Canadian Mineralogist Vol. 30, pp. 633-638 (1992) # THE WODGINITE GROUP. III. CLASSIFICATION AND NEW SPECIES T. SCOTT ERCIT¹, PETR ČERNÝ AND FRANK C. HAWTHORNE Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2 #### **ABSTRACT** The minerals constituting the wodginite group are isostructural oxides, with the general formula ABC_2O_8 (Z = 4); $A = Mn^{2+}$, Fe^{2+} , Li, \Box ; $B = Sn^{4+}$, Ti, Fe^{3+} , Ta; C = Ta, Nb. A classification system based on the chemistry of the A- and B-cation sites has been devised; it uses chemical modifiers in conjunction with the root name "wodginite". Wodginite itself has the general formula MnSnTa₂O₈; two new members of the wodginite group are characterized here: ferrowodginite, Fe²⁺SnTa₂O₈ and titanowodginite, MnTiTa₂O₈. Ferrowodginite occurs as 0.01- to 0.2-mm inclusions in cassiterite from a granitic pegmatite near Sukula, southwestern Finland. It is dark brown to black, has a dark brown streak, vitreous luster, is optically anisotropic with all n>2, and is nonfluorescent. The calculated density is 7.02 g/cm³; it is brittle, H 5½, without cleavage; it has an irregular fracture. The average chemical composition (wt. %) is: MnO 2.8, FeO 9.3, Fe₂O₃ 1.9, TiO₂ 4.3, SnO₂ 10.1, Nb₂O₅ 14.8, Ta₂O₅ 56.3, total 99.4. The strongest five lines in the X-ray powder pattern are: 4.16(50), 2.97(100), 2.55(30), 2.493(40) and 1.455(30) Å. The unit-cell parameters are a 9.415(7), b 11.442(6), c 5.103(4) Å, β $90.8(1)^{\circ}$, V 549.7(6) Å³, space group C2/c. Titanowodginite occurs as euhedral, diamond-shaped crystals up to 1 cm across at the Tanco pegmatite, Bernic Lake, Manitoba. It is dark brown to black, has a dark brown streak, vitreous luster, is optically anisotropic and biaxial (+) with all n>2, and is nonfluorescent. The density is 6.86 (meas.) and 6.89 g/cm³ (calc.); it is brittle, H 5½, with no cleavage and an irregular fracture. The chemical composition (wt.%) is: MnO 9.0, FeO 3.1, Fe₂O₃ 0.1, TiO₂ 9.2, SnO₂ 7.4, Nb₂O₅ 11.1, Ta₂O₅ 59.9, total 99.7. The strongest five lines in the X-ray powder pattern are: 3.644(46), 2.976(100), 2.966(95), 2.495(36) and 1.715(23) Å. The unit-cell parameters are a 9.466(2), b 11.431(1), c 5.126(1) Å, β 90.31(2)°, V 554.6(1) Å³; the space group is C2/c. The classification, the new species and their names were approved for publication by the I.M.A. Commission on New Minerals and Mineral Names. Keywords: ferrowodginite, titanowodginite, wodginite, new mineral species, oxide, granitic pegmatite, Finland, Manitoba. # SOMMAIRE Les minéraux du groupe de la wodginite sont des oxydes isostructuraux ayant la formule générale ABC₂O₈ (Z = 4); A représente Mn^{2+} , Fe^{2+} , Li et des lacunes, B représente Sn^{4+} , Ti, Fe^{3+} et Ta, et C, Ta et Nb. Nous proposons un système de classification fondé sur l'occupation des positions A et B; il se sert de qualificatifs et de la racine "wodginite". La wodginite proprement dite a la formule MnSnTa2O8. Nous décrivons ici deux nouveaux membres de ce groupe, ferrowodginite, Fe²⁺SnTa₂O₈, et titanowodginite, MnTiTa₂O₈. La ferrowodginite forme de petites inclusions (0.01-0.2 mm) dans la cassitérite d'une pegmatite granitique près de Sukula, dans le sud-ouest de la Finlande. Les cristaux sont brun foncé à noir, ont une ravure brun foncé et un éclat vitreux; ils sont optiquement anisotropes, tous les indices n étant supérieurs à 2, et non fluorescentes. La densité calculée est de 7.02; la ferrowodginite est cassante (fractures irrégulières); sa dureté est de 5½, et elle est sans clivage. La composition chimique moyenne (%, en poids) est: MnO 2.8, FeO 9.3, Fe₂O₃ 1.9, TiO₂ 4.3, SnO₂ 10.1, Nb₂O₅ 14.8, Ta₂O₅ 56.3, total 99.4. Les cinq raies les plus intenses du cliché de poudre [d en Å(1)] sont: 4.16(50), 2.97(100), 2.55(30), 2.493(40) et 1.455(30). Les paramètres réticulaires sont: a 9.415(7), b 11,442(6), c 5.103(4) Å, β 90.8(1)°, V 549.7(6) Å³, groupe spatial C2/c. La titanowodginite forme des cristaux idiomorphes en losanges d'un cm dans la pegmatite de Tanco, lac Bernic, au Manitoba. Les cristaux sont brun foncé à noir, la rayure, brun foncé, et l'éclat, vitreux; elle est optiquement anisotrope et biaxe positive, avec tous les indices de réfraction supérieurs à 2, et non fluorescente. La densité est 6.86 (mesurée) et 6.89 (calculée). Elle est cassante; sa dureté est de 51/2. Elle ne montre aucun clivage, et les fractures sont irrégulières. La composition chimique (%, en poids) est: MnO 9.0, FeO 3.1, Fe₂O₃ 0.1, TiO₂ 9.2, SnO₂ 7.4, Nb₂O₅ 11.1, Ta₂O₅ 59.9, total 99.7. Les cinq raies les plus intenses du cliché de poudre [d en Å(1)] sont: 3.644(46), 2.976(100), 2.966(95), 2.495(36) et 1.715(23). Les paramètres réticulaires sont a 9.466(2), b 11.431(1), c 5.126(1) Å, β 90.31(2)°, V 554.6(1) $m \AA^3$, groupe spatial C2/c. Le schéma de classification, les espèces nouvelles et leur nom ont reçu l'approbation de la Commission des nouveaux minéraux et des noms de minéraux de l'Association Internationale de Minéralogie. (Traduit par la Rédaction) Mots-clés: ferrowodginite, titanowodginite, wodginite, nouvelle espèce minérale, oxyde, pegmatite granitique, Finlande, Manitoba. ¹Present address: Mineral Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4. ### INTRODUCTION Although wodginite was first encountered by Simpson (1909) at Wodgina, Western Australia, recognition of its status as a new mineral species came only when Nickel et al. (1963) showed it to be distinct from tantalite. Recognition of this distinction led to the discovery of wodginite at a variety of localities, which today total 37 in number. Nickel et al. (1963) correctly inferred wodginite to be a superstructure of ixiolite; however, it was not until much later that the details of the structure of wodginite and its formula were deciphered (Ferguson et al. 1976). Wodginite has the general formula ABC_2O_8 , ideally A = Mn, B = Sn and C = Ta, with Z = 4 and space group C^2/c . Wodginite shows considerable solid-solution at all structural sites (e.g., von Knorring et al. 1969, Kornetova et al. 1978). We have found some samples to deviate by more than 50% from the ideal formula; hence "wodginite" as previously defined inadequately describes these samples. As previously defined, "wodginite" consists of a group of mineral species. The classification and two new members of the group are the subject of the present paper; the structural crystallography and crystal chemistry of the group are described in companion papers (Ercit et al. 1992a, b). # **CLASSIFICATION** The name wodginite, as introduced by Nickel et al. (1963) and defined by Ferguson et al. (1976), is associated with the composition MnSnTa₂O₈. As such, the name is inappropriate for several natural examples of wodginite that deviate by more than 50% at individual cation sites from this ideal composition. These examples of wodginite most closely approach the hypothetical end-members FeSnTa₂O₈, MnTiTa₂O₈ or LiTaTa₂O₈. Subdivision and classification of wodginitegroup minerals are complicated by a number of factors. 1) Cation substitutions involve three distinct sites, making a nomenclature based on the generic name wodginite difficult. However, because of the limited extent of Nb substitution at the C site ($\langle C$ -site Nb $\rangle = 15\%$, maximum C-site Nb = 35%), substitutions at this site can be ignored for purposes of nomenclature. Classification can be based simply on the nature of the occupant of the A and B sites; the reduced dimensionality of the problem makes a nomenclature involving a generic name plus chemical prefixes possible. 2) The degree of cation order is variable; the calculation of fully ordered formulae may not exactly reflect the disorder-modified site occupancies of some samples. However, because of the difficulty involved in obtaining actual site-occupancies by means other than crystal-structure analysis or highly precise powder diffractometry, a classification based on the fully ordered formulae seems most practical (cf. the columbite group). 3) Coupled substitutions involving more than one site result in further complexity, as does the introduction of some substituents by more than one mechanism (e.g., B-site Ta). However, these mechanisms are well known (Ercit et al. 1992a), so that by applying constraints to the rules of nomenclature, a solution should be possible. Table 1 summarizes all known operators. Taking all of the above factors into consideration, the following scheme is proposed for the classification and nomenclature of wodginite-group minerals based on A- and B-site chemistries: - 1. The set of species with the wodginite structure (partially to completely ordered, Ercit *et al.* 1992a, b) is referred to as the *wodginite group*. - 2. For historical reasons, the name wodginite is used for end-member MnSnTa₂O₈, which is closest to the composition of most natural wodginite-group minerals. - 3. Species names are to consist of the root "wodginite" modified by prefixes reflecting A- and B-site chemistries. - 4. Such prefixes are to be used only in cases where one or more of the operators in Table 1 are more than 50% effective. - 5. No more than one prefix per site should be used to construct the name, in which case the A-site prefix should precede the B-site prefix. In cases where more than one constituent is introduced to a single site by the operation, the prefix chosen should reflect the unique constituent only. The following examples should serve to illustrate the application of point 5. Ta is a non-unique B-site constituent in that it can be introduced to the site by as many as four different mechanisms of substitution (operators 4 to 7 of Table 1). One of these operators is always insignificant from a taxonomic point of view, and thus it can be ignored (operator 7). Of the remaining operators, (5) represents the only one by which Fe^{3+} can be introduced to the B site. Fe^{3+} is the unique TABLE 1. SIGNIFICANT SUBSTITUTION OPERATORS FOR THE WODGINITE GROUP | | Operator | End-member | |-----|--------------------------------------|---| | (1) | Fe ²⁺ Mn ²⁺ -1 | Fe2+4Sn4Ta8032 | | (2) | T14+ Sn4+-1 | $Mn_4Ti_4Ta_8O_{32}$ | | (3) | Nb5+ c[Ta5+]-1 | Mn ₄ Sn ₄ Nb ₈ O ₃₂ | | (4) | A[Li+] B[Ta5+] A[Mn2+].1 B[Sn4+].1 | Li4Ta4Ta8032 | | (5) | Fe3+ B[Ta5+] Sn4+-2 | Mn4Fe3+2Ta2Ta8O32 | | (6) | A B[Ta5+]2 A[Mn2+]-1 B[Sn4+]-2 | Mn2Ta4Ta8O32 | | (7) | B□ B[Ta5+]4 Sn4+-5 | Mn4Ta3.2Ta8O32 | | TABLE | • | CLACCT | FICATION | OF THE | WOOGINITE | CROUD | |-------|----|--------|-----------|--------|--------------|-------| | IABLE | 7. | LLASSI | FILATION. | DF IHE | MINISTRI I F | GRUUP | | IABLE 2. | ABLE 2. CLASSIFICATION OF THE WODGINITE GROUP | | | | | | |-----------------------|---|-----------------|---|--|--|--| | Crit | teria | Name | End Member | | | | | A site | B site | Heate | | | | | | | ≤50% Ti
≤25% Fe3+ | WODGINITE | Mn ₄ Sn ₄ Ta ₈ O ₃₂ | | | | | ≼50% Li,
≼50% Fe²↔ | >50% Ti | TITANOWODGINITE | Mn ₄ Ti ₄ Ta ₈ O ₃₂ | | | | | | >25% Fe ³⁺
(>25% Ta) | (unnamed) | Mn ₄ (Fe ³⁺ ₂ Ta ₂)Ta ₈ O ₃₂ | | | | | | ≤50% Ti
≤25% Fe3+ | FERROWODGINITE | Fe ²⁺ 4Sn4Ta ₈ O ₃₂ | | | | | >50% Fe2+ | >50% T1 | (unnamed) | Fe ²⁺ 4Tt4Ta ₈ O ₃₂ | | | | | | >25% Fe3+
(>25% Ta) | (unnamed) | Fe ²⁺ 4(Fe ³⁺ 2Ta ₂)Ta ₈ O ₃₂ | | | | | >50% L1 | >50% Ta | LITHIOWODGINITE | Li ₄ Ta ₄ Ta ₈ O ₃₂ | | | | constituent of this operation, thus the appropriate prefix for greater than 50% effectiveness of (5) is ferri. As already correctly applied by Voloshin et al. (1990), lithio is the prefix associated with operator (4). And so, by deduction, tantalo would be the prefix associated with greater than 50% efficiency of operator (6). Table 2 gives actual and hypothetical names of species and end-member compositions generated by operators (1), (2), (4) and (5), the most significant operators involved in the crystal chemistry of the group. Criteria for classification follow the rules given above. The table is divided into three segments on the basis of A-site chemistry. The uppermost segment contains species with Mn end-members. The middle segment contains species with Fe²⁺ end-members. The bottom segment contains the only species possible with Li end-members. Three new members of the wodginite group recognized: ferrowodginite have been titanowodginite (present study) and lithiowodginite (Voloshin et al. 1990). At an earlier stage of this work (Ercit et al. 1984), a fourth species was proposed: tantalowodginite. We have since formally retracted the species status of tantalowodginite. as we now recognize the type samples to be Ta-rich wodginite and lithiowodginite. Greater than 50% effectiveness of operator (6) (Table 1) is shown only by sample L-15 (Ercit et al. 1992a); however, the minute size of the crystals and the limited quantities of the mineral do not allow for measurement of Li or the X-ray properties of the sample; hence it is not presently possible to use "tantalowodginite" as a species name. Two samples examined in the present study (TSE-82, TSE-94) have more than 50% of the end-member FeTiTa₂O₈; however, because of the minute size of each sample, adequate material is not available for characterization of the hypothetical species "ferrotitanowodginite". As a final note, both the synthesis work of Turnock (1966) and the existence of some natural samples with Fe³⁺ contents approaching 50% efficiency of the operator (5) suggest that operator (5) may generate new species in the future. The classification scheme was approved for publication by the International Mineralogical Association in 1984, and is presented here, in its original systematics, with only minor additions (Table 1) imposed by more recent studies (Voloshin et al. 1990). ## **FERROWODGINITE** Ferroan "varieties" of wodginite were first encountered by Vorma & Siivola (1967) and von Knorring et al. (1969) soon after wodginite was first established as a species. The latter of these two samples is only a variety of wodginite, but the sample of Vorma & Siivola (1967) is wodginite with more than 50% of its Mn²⁺ replaced by Fe²⁺. We obtained samples of this material from the research collection of J. Siivola (sample A5234, renumbered SK-1 in the present study), and found that it is a new species, the Fe²⁺ analogue of wodginite; in allusion to the chemistry, we name the species ferrowodginite. The new species and its name have been approved for publication by the I.M.A. Commission on New Minerals and Mineral Names. Ferrowodginite occurs in a granitic pegmatite near the village of Sukula in the Tammela-Somero pegmatite province, southwestern Finland (Vorma & Siivola 1967), the regional geology of which was described by Aurola (1963). Because of the number of pegmatites in the vicinity of Sukula, and owing to imprecise labeling of the samples (collected over 100 years ago), the exact location is not known. However, Vorma & Siivola (1967) indicated that samples containing the mineral probably originated from a quarried pegmatite near the Makitulokas farm house in Sukula, where tantalian cassiterite ("ainalite"), an associate of the ferrowodginite, was originally found. Samples consist predominantly of granular aggregates of strongly color-zoned tantalian cassiterite, with individual grain-sizes ranging from 1 mm to a few cm. Tapiolite, native bismuth and ferrowodginite occur as inclusions in the cassiterite. Stannomicrolite (originally "sukulaite"; Vorma & Siivola 1967) occurs as a replacement of the ferrowodginite (Ercit et al. 1987). The ferrowodginite inclusions in cassiterite are typically 0.01 to 0.2 mm long; however, grains as large as 0.3 mm have been found. The inclusions we observed are irregular in shape; however, Vorma & Siivola (1967) also observed inclusions with lath-like outlines. Stannomicrolite rims about the ferrowodginite inclusions are typically in the order of 10 μ m thick. Ferrowodginite is dark brown to black, and has a dark brown streak. It is transparent to translucent, nonfluorescent, and has a vitreous luster. It is anisotropic, and is assumed to be biaxial; all of its indices of refraction are greater than 2.0, and could not be measured with available immersion oils. It is brittle and has a hardness of 5½; it shows no prominent cleavage, but has an irregular fracture. Because of the small grain-size and intimate association with stannomicrolite, the density of ferrowodginite could not be measured; the calculated density is 7.02 g/cm³. Energy-dispersion (ED) X-ray spectra were obtained with a MAC 5 electron microprobe using a Kevex Micro-X 7000 spectrometer. Spectra were collected for 200 live seconds with an operating voltage of 15 kV and a sample current of 5 nA (measured on synthetic fayalite), and were corrected for current and voltage drift. Line overlaps such as $TaM\delta$ and $TaM\eta$ on $NbL\alpha$, $SnL\beta$ on $TiK\alpha$, and $MnK\beta$ on $FeK\alpha$ were dealt with by noniterative techniques of spectral stripping involving library spectra of individual elements. Manganotantalite (Mn,Ta), chromite (Fe), titanite (Ti), cassiterite (Sn) and $CaNb_2O_6$ (Nb) were used as standards. Data were reduced with Kevex software using the program MAGIC V (Colby 1980). Qualitative investigation of ED spectra and two quantitative analyses showed no significant coreto-rim or grain-to-grain variations. The average of the two chemical compositions is given in Table 3. The Fe^{2+} : Fe^{3+} ratios were calculated according to the method of Ercit *et al.* (1992a). The average unit-cell contents are: $(Fe^{2+}_{3.04}Mn_{0.93}\square_{0.03})_{\Sigma 4}$ $(Sn_{1.58}Ti_{1.27}Fe^{3+}_{0.55}Ta_{0.60})_{\Sigma 4}(Ta_{5.38}Nb_{2.62})_{\Sigma 8}O_{32}$ TABLE 3. CHEMICAL COMPOSITIONS OF NEW WODGINITE-GROUP MINERALS | | Ferrowodginite*
(SK-1) | | wodginite
-25) | |---|--|--|--| | | · · · · · · · · · · · · · · · · · · · | (core) | (rim) | | MnO wt.%
Fe0
Fe ₂ O ₃
TiO ₂
SnO ₂
Nb ₂ O ₅
Ta ₂ O ₅ | 2.8
9.3
1.9
4.3
10.1
14.8
56.3
99.4 | 9.0
3.1
0.1
9.2
7.4
11.1
59.9
99.7 | 9.6
2.5
0.5
8.0
8.3
11.1
60.3
100.3 | | | Cations per 32(0 | IJ | | | Mn
Fe2*
Fe3*
Ti
Sn
Nb
Ta | 0.93
3.04
0.55
1.27
1.58
2.62
<u>5.98</u>
15.97 | 2.93
0.99
0.02
2.66
1.14
1.93
<u>6.26</u>
15.91 | 3.15
0.79
0.14
2.32
1.28
1.94
6.32 | Fe2+:Fe3+ calculated according to Ercit et a7. (1991b). TABLE 4. X-RAY POWDER-DIFFRACTION DATA FOR NEW WODGINITE-GROUP | Ferrowodginite
(SK-I) | | | | Titanowodginite
(A-25) | | | |--------------------------|-----------------|------------|-----|---------------------------|----------------|----------------------------| | hk1 | d (Å)
(calc) | d
(obs) | I | d
(calc) | d
(obs) | I | | 200 | 4.71 | | | 4.73 | 4.73 | 2 | | 111 | 4.20 l | 4.16 | 50 | 4.20 | | | | 111 | 4.16 | | | 4.18 | | | | 220 | 3.64 | 3.64 | 20 | 3.645 | 3.644 | 46 | | 130 | 3.53 | | | 3.535 | 3.530 | . 2 | | 22 Î
22 Î | 2.98 | 2.97 | 100 | 2.977 | 2.976 | 100 | | 040 | 2.95 J
2.86 | 2.86 | 20 | 2.965
2.858 | 2.966
2.858 | 95
15 | | 002 | 2.55 | 2.55 | 30 | 2.563 | 2.563 | 15 | | 041 | 2.495 | 2.493 | 40 | 2.496 | 2.495 | 36 | | 400 | 2.354 | 2.352 | 20 | 2.366 | 2.366 | | | 202 | 2.256 | | | 2.259 | 2.260 | 3 | | 241 | 2.198 | | | 2.205 | 2.203 | 5 | | 222 | 2.099 | | | 2.101 | 2.101 | 8
3
5
8
7
8 | | 222 | 2.078 | | | 2.092 | 2.094 | 7 | | 042 | 1.905 | 1.905 | 10 | 1.908 | 1.907 | 8 | | 440 | 1.817 | | | 1.823 | 1.822 | 7 | | 260 | 1.767 | 1.768 | 20 | 1.767 | 1.767 | 17 | | 402 | 1.742 | 1.742 | 20 | 1.743 | 1.743 | 8 | | 441 | 1.718 | 1.720 | 20 | 1,720 | 1.720 | 16 | | 402 | 1.718 | 1.,, | | 1.734 | 1.733 | _7 | | 441 | 1.706 | | | 1.715 | 1.715 | 23 | | 223
223 | 1.547
1.534 | | | 1.550 | 1.547 | 8 | | 442 | 1.488 | | | 1.545 J
1.488 | 1.489 | | | 442 | 1.473 | | | 1.482 | 1.481 | 2 | | 621 | 1.456 | | | 1.460 | 1.462 | 16 | | 262 | 1.456 | 1.455 | 30 | 1.456 | | | | 262 | 1.449 | 1.449 | 10 | 1.454 | 1.455 | 18 | | 080 | 1.430 | | | 1.429 | 1.430 | 2 | | 081 | 1.377 | 1.378 | 10 | 1.376 | 1.377 | 7 | | a (Å) 9.415(7) | | | | 9.466(2) | | | | ь | • | 11.442(6) | | | 11.431(1) | | | С | | 5.103(4) | | | 5.126(1) | | | A (°) | | 90.8(1) | | 90.31(2) | | | | _ V (A | (3) | 549.7(6) | | | 554.6(1) | | | | | | | | | | Ferrowodginite: 114.6 mm Gandolfi camera, Ni-filtered CuKa radiation, corrected for shrinkage. Titanowodginite: Philips PW1050 diffractometer, Ni-filtered CuKa radiation, CaF2 internal standard. Ferrowodginite is ideally $Fe^{2+}SnTa_2O_8$, Z=4, and is the ferrous iron analogue of wodginite. The ferrowodginite is anhedral. Optical examination shows it to be polysynthetically twinned; a X-ray precession study shows that the twin plane is {100}. X-ray precession and powder-diffraction studies show ferrowodginite to be isostructural with wodginite; the powder pattern is given in Table 4. The data were obtained on the same crystal as was used for microprobe analysis; because of the small size of the crystal, the mean ratio of line intensity to background was found to be low; hence several weak lines normally found in wodginite patterns were not observed. The unit-cell parameters were refined using the program CELREF (Appleman & Evans 1973): a 9.415(7), b 11.442(6), c 5.103(4) Å, β 90.8(1)°, V 549.7(6) Å³. In general type ferrowodginite has smaller a and b cell edges and β angle, and a larger c cell edge than wodginite. On the basis of the results of Ercit et al. (1992a), the type sample is fully ordered. ^{*} Average of 2 analyses. #### **TITANOWODGINITE** Titanium is largely a ubiquitous component in wodginite-group minerals; however, Ti contents are typically low, generally less than 1 wt.% TiO₂. The first Ti-rich variety of wodginite encountered was the type ferrowodginite sample, with an average of 3% TiO₂ (Vorma & Siivola 1967). Grice et al. (1972) described wodginite with up to 4\% TiO₂ from the Tanco pegmatite, Manitoba. This remained the maximum Ti content of wodginite until a re-examination of the Ta-, Nb-oxide minerals at Tanco led to the discovery of wodginite with TiO₂ contents as high as 10.4% (Ercit 1986). In this material, up to 73 at.\% of the Sn is replaced by Ti; hence it represents a new species which, in allusion to its composition, we have named titanowodginite. The new species and its name have been approved for publication by the I.M.A. Commission on New Minerals and Mineral Names. Type titanowodginite occurs in a sample of Ta ore from the research collection of P. Cerný, sample A-25. The sample comes from the workings of the Tanco pegmatite, Bernic Lake, Manitoba; the regional geology of the area and the internal structure of the pegmatite were reviewed by Cerný (1982). From the mineralogy of the host rock and the chemistry of its oxide minerals, the sample is inferred to come from exposures of the saccharoidal albite unit [unit (3) of Černý (1982)] in the eastern workings of the pegmatite. The mineral occurs with microlite and manganocolumbite as disseminations in a silicate matrix consisting of saccharoidal albite plus quartz with minor muscovite and beryl. Since the discovery of the type sample, titanowodginite has been found in several exposures of the saccharoidal albite unit in the eastern workings of the pegmatite, and in one exposure of the central intermediate unit [unit (6) of Cerný (1982)] in the northwestern workings of the pegmatite. Type titanowodginite occurs as euhedral, bipyramidal crystals ranging from a few mm to 1 cm long. It occurs most often in irregular clusters of crystals, but also occurs as individual crystals. Titanowodginite is dark brown to black and has a dark brown streak. It is transparent to translucent, nonfluorescent and has a vitreous luster. It is anisotropic, biaxial (+); all of its indices of refraction are greater than 2.0 and could not be measured with immersion oils available. It is brittle, hardness 5½, and shows no prominent cleavage, but has an irregular fracture. The density was measured with a Berman balance using toluene as an immersion liquid. Three repeated weighings of an 11-mg fragment gave a density of 6.86(3) g/cm³, which compares well with the calculated density of 6.89 g/cm³. The methods used to analyze type titanowodginite are identical to those used for ferrowodginite. Results of the chemical analyses are given in Table 3. Type titanowodginite shows slight core-to-rim variation in chemistry. The rim has higher Mn/Fe and Sn/Ti than the core, typical of normal chemical zoning in oxide minerals from granitic pegmatites (Černý & Ercit 1985). In accordaccordance with the procedure of formula calculation of Ercit et al. (1992a), the formula contents per unit cell are: $(Mn_{3.04}Fe^{2} + 0.89 \square_{0.07})_{\Sigma 4}$ $(Ti_{2,49}Sn_{1,21}Ta_{0,22}Fe^{3} + 0.08)_{\Sigma 4}(Ta_{6,06}Nb_{1,94})_{\Sigma 8}O_{32}.$ Titanowodginite is ideally MnTiTa₂O₈, Z = 4, and is the titanium analogue of wodginite. Titanowodginite is euhedral. Predominance of the form {111} results in the characteristically bipyramidal crystals; occasionally the {101} and {100} forms are prominent. Penetration twins are typical, with {001} and {100} as the composition planes. X-ray precession and powder-diffraction studies show titanowodginite to be isostructural with wodginite; the powder pattern is given in Table 4. Using the CELREF program, the refined unit-cell parameters are a 9.466(1), b 11.431(1), c 5.126(1) Å, β 90.31(2)°, V 554.6(1) Å³. In general, type titanowodginite has smaller a and b cell edges and β angle, and a larger c cell edge than wodginite. On the basis of the results of Ercit et al. (1992a), the type sample is only 35% ordered; the absence of several high-d lines in the diffraction pattern is in part due to this disorder. ## SUMMARY - (1) The wodginite group consists of isostructural minerals of the general form ABC_2O_8 (Z=4), $A=Mn^{2+}$, Fe^{2+} , Li, \square ; $B=Sn^{4+}$, Ti, Fe^{3+} , Ta; C=Ta, Nb. - (2) A scheme of classification and nomenclature is introduced whereby species are described by names involving chemical modifiers used in conjunction with the root name "wodginite". - (3) There are four wodginite-group minerals known: (i) wodginite (sensu stricto), ideally MnSn Ta₂O₈, (ii) ferrowodginite, ideally Fe²⁺SnTa₂O₈, (iii) titanowodginite, ideally MnTiTa₂O₈, and (iv) lithiowodginite, ideally LiTaTa₂O₈. - (4) There is extensive solid-solution toward the hypothetical end-members ferriwodginite, Mn₄(Fe³⁺₂Ta₂)Ta₈O₃₂, and ferroferriwodginite, Fe²⁺₄(Fe³⁺₂Ta₂)Ta₈O₃₂, and other species seem probable. ## **ACKNOWLEDGEMENTS** We thank Dr. J. Siivola for the loan of the sample that was found to host type ferrowodginite, and to the Tantalum Mining Corporation of Canada Limited for access to the workings of the Tanco pegmatite during the period of study. Financial support for the study was in the form of a NSERC operating grant and Tantalum Mining Corporation of Canada contract to PC, and a NSERC Postgraduate Scholarship and University of Manitoba fellowship to TSE. # REFERENCES - APPLEMAN, D.E. & EVANS, H.T., JR. (1973): Job 9214: indexing and least-squares refinement of powder diffraction data. U.S. Geol. Surv., Comput. Contrib. 20 (NTIS Doc. PB2-16188). - AUROLA, E. (1963): On the pegmatites in the Torro area, southwestern Finland. *Bull. Comm. géol. Finlande* **206**, 1-32. - ČERNÝ, P. (1982): The Tanco pegmatite at Bernic Lake, southeastern Manitoba. In Granitic Pegmatites in Science and Industry (P. Černý, ed.). Mineral. Assoc. Can., Short-Course Handbook 8, 527-543. - & ERCIT, T.S. (1985): Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. *Bull. Minéral.* 108, 499-532. - COLBY, J.W. (1980): MAGIC V a computer program for quantitative electron-excited energy dispersive analysis. *In* QUANTEX-Ray Instruction Manual. Kevex Corporation, Foster City, California. - ERCIT, T.S. (1986): The Simpsonite Paragenesis. The Crystal Chemistry and Geochemistry of Extreme Ta Fractionation. Ph.D. thesis, Univ. Manitoba, Winnipeg, Manitoba. - —_____, ČERNÝ, P. & HAWTHORNE, F.C. (1984): Wodginite crystal chemistry. Geol. Soc. Am., Abstr. Programs 16, 502. - The wodginite group. II. Crystal chemistry. Can. Mineral. 30, 613-631. - _____, ___ & Siivola, J. (1987): The composition of - stannomicrolite. Neues Jahrb. Mineral., Monatsh., 249-252. - ——, HAWTHORNE, F.C. & ČERNÝ, P. (1992b): The wodginite group. I. Structural crystallography. Can. Mineral. 30, 597-611. - FERGUSON, R.B., HAWTHORNE, F.C. & GRICE, J.D. (1976): The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. II. Wodginite. Can. Mineral. 14, 550-560. - GRICE, J.D., CERNY, P. & FERGUSON, R.B. (1972): The Tanco pegmatite at Bernic Lake, Manitoba. II. Wodginite, tantalite, pseudo-ixiolite and related minerals. Can. Mineral. 11, 609-642. - VON KNORRING, O., SAHAMA, T.G. & LEHTINEN, M. (1969): Ferroan wodginite from Ankole, south-west Uganda. *Bull. Geol. Soc. Finland* 41, 65-69. - KORNETOVA, V.A., SIDORENKO, G.A., KAZAKOVA, M.E., TRONEVA, N.V. & BOYARSKAYA, R.V. (1978): Ironrich wodginite. *Trudy Mineral. Museya Akad. Nauk SSSR* 27, 75-85 (in Russ.). - NICKEL, E.H., ROWLAND, J.F. & MCADAM, R.C. (1963): Wodginite a new tin manganese tantalate from Wodgina, Australia and Bernic Lake, Manitoba. *Can. Mineral.* 7, 390-402. - SIMPSON, E.S. (1909): Further occurrences of tantalum and niobium in Western Australia. *Aust. Assoc. Adv. Sci.* 12, 310-315. - Turnock, A.C. (1966): Synthetic wodginite, tapiolite and tantalite. *Can. Mineral.* **8**, 461-470. - VOLOSHIN, A.V., PAKHOMOVSKII, YA.A. & BAKHCHISARAITSEV, A.YU. (1990): Lithiowodginite a new mineral of the wodginite group from granitic pegmatites in eastern Kazakhstan. *Mineral. Zh.* 12, 94-100. (in Russ.). - Vorma, A. & Siivola, J. (1967): Sukulaite Ta₂Sn₂O₇ and wodginite as inclusions in cassiterite in the granite pegmatite in Sukula, Tammela in SW Finland. C. R. Soc. géol. Finlande 39, 173. - Received June 26, 1991, revised manuscript accepted May 21, 1992.