(CaY)Ti(OF)F2 (Table 2).

There are two short-range arrangements around the

XO
M site (Table 4) labelled A and B, and above I have

shown that both are possible arrangements with

respect to the valence-sum rule: the local atomic

arrangements accord with the valence-sum rule and are

conformable with the crystal structure of the mineral.

This simplified formula of hainite-(Y), Na(NaCa)Ca2

(CaY)Ti(OF)F2, is not a chemical endmember formu-

la, as it has more than one ion at more than one site in

the structure. However, Hawthorne (2002) also gave

another requirement for an endmember: (3) it must be

irreducible within the system considered, i.e., not

capable of being factored into components that have

the same bond topology (atomic arrangement) as that

of the original formula. For hainite-(Y), the endmem-

ber formula is constrained by the requirement that the

valence-sum rule be obeyed for all short-range

arrangements of ions in the structure. There are three

sites that have more than one constituent ion,

seemingly indicating that the formula is not irreduc-

ible. However, there are two valence-sum constraints

that remove two of these apparent degrees of freedom,

and electroneutrality constrains the third site. Thus,

from the perspective of structure stability, the formula

Na(NaCa)Ca2(CaY)Ti(OF)F2 is irreducible and hence

is a (true) endmember. This issue was recognized by

Sokolova & Cámara (2017), who listed Na(NaCa)

Ca2(CaY)Ti(OF)F2 as the ideal formula for hainite-

(Y). It should be noted that there are several other TS-

block minerals whose dominant endmember formulae

are similarly constrained (Sokolova 2006, Sokolova &

Cámara 2017) by such short-range bond-valence

requirements.

HEURISTIC PROOF THAT EVERY MINERAL HAS A

DOMINANT CHEMICAL ENDMEMBER FORMULA

Consider a crystal structure with n ions that may

occur in variable amounts. The structure must exert a

constraint on the maximum relative amount of each

ion in that it cannot exceed the number of sites at

which that anion occurs in the unit cell, and the sum of

the ions at a specific site cannot exceed the number of

those sites in the unit cell. Thus, the relative amount of

each ion in the unit cell is bounded in compositional

space by a convex polyhedron, the vertices of which

are defined by the numbers of sites associated with

each specific component. If this were not the case, the

mineral would have infinite variation in composition

and hence would be infinitely large. The vertices of

that polyhedron define the endmember compositions

compatible with the structure, i.e., the endpoints of all

exchange vectors and combinations of exchange

vectors that are compatible with the constituent

structural arrangement. Thus, any composition of that

mineral must lie within the bounds of that convex

polyhedron and all possible variations of the chemical

composition of this mineral must be bounded.

Moreover, any composition must lie nearer to one

vertex than all other vertices (unless it is equally

distant from more than one vertex, i.e., it occurs on a

compositional boundary). The nearest vertex defines

the dominant endmember composition. Any sugges-

tion that a mineral does not have a dominant

endmember composition means that the composition

must lie outside the bounds of its possible composi-

tional variation, a self-contradiction that invalidates

the statement that the mineral does not have a

dominant endmember composition.

TABLE 4. SHORT-RANGE ION ARRANGEMENTS (A

AND B) AND LOCAL BOND-VALENCES* (vu) AROUND

THE XO
M SITE IN IDEAL HAINITE-(Y)

A B

MH Ca2þ 0.33 Y3þ 0.50

MO(3) Naþ 0.17 Ca2þ 0.33

MO(3) Naþ 0.17 Ca2þ 0.33

MO(1) Ti4þ 0.67 Ti4þ 0.67

R 1.34 R 1.83

Ideal charge 1 2

* Using Pauling bond-strengths (Pauling 1929).
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ALGEBRAIC PROOF THAT ANY MINERAL HAS A

DOMINANT CHEMICAL-ENDMEMBER FORMULA

For minerals in which the individual atomic

constituents have zero formal charge (e.g., native

metals, alloys), endmember compositions may be

derived simply by filling each crystallographic site in

the structure with the dominant metal observed at that

site. However, the situation for structures of ions is (or

can be) more complicated, as such a procedure has to

conserve electric charge. This issue may be ap-

proached using the idea of endmember charge-

arrangements (Hawthorne 2002). There is some

confusion in the literature with regard to the

expressions ‘‘root-charge arrangement’’ and ‘‘endmem-

ber charge arrangement’’. This is due in part to the

occurrence of approved mineral species for which the

ideal formulae are not irreducible. As noted by

Hawthorne & Oberti (2006, 2007), ‘‘the IMA CNMNN

has recognized that distinct arrangements of formal

charges at the sites (or groups of sites) in the

amphibole structure warrant distinct root names, and

are, by implication, distinct species. . .[and] the

expression ‘a distinct arrangement of formal charges’

was not defined in previous classifications’’. However,

by inspection, it is apparent that ‘‘distinct arrange-

ments of formal charges at the sites (or groups of sites)

in the amphibole structure’’ means that all different

combinations of integer charges over three of the four

sites or groups of sites for the C2/m structure, A, M(4),

M(1,2,3), T(1,2), are considered distinct. Hawthorne et

al. (2012) state the following: ‘‘(1) All distinct

arrangements of integral charges over the amphibole

formula are considered as root charge arrangements.

(2) Specific ions [Naþ, Mg2þ, Al3þ, Si4þ, (OH)–] of

appropriate charge are associated with sites in the

structure, and each distinct chemical composition is a

root composition. These compositions are assigned

trivial names.’’ A root charge-arrangement is a charge

arrangement associated with a root composition and is

not necessarily an endmember charge-arrangement.

For example, the amphibole charge arrangement A0
M(4)2þ2

M(1,3)2þ3
M(2)(2þ3þ) T(3þ4þ7) O2–

22
O(3)1–

2 is a

root charge-arrangement and corresponds to the root

name magnesio-hornblende with the ideal formula

ACa2(Mg4Al)(Si7Al)O22(OH)2; however, this formula

is not a valid endmember formula, as it is not

irreducible. Unfortunately, the tables in Hawthorne et

al. (2012) list the ‘‘endmember formulae’’ for all

species; some of these formulae are root compositions

and are not true endmember formulae. Why are such

compositions considered as distinct species? These

compositions generally correspond to very common

(often rock-forming) minerals which are (1) embedded

in the mineralogical and petrological literature; and (2)

characteristic of specific rock-types, and loss of these

species would negatively affect petrology in the

extreme. It is desirable to introduce the terms

endmember formula (or composition) and ideal

formula (or composition) to be associated with

minerals whose associated charge arrangement is

endmember (i.e., irreducible) or not endmember (i.e.,

reducible). Gagné & Hawthorne (2016) use the

expression ‘‘root charge arrangement’’ where they are

actually deriving endmember charge arrangements,

and Bosi et al. (2019) use ‘‘root charge arrangement’’
where they are actually dealing with endmember

charge arrangements.

Endmember charge-arrangement may be defined as

the charge arrangement of an endmember; thus, diopside

has the charge arrangement M(2)2þ M(1)2þ T4þ2
O2–

6

(condensing the anions into one term), and both jadeite

and spodumene have the charge arrangement M(2)1þ
M(1)3þ T4þ2

O2–
6, the latter emphasizing that different

endmembers can have the same endmember charge-

arrangement. Note that endmember charge-arrange-

ments must obey the same set of criteria as chemical

endmember formulae: (1) they are conformable with the

crystal structure of the mineral, (2) they do not carry a

net electric charge, and (3) they are irreducible within

the system considered. Moreover, it must be emphasized

that the derivation of endmember charge-arrangements

is not synonymous with the derivation of endmember

compositions, as is apparent from the example of jadeite

and spodumene given above.

Proof that any mineral has a dominant endmember

charge-arrangement

Consider a crystal-structure arrangement of the

general form Si (i¼ 1,n) where Si is any occupied site

in the structure, n is the number of symmetrically

distinct occupied sites in the structure, mi is the

number of positions of the Si site per unit cell, and Zi is

the charge at the ith site.

[1] Any appropriate charge can be assigned to each of

(n – 1) of these sites, and each of these charges is

associated with a single ion. This process of

assignment produces a net charge of RmiZi (i¼ 1,

n – 1) that must be neutralized by the charge Zr

assigned to the remaining site, Sr of multiplicity

mr : mrZr. For the charge arrangement to be an

endmember charge arrangement, the site Sr must

be occupied by one or two charges that sum to Zr:

aZa þ bZb ¼ Zr ðEquation 1Þ

aþ b ¼ 1 ðEquation 2Þ

Both a and b must be positive, and Za and Zb must
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be integers (i.e., integral charges), and hence Za �
Zr � Zb. Solutions to these equations must involve

pairs of charges, Za and Zb, conforming to the

requirement Za � Zr � Zb. There are only a small

number of possible pairs of (Za, Zb) conforming to

this requirement; these may be listed and Equa-

tions (1) and (2) solved simultaneously for each of

these pairs. The resultant solutions must conform

to the requirement for an endmember charge

arrangement.

[2] Step [1] is repeated for all different possible

charge arrangements over the same set of sites: Si

(i ¼ 1, n – 1), giving different solutions for

Equations (1) and (2).

[3] Steps [1] and [2] are repeated, setting each site in

the structure in turn as the Sr site. The result is the

complete set of endmember charge-arrangements.

The argument given above is completely general

and shows that any chemical formula compatible with

a crystal structure can be resolved into a finite set of

endmember charge-arrangements compatible with the

atomic arrangement of that structure. I must empha-

size that endmember charge-arrangements are not

endmembers—they are arrangements of charges, not

specific ions, and hence the dominant endmember

charge-arrangement does not necessarily correspond to

the dominant endmember formula. However, this

result may be used to assign the ions in a specific

chemical formula to the endmember charge-arrange-

ments as discussed below.

Examples

Consider richterite: ANaM(4)(CaNa)2
M(1,2,3)Mg5

T(1,2)

Si8O22(OH)2. I will show some details of the

calculation with the M(4) site set as Sr. RmiZi (i ¼ 1,

n – 1)¼6– and mr¼4 [the number of M(4) positions in

the unit cell]; hence Zr¼ 1.5þ. From above, Za � 1.5 �
Zb, and hence the possible distinct combinations of

charges are as follows: 0,2; 0,3; 0,4; 1,2; 1,3; 1,4;

giving the following solutions:

0,2: 00.25 2þ0.75 ¼ (A0.25 M2þ
0.75)

0,3: 00.50 3þ0.50 ¼ (A0.50 M3þ
0.50)

0,4: 00.50 4þ0.50 ¼ (A0.625 M4þ
0.375)

1,2: 1þ0.50 2þ0.50¼ (Mþ0.50 M2þ
0.50)

1,3: 1þ0.50 3þ0.50 ¼ (Mþ0.75 M3þ
0.25)

1,4: 1þ0.833 4þ0.167 ¼ (Mþ0.833 M4þ
0.167)

All these solutions are formally possible, but once we

consider assigning ions to these arrangements, most of

them will violate the valence-sum rule and we are left

with the endmember charge-arrangement (bolded

above) that corresponds to the M(4) occupancy in

richterite: (NaCa).

Consider monazite-(Ce): CePO4. I will show some

details of the calculation with the Ce site set as Sr.

RmiZi (i¼ 1, n – 1)¼ 12– and mr¼ 4 ; hence Zr¼ 3þ

and Za � 3 � Zb. Thus, the possible distinct

combinations of charges are as follows: 0,3; 0,4; 0,5;

1,4; 1,5; 2,4; 2,5; giving the following solutions:

0,3: 00.00 3þ1.00 ¼ (A0.00 M3þ
1.00)

0,4: 00.25 4þ0.75 ¼ (A0.25 M4þ
0.75)

0,5: 00.40 5þ0.60 ¼ (A0.40 M5þ
0.60)

1,4: 1þ0.33 4þ0.67¼ (Mþ0.33 M4þ
0.67)

1,5: 1þ0.50 5þ0.50¼ (Mþ0.50 M5þ
0.50)

2,4: 2þ0.50 4þ0.50 ¼ (M2þ
0.50 M4þ

0.50)
2,5: 2þ0.67 5þ0.33¼ (M2þ

0.67 M5þ
0.33)

All these solutions are formally possible, and I have

bolded the endmember charge arrangements corre-

sponding to monazite-(Ce) and cheralite.

Consider milarite: ACa2
BA2

CKT(2)(Be2Al)T(1)

Si12O30. I will show some details of the calculation

with the T(2) site set as Sr. RmiZi (i¼ 1, n – 1)¼ 14–

and mr¼ 6; hence Zr¼ 2.33, Za � 2.33 � Zb, and the

possible combinations of charges are as follows: 0,3;

0,4; 1,3: 1,4; 2,3; 2,4; giving the following solutions:

0,3: 00.223 3þ0.777 ¼ (A0.223 M3þ
0.777)

0,4: 00.417 4þ0.583 ¼ (A0.417 M4þ
0.583)

1,3: 1þ0.223 3þ0.777 ¼ (Mþ0.223 M3þ
0.777)

1,4: 1þ0.557 4þ0.443 ¼ (Mþ0.557 M4þ
0.443)

2,3: 2þ0.677 3þ0.333 ¼ (M2þ
0.677 M3þ

0.333)
2,4: 2þ0.835 4þ0.165 ¼ (M2þ

0.835 M4þ
0.165)

All these solutions are formally possible, and I have

bolded the endmember charge arrangement corre-

sponding to the T(2) occupancy in milarite (and

almarudite) (Be2Al).

Derivation of the dominant endmember formula from

endmember charge-arrangements

Hawthorne (2002) developed the idea of endmem-

ber charge-arrangements and used it to determine the

dominant endmember formula in several specific

minerals; however, never did he suggest that the

dominant endmember charge-arrangement corre-

sponds to the dominant endmember chemical formula.

A mineral is identified by the ions at its constituent

sites, not by the arrangement of charges at those sites,

no matter how useful the latter in understanding

aspects of the crystal chemistry of that mineral.

Moreover, the dominant endmember charge-arrange-

ment does not necessarily correspond to the dominant

chemical endmember formula, as the latter corre-

sponds to a formula of specific ions whereas the

former corresponds to an arrangement of charges.

However, each dominant endmember charge-arrange-

ment allows specific ions to be associated with it,
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identifying chemical endmember formulae; this is why

the idea of endmember charge-arrangements was

developed. Hawthorne (2002), Gagné & Hawthorne

(2016), and Hawthorne et al. (2018) used the

following procedure to identify a dominant chemical

endmember formula for any chemical formula:

[1] Calculate all possible endmember charge-arrange-

ments for that structure and set of constituent

cations.

[2] Calculate the mean charge at each site in the

structure for the chemical composition of interest.

[3] Determine which endmember charge-arrange-

ments are closer to the arrangement of mean

charges in the mineral by comparing the sums of

the squares of the differences between the

endmember charge-arrangement of the mineral

and each endmember charge-arrangement for that

structure.

[4] The endmember charge-arrangements of the

structure closer to the mean charge arrangement

of the mineral allow assignment of the corre-

sponding ions to one or more possible endmember

formulae. The dominant endmember composition

is that which is closest in compositional space to

the chemical formula of the mineral.

For example, makarochkinite was originally proposed

as a distinct species by Yakubovich et al. (1990) but

was rejected by the IMA. Using the idea of

endmember-charge arguments, Hawthorne (2002)

showed that makarochkinite is actually a distinct

species, and it was subsequently described as such by

Grew et al. (2005).

Two more examples were given by Hawthorne

(2002) involving possible new species belonging to the

hyalotekite group and the milarite group. Subsequent-

ly, the possibilities for chemical endmembers in these

two groups were examined in much more detail via the

process of chemographic exploration, whereby all

possible endmember charge-arrangements conform-

able with a specific structure type are derived and

subsequently used to extract all chemical endmember

compositions possible for that structure type.

Hawthorne et al. (2018) did this for the hyalotekite

structure type, which led to the discovery of

khvorovite, ideally Pb2þ
4Ca2[Si8B2(SiB)O28]F

(Pautov et al. 2015), and recognition of another as-

yet undescribed species. Gagné & Hawthorne (2016)

examined the milarite structure from this perspective

and showed that there are 34 distinct endmember

charge-arrangements with Si¼ 12 apfu and 39 distinct

endmember charge-arrangements with Si¼ 8–11 apfu.

Examination of ~350 chemical analyses from the

literature showed that six of these compositions

deserve to be described as new mineral species, plus

an additional two analyses of what could be new

minerals if their site populations from crystal-structure

refinement so indicate.

Derivation of the dominant endmember formula: An

example

I will consider the calculation of the dominant

endmember formula for the garnet example of Deer et

al. (1992, page 684):

Mg1:82Fe2þ
0:79Mn0:02Ca0:37

� �
Al1:92Fe3þ

0:06Cr0:02

� �
Si3O12

I have modified the formula given by them (which was

originally normalized on 24 O apfu) so that it is now

normalized to the more conventional 12 O apfu, the

site populations sum to the numbers of available sites,

and the formula is electroneutral (Table 5). I have

listed all the possible endmember formulae in Table 5.

Deer et al. (1992) chose to express the endmember

proportions in terms of pyralspite-ugrandite (Table 5)

and I have so labelled the corresponding endmembers;

the other possible endmembers I have labelled 1 to 6.

The endmember charge-arrangement for this garnet is
X2þ3

Y3þ2
Z4þ3

O2–
12 and this corresponds to the charge

arrangements of all endmembers listed in Table 5. We

may calculate the distance (in compositional space) of

the garnet composition from each endmember via the

square root of the sum of the squares of the differences

in compositions; note that the compositions need to be

expressed in terms of site occupancies (not site

populations) and thus the compositional differences

for each ion are divided by the multiplicity of the

relevant site (see Table 6). Table 6 lists the square-root

of the sum of the squares of the differences (RSSD)

between each of the endmembers and the mineral

TABLE 5. A PYRALSPITE GARNET* AND ALL

POSSIBLE ENDMEMBERS

Components Formula

Grossular (Gr) Ca3Al2Si3O12

Andradite (An) Ca3Fe3þ
2Si3O12

Uvarovite (Uv) Ca3Cr3þ
2Si3O12

Pyrope (Py) Mg3Al2Si3O12

Almandine (Al) Fe2þ
3Al2Si3O12

Spessartine (Sp) Mn2þ
3Al2Si3O12

1 Mg3Fe3þ
2Si3O12

2 Mg3Cr3þ
2Si3O12

3 Fe2þ
3Fe3þ

2Si3O12

4 Fe2þ
3Cr3þ2Si3O12

5 Mn2þ
3Fe3þ

2Si3O12

6 Mn2þ
3Cr3þ2Si3O12

* Formula: (Mg1.82Fe2þ
0.79Mn0.02Ca0.37)(Al1.92Fe3þ

0.06

Cr0.02)Si3O12; from Deer et al. (1992, page 684).
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formula of Table 5. The smallest RSSD is for pyrope,

and hence this is the dominant endmember. Note that

this accords with the calculation of Deer et al. (1992),

which listed pyrope as the dominant endmember, and

also note that the method is not dependent on

quantitatively representing the formula as a set of

endmember constituents.

SUMMARY

[1] An endmember formula must be: (1) conformable

with the crystal structure of the mineral, (2)

electroneutral (i.e., not carry a net electric charge),

and (3) irreducible (i.e., not capable of being

factored into components that have the same bond

topology (atomic arrangement) as that of the

original formula).

[2] The stoichiometry of an endmember formula must

match the ‘‘stoichiometry’’ of the sites in the

structure; for ease of expression, I denote such a

formula here as a chemical endmember. In order

for a chemical endmember to be a true endmem-

ber, the corresponding structure must obey the

valence-sum rule.

[3] The derivation of a dominant endmember formula

for a specific chemical formula is independent of

expressing the specific chemical formula as a set

of endmember constituents.

[4] I have presented heuristic and algebraic proofs that

a specific chemical formula can always be

represented by a corresponding dominant end-

member formula.

[5] The dominant endmember is that endmember

which is closest to the formula of the mineral

considered, expressed as the smallest RSSD

(square-root of the sum of the squared differences)

from the mineral formula.
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