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Abstract
Since their introduction in 1929, Pauling’s five rules have been used by scientists from many disciplines 

to rationalize and predict stable arrangements of atoms and coordination polyhedra in crystalline solids; 
amorphous materials such as silicate glasses and melts; nanomaterials, poorly crystalline solids; aqueous 
cation and anion complexes; and sorption complexes at mineral-aqueous solution interfaces. The predictive 
power of these simple yet powerful rules was challenged recently by George et al. (2020), who performed a 
statistical analysis of the performance of Pauling’s five rules for about 5000 oxide crystal structures. They 
concluded that only 13% of the oxides satisfy the last four rules simultaneously and that the second rule has 
the most exceptions. They also found that Pauling’s first rule is satisfied for only 66% of the coordination 
environments tested and concluded that no simple rule linking ionic radius to coordination environment 
will be predictive due to the variable quality of univalent radii.

We address these concerns and discuss quantum mechanical calculations that complement Pauling’s 
rules, particularly his first (radius sum and radius ratio rule) and second (electrostatic valence rule) rules. We 
also present a more realistic view of the bonded radii of atoms, derived by determining the local minimum 
in the electron density distribution measured along trajectories between bonded atoms known as bond 
paths, i.e., the bond critical point (rc). Electron density at the bond critical point is a quantum mechanical 
observable that correlates well with Pauling bond strength. Moreover, a metal atom in a polyhedron has as 
many bonded radii as it has bonded interactions, resulting in metal and O atoms that may not be spherical. 
O atoms, for example, are not spherical in many oxide-based crystal structures. Instead, the electron density 
of a bonded oxygen is often highly distorted or polarized, with its bonded radius decreasing systematically 
from ~1.38 Å when bonded to highly electropositive atoms like sodium to 0.64 Å when bonded to highly 
electronegative atoms like nitrogen. Bonded radii determined for metal atoms match the Shannon (1976) 
radii for more electropositive atoms, but the match decreases systematically as the electronegativities of 
the M atoms increase. As a result, significant departures from the radius ratio rule in the analysis by George 
et al. (2020) is not surprising. We offer a modified, more fundamental version of Pauling’s first rule and 
demonstrate that the second rule has a one-to-one connection between the electron density accumulated 
between the bonded atoms at the bond critical point and the Pauling bond strength of the bonded interaction.

Pauling’s second rule implicitly assumes that bond strength is invariant with bond length for a given 
pair of bonded atoms. Many studies have since shown that this is not the case, and Brown and Shannon 
(1973) developed an equation and a set of parameters to describe the relation between bond length and 
bond strength, now redefined as bond valence to avoid confusion with Pauling bond-strength. Brown 
(1980) used the valence-sum rule, together with the path rule and the valence-matching principle, as the 
three axioms of bond-valence theory (BVT), a powerful method for understanding many otherwise elusive 
aspects of crystals and also their participation in dynamic processes. We show how a priori bond-valence 
calculations can predict unstrained bond-lengths and how bond-valence mapping can locate low-Z atoms 
in a crystal structure (e.g., Li) or examine possible diffusion pathways for atoms through crystal structures.

In addition, we briefly discuss Pauling’s third, fourth, and fifth rules, the first two of which concern the 
sharing of polyhedron elements (edges and faces) and the common instability associated with structures 
in which a polyhedron shares an edge or face with another polyhedron and contains high-valence cations. 
The olivine [α-(MgxFe1–x)2SiO4] crystal structure is used to illustrate the distortions from hexagonal close-
packing of O atoms caused by metal-metal repulsion across shared polyhedron edges.
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We conclude by discussing several applications of 
BVT to Earth materials, including the use of BVT to: (1) 
locate H+ ions in crystal structures, including the location 
of protons in the crystal structures of nominally anhydrous 
minerals in Earth’s mantle; (2) determine how strongly 
bonded (usually anionic) structural units interact with 
weakly bonded (usually cationic) interstitial complexes in 
complex uranyl-oxide and uranyl-oxysalt minerals using 
the valence-matching principle; (3) calculate Lewis acid 
strengths of cations and Lewis base strengths of anions; 
(4) determine how (H2O) groups can function as bond-
valence transformers by dividing one bond into two bonds 
of half the bond valence; (5) help characterize products 
of sorption reactions of aqueous cations (e.g., Co2+ and 
Pb2+) and oxyanions [e.g., selenate (Se6+O4)2− and selenite 
(Se4+O3)2−] at mineral-aqueous solution interfaces and 
the important role of protons in these reactions; and (6) 
help characterize the local coordination environments of 
highly charged cations (e.g., Zr4+, Ti4+, U4+, U5+, and U6+) 
in silicate glasses and melts.

Keywords: Pauling’s rules; bonded radii; bonded 
interactions; bond paths; bond valence theory; bond va-
lence analysis of crystal structures; bond valence analysis 
of water in nominally anhydrous mantle minerals; bond 
valence analysis of proton, cation, and oxyanion sorp-
tion complexes; application of bond-valence theory to 
uranyl-oxide and uranyl-oxysalt minerals; bond-valence 
analysis of proton, cation, and oxyanion adsorption at 
mineral-aqueous solution interfaces; bond-valence and 
XAFS analysis of the local coordination environments 
of highly charged cations in silicate glasses 

Introduction
Although the concept of atoms and their indivisible nature 

dates back to the ideas of Leucippus and his student Democritus 
in 440 B.C.E., John Dalton (1808) formulated the first modern 
description of atoms as the fundamental, non-destructible, 
spherical building blocks of all matter. Dalton also suggested 
that the atoms of a given element are identical, that different 
atoms have different sizes and masses, and that all materials 
consist of combinations of atoms in well-defined ratios (the law 
of definite composition and its extension—the law of multiple 
proportions). Furthermore, the product of a chemical reaction 
was considered to result in a rearrangement of the reacting atoms. 
But the structures of the reaction products were unknown until 
William Barlow (1883, 1894) speculated that the Na and Cl 
atoms in a cubic crystal of rock salt are spherical and arranged 
in a periodic close-packed chessboard pattern in 3-space. Barlow 
(as well as Evgraf Fedorov and Arthur Moritz Schoenflies) also 
deduced that there are only 230 unique ways of arranging sym-
metry elements in 3-space (the space groups) that describe the 
symmetry of any periodic array of atoms in a crystalline material. 
His insightful conjecture that the atoms in halite are arranged 
in a three-dimensional periodic pattern preceded by 30 years 
the famous X‑ray diffraction experiments on sphalerite crystals 
by Max von Laue and his colleagues Walter Friedrich and Paul 

Knipping (Friedrich et al. 1912). Based on these results, Sir Law-
rence Bragg and his father, Sir William H. Bragg, were quick to 
recognize the significance of Barlow’s conjecture and von Laue’s 
X‑ray diffraction patterns (Bragg 1912; Bragg 1913a, 1913b; 
Bragg and Bragg 1913). Primed with the knowledge that atoms 
in crystals are arranged in periodic patterns in 3-space and that 
the dimensions of the atoms are comparable to the wavelength 
of an X‑ray beam, the younger Bragg re-interpreted the X‑ray 
diffraction pattern observed by Friedrich et al. (1912) as X‑ray 
reflection by planes of atoms in the crystal. The elder Bragg 
(1913) built a single-crystal diffractometer, and he and his son 
recorded diffraction data for a cube of halite that verified Bar-
low’s brilliant speculations. Without a doubt, the determination 
of the crystal structure of halite was a fundamental breakthrough 
in understanding the structures of crystals as periodic arrays of 
bonded atoms in 3-space, a discovery that was not only a great 
advance in the field of crystal chemistry but also the basis for 
Pauling’s rules.

With the advent of X‑ray diffraction, early structural crystal-
lographers including Bragg, Goldschmidt, Pauling, Huggins, and 
Zachariasen interpreted X‑ray diffraction patterns within the 
framework of space group theory and the context of the close 
packing of spherical atoms and solved the crystal structures of 
many minerals and synthetic materials. Bragg (1920) found 
that interatomic distances in crystals can be reproduced by the 
sum of the radii of the bonded atoms. In addition, he derived 
a set of atomic radii where the sum of the radii reproduces the 
bond lengths for hundreds of crystals to within ~0.06 Å. Landé 
(1920) also assumed that halogen ions are in mutual contact 
in the structures of the lithium halogenides and assigned the 
sizes of ions accordingly. Hüttig (1920) concluded that the co-
ordination number adopted by cations is determined by radius 
ratio considerations; the larger the ratio, the larger the expected 
coordination number of the cations. Using the connection be-
tween mole refraction and ionic volume, Wasastjerna (1923) 
produced a more extensive set of ionic radii that was extended 
by Goldschmidt (1926) and Pauling (1927). Collectively, this 
work concluded that anions are larger (over 1.35 Å) than cations. 
Goldschmidt (1926) used Hüttig’s (1920) coordination number 
arguments to predict coordination numbers for a wide range of 
cations. Pauling (1929) collected these ideas, developed others, 
and consolidated them as a set of relatively simple yet powerful 
rules for understanding and predicting stable atomic arrange-
ments in oxide-based minerals. The radii of the metal ions were 
assumed to decrease systematically from left to right in each 
row of the periodic table and to increase as the row numbers 
of the atoms increase. Pauling (1929) also observed that indi-
vidual metal-oxygen (M-O) bond lengths tend to decrease with 
increasing valence (v) and decreasing coordination number (κ) 
of the M cation. He defined the strength of an M-O bond as 
s = v/κ and found that the sum of the bond strengths incident at 
a bonded O2− ion often closely matches the valence of that ion. 
Pauling (1929) also observed that O-O edges shared between 
cation-containing oxygen-coordinated polyhedra are shorter 
than unshared edges, a feature he ascribed to the reduction of 
the repulsive forces between the metal cations across the shared 
edge. These ideas about favorable atom arrangements in stable 
oxide-based structures were incorporated by Pauling (1929, 

file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\53
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\12
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\13
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\65
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\22
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\23
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\23
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\65
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\23
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\27
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\114
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\106
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\180
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\89
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\131
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\89
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\106
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\132
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\132
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\132
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\132


GIBBS ET AL.: PAULING’S RULES AND BOND VALENCE THEORY 1221

American Mineralogist, vol. 107, 2022

1960) in the following set of five rules.
Pauling’s first rule (Pauling 1960) states that “a coordina-

tion polyhedron of anions is formed about each cation, the 
cation-anion distance being determined by the radius sum and 
the ligancy of the cation by the radius ratio,” a concept that he 
adopted from Goldschmidt (1926). Pauling’s second rule (Paul-
ing 1960) postulates that “in a stable ionic structure the valence 
of each anion with changed sign, is exactly or nearly equal to 
the sum of the strengths of the electrostatic bonds to it from 
adjacent corners; that is, 

ζe = Σsi = Σzi/vi 

in which ζe is the electric charge of the anion and the summation 
is taken over the cations at the centers of all the polyhedral of 
which the anion forms a corner.” This second rule is also known 
as the electrostatic valence principle. Pauling’s third rule (Pauling 
1960) states that “the presence of shared edges and especially of 
shared faces in a coordinated structure decreases its stability; this 
effect is large for cations with large valence and small ligancy.” 
The fourth rule (Pauling 1960) states “in a crystal containing 
different cations those of large valence and small coordination 
number tend not to share polyhedral elements with each other,” 
and his fifth rule (Pauling 1929) states “the number of essentially 
different kinds of constituents in a crystal tends to be small.”

We also include here a statement by Pauling (1960) concern-
ing how he formulated his “rules” (from Section 13-6: “The 
Principles Determining the Structure of Complex Ionic Crystals” 
The Nature of the Chemical Bond (1960), 3rd ed., p. 543–562): 

“It has been found possible to formulate a set of rules 
about the stability of complex ionic crystals, as described 
in the following paragraphs. These rules were obtained 
in part by induction from the structures known in 1928 
and in part by deduction from the equations for crystal 
energy. They are not rigorous in their derivation or univer-
sal in their application, but they have been found useful 
as a criterion for the probable correctness of reported 
structures for complex crystals and as an aid in the X‑ray 
investigation of crystals by making possible the suggestion 
of reasonable structures for experimental test. The rules 
are, moreover, of some significance for molecules and 
complex ions.” (Pauling 1960, pp. 543–544). 

“Minerals, including the silicate minerals, many of 
which have been thoroughly investigated by X‑ray meth-
ods, provide excellent illustrations for the rules given in 
the preceding paragraphs. The sulfide minerals, on the 
other hand, show general lack of agreement with the rules; 
their bonding is largely covalent.” (Pauling 1960, p. 562).

As is well known, Pauling’s rules are based on the approxima-
tions that bonded atoms are spherical and that bond lengths are 
determined by the radius sum of the bonded ions. At the time 
these rules were proposed, little was known about the actual 
sizes and shapes of bonded atoms other than that their radii sum 
reproduced observed bond lengths. However, electron density 
distributions recently determined experimentally and calculated 
theoretically for many minerals show that the radius of the 

bonded oxygen atom is not fixed but increases systematically 
in parallel trends as the bonded radii of the M atoms increase 
(Gibbs et al. 2013a, 2014). In addition, Gibbs et al. (2013a) found 
strong evidence that the Pauling bond strength-bond length of a 
M-O bonded interaction is very similar to the average accumula-
tion of the electron density at the bond critical point [<ρ(rc)>] 
between bonded pairs of metal and O atoms. On the basis of the 
correspondence between equations relating <ρ(rc)> [<R(M–O)> 
= 1.46<ρ(rc)>/r−0.19] and <s> [<R(M–O)> = 1.46<s>/r−0.21] to 
bond length, Gibbs et al. (2013a) concluded that the Pauling 
bond strength might serve as an estimate of the accumulation 
of electron density between bonded M-O atoms. In these equa-
tions, <ρ(rc)> is the average electron density accumulated at the 
bond critical point, rc, of an M-O bond, <R(M-O)> is the aver-
age experimental M-O bond length, <s> is the average Pauling 
bond strength of an M-O bond, and r is the Periodic Table row 
number of the M atom. 

One of our motivations for writing this review paper is to 
address a recent paper by George et al. (2020) entitled “The 
Limited Predictive Power of the Pauling Rules,” which questions 
the applicability of Pauling’s first and second rules in particular, 
based on a statistical analysis of the success of Pauling’s rules 
when applied to 5000 or so crystal structures in the Inorganic 
Crystal Structure Database. George et al. (2020) make the follow-
ing comment: “Our work therefore calls for the development of 
new empirical rules beyond the almost one-century old Pauling 
rules. Our analysis and the data set of connectivity and local 
environment provided is a first step toward building this new 
theory···”. This statement ignores the large amount of theoretical 
and experimental work done on oxide-based solids since Paul-
ing proposed his rules. In the same spirit of wishing to move 
forward in understanding and predicting details of inorganic 
crystal structures, we discuss some of this subsequent work and 
comment on some future directions that can be pursued.

Other motivations are: (1) to examine the relation between 
Pauling’s rules and the results of modern quantum mechanical 
calculations; (2) to address the common misapprehension that 
Pauling’s rules apply only to “ionic compounds;” (3) to review 
the use of some of these more recent developments and applica-
tions of bond-valence theory (BVT) in the fields of mineralogi-
cal and inorganic crystallography, inorganic geochemistry, and 
metal-oxide surface/interface chemistry; and (4) to emphasize 
that departures from Pauling’s rules by specific structures and 
classes of structures are important indicators of unusual crystal-
chemical effects and the possible presence of economically 
important physical properties.

Preliminary considerations
Doing science consists of making observations and develop-

ing models that order these observations into a rational hierarchy 
and (if possible) make predictions. Pauling’s rules (Pauling 1929, 
1960) are a set of rules (also referred to as “principles” by Pauling 
himself) that systematize various features of the crystal structures 
of oxide and oxysalt crystals. Thus, Pauling’s rules are a model 
for oxide and oxysalt crystals, but one that has undergone con-
tinuous development to the present time, resulting in better under-
standing and more accurate prediction of structural features than 
was possible in 1929. Quantum-mechanical models were also 
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developed around the same time (1925–1934); they have since 
undergone immense development and are now applicable to a 
very wide array of scientific topics. Indeed, quantum-mechanical 
models such as density functional theory (Hohenberg and Kohn 
1964; Kohn and Sham 1965) have strongly influenced the evo-
lution of quantum mechanics over the past 50 years and have 
been so successful in chemistry that there has been a tendency 
to regard them as “truth” and to criticize alternative models on 
the basis of their differences from quantum-mechanical mod-
els. However, such criticism is irrational as models are human 
constructs and can only be judged on their success in ordering 
and predicting the phenomena with which they are concerned. 
In comparing these predictions with experimental results, poor 
parameterization will give rise to inaccurate or even erroneous 
results no matter how sophisticated the theory.

From a mineralogical perspective, both quantum-mechanical 
methods (e.g., Gatti 2005; Prencipe 2019) and methods suggested 
by Pauling’s rules (e.g., Brown 2002a, 2016) are of great impor-
tance. As we show here, quantum-mechanical methods can give 
insight into the detailed behavior of electron density and its de-
rivative physical properties for small, ordered chemical systems, 
while methods derived from Pauling’s rules can give insight into 
the behavior and properties of large disordered chemical systems. 
This is an issue of particular importance for mineralogy as the 
majority of minerals, and solid solutions show extensive disorder. 
The essence of the message here is that both quantum-mechanical 
methods and those methods suggested by Pauling’s rules provide 
insight into the behavior of minerals in geological and planetary 
processes and are not competitive methods.

Crystallographers, mineralogists, geochemists, and petrolo-
gists have different meanings for the word “stability.” In crys-
tallography, a crystal structure is stable if it can exist under any 
external conditions. Thus, the structural arrangement of forsterite 
(ideally Mg2SiO4) is stable because we observe it. A structure of 
composition Mg4SiO4, for example, cannot exist because it is not 
electroneutral...it is unstable. In mineralogy, geochemistry, and 
petrology, a mineral is stable where it occurs in equilibrium with a 
set of external conditions and is unstable where it does not occur 
in equilibrium with another set of external conditions. Forsterite 
is stable at high temperature (<1890 °C) and pressure (<136 kb 
corresponding to depths in the Earth of 0–410 km). Thus, it is 
important to understand the context in which the term “stabil-
ity” is used when referring to minerals and mineral structures.

Ionic radii, bonded radii, bonded interactions, 
and bond paths

Ionic radii: Heuristic considerations
In high-symmetry coordination polyhedra, e.g., in NaCl or 

MgO structures, all bond lengths are equal and each ion can be 
considered as spherical, i.e., it has the same radius along each 
bond. However, in lower-symmetry coordination polyhedra [e.g., 
(SiO4)4− in the quartz structure], all bond lengths are not equal 
and each ion cannot be considered spherical: partitioning a bond 
length into two parts will give unequal “radii” for the two atoms 
along each bond. Thus the “radii” of ions in a specific bond-pair 
must vary with distortion of the coordination polyhedron away 
from holosymmetry. This is a simple geometrical effect and the 

behavior of the electron density in the structure must accord 
with this constraint. This effect will be enhanced where there are 
non-uniform bond-valence (bond-strength) constraints. Consider 
the M2 site in diopside: CaMgSi2O6 (Clark et al. 1969). The O1, 
O2, and O3 oxygen anions receive Pauling bond-strengths of 
1.92, 1.58, and 2.50 valence units (v.u.), respectively. Accord-
ingly, coordination polyhedra distort to produce the following 
bond-length ranges for diopside: Si-O: 1.585–1.687 Å: Mg-O: 
2.050–2.115 Å; and Ca-O: 2.352–2.717 Å. As a consequence, 
there will be a wide range of “radii” for each ion along the dif-
ferent bond paths in the diopside structure.

This idea is not new. Pauling and Hendricks (1925) suggested 
that the distorted octahedral coordination of Al3+ and Fe3+ in the 
crystal structures of corundum (α-Al2O3) and hematite (α-Fe2O3), 
respectively, result in electrons in the outer shells of these cations 
having different effective radii in different directions. They con-
cluded that “the structures determined for hematite and corundum 
show that these crystals consist of a compact arrangement of 
approximately, but not exactly, spherical ions of oxygen and of 
iron or aluminum, held together by inter-ionic forces which are 
probably electrostatic in nature.”

According to Shannon (1976), the radius of the [4]-coordinated 
O2− ion is 1.38 Å—a value that results in a minimum O-O separa-
tion of 2.76 Å. Zemann (1986) listed the closest O-O distance not 
involved in a low-coordination oxyanion (in a silicate) as 2.75 Å, 
which is very close to the predicted minimum O-O separation. 
However, O-O distances down to ~2.22 Å occur in oxyanions 
such as (BO3)3− and (CO3)2−, and as shared edges of coordination 
polyhedra of highly charged cations [e.g., 2.23 Å in andalusite 
(Al2SiO5); Winter and Ghose (1979)]. These values suggest that 
to ask whether the ionic radius of O2− is correct or not is to ask 
the wrong question. These numbers suggest that O2− should be 
considered as a soft sphere that, to some extent, adapts its radius 
to its local coordination environment.

Of course, the above simple geometrical argument requires 
only that the radii in such cases differ along different bond 
paths. The degree to which they differ may be derived from 
experimental and/or theoretical electron density distributions 
(e.g., Gibbs et al. 2013a).

Bonded radii—A modern view of the radii of atoms
In a study of the structures of molecules and bonded interac-

tions, Slater (1964) argued that the bonded radius of an atom can 
be determined on the basis of the topology of the electron density 
distribution that connects bonded atoms. While a Post-Doctoral 
Fellow at MIT, Richard F.W. Bader undertook a virial partitioning 
of the distributions of electron density for several molecules and 
discovered that the only features in the distributions that appear 
“bond-like” in nature are ridges of maximum electron density 
that connect pairs of bonded atoms, ridges that he named bond 
paths (Runtz et al. 1977). As the electron density distribution is 
a quantum mechanical observable, any derivative of the distri-
bution must itself be observable. As a bond path is a maximum 
in the electron density distribution, measured along a particular 
trajectory in space, a bond path is likewise observable. Later, 
Bader (1990) concluded that a pair of atoms is bonded only if the 
pair is connected by a bond path. Given that the bonded radius 
of an atom is defined as the distance between the nucleus of the 
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atom and the minimum in the electron density measured along a 
bond path, the bonded radius of an atom is likewise observable. 
By mapping the bond paths, not only are the bonded radii of 
bonded atoms determined, but also the polarization of electron 
density distributions of an atom can be assessed. Furthermore, 
the number of bond paths that radiate from a given atom uniquely 
defines the coordination number of the atom.

Table 1 compares crystal radii (rc) and averaged bonded radii 
(<rb>), from which it is clear that bonded radii determined on 
the basis of the electron density distribution differ substantially, 
on average, from the ionic radii (ri) of Shannon (1976). Table 1 
also shows that the average bonded radii of O atoms [<rb(O)>] 
decrease systematically as the shared character of the M-O 
bonded interactions increases. It also reveals that larger metal 
atoms display a wider range of bonded radii values than smaller 
metal atoms.

Bonded interactions and bond paths
The electron density distribution and bond critical points 

calculated for the cubic garnet pyrope, [8] Mg3
[6]Al2

[4]Si3O12 (Gibbs 
and Smith 1965), show that four non-equivalent bond paths 
radiate from each O atom, one along the [4]Si-O bond path, one 
along the [6]Al-O bond path, and two along two nonequivalent 
[8]Mg-O bond paths (Gibbs et al. 2013a). The bonded radius of 
the O atom is not fixed but ranges from 0.95 Å, measured along 
the [4]Si-O bond path, to 1.12 Å, measured along the [6]Al-O bond 
path, to 1.26 and 1.36 Å, measured along the two nonequivalent 
[8]Mg-O bond paths. Clearly, on the basis of the bonded oxygen 
radii, the electron density of the O atom is highly polarized, 
with its four bonded radii ranging between 0.95 and 1.36 Å. 
The radius of the Si atom measured along its four equivalent 
bond paths is single valued with a bonded radius of 0.67 Å. The 
bonded radius of the Al atom measured along its six equivalent 
bond paths is also single valued with a larger bonded radius of 
0.79 Å. In contrast, the Mg atom has two nonequivalent sets of 
bond paths, the shorter (0.94 Å) involving the shorter [8]Mg-O 
bonded interaction (2.20 Å) and the longer (0.99 Å) involving 
the longer [8]Mg-O bond (2.35 Å).

The crystal structure of calcite, [6]Ca[3]CO3 (Catti et al. 1993) 
is a framework structure of corner-sharing CaO6 octahedra in 
which each O atom is bonded to two equivalent [6]Ca atoms 

and one [3]C atom. The six bonded radii of the Ca atom are each 
1.17 Å, and the three bonded radii of the C atom are each 0.83 Å, 
a result that shows the bond critical points of both atoms are 
distributed spherically about the nuclei of the two atoms. On 
the other hand, the bonded radius of the O atom measured along 
the C-O bond path is 0.46 Å, much shorter than those measured 
along the two equivalent Ca-O bond paths, 1.14 Å (Skinner et 
al.,1994; Gibbs et al. 2013a), demonstrating that the O atom is 
likewise highly polarized.

In contrast, the bonded radii of the O atoms in the silica 
polymorphs quartz, cristobalite, and coesite are single valued, 
with the O atoms showing little evidence of polarization. The 
bonded radii of the Si and O atoms, measured along the 12 
nonequivalent Si-O bond paths for the three polymorphs, are 
each rb ([2]O) = 0.95 Å and rb ([4]Si) = 0.67 Å, respectively. Four 
Si-O bond paths radiate from each Si atom to a minimum in the 
electron density at a distance of 0.67 Å, defining the bonded radii 
of the Si atoms. Two O-Si bond paths radiate from each O to a 
minimum in the electron density at a distance of 0.95 Å, defin-
ing the bonded radius of the O atom (Fig. 1) (Gibbs et al. 1999, 
2013a). For the high-pressure silica polymorph stishovite, each 
Si atom is bonded to six O atoms and each O atom is bonded to 
three Si atoms. The bonded radii of Si and O atoms, measured 
along each Si-O bonded interaction, are rb ([6]Si) = 0.72 Å and 
rb ([3]O) = 1.06 Å, respectively. Three bond paths radiate from 
each O atom to a minimum in the electron density at 1.06 Å, 
the bonded radius of the O atom, and six paths radiate to a 
minimum in the electron density at 0.72 Å from the Si atom, the 
bonded radius of the [6]Si atom (Gibbs et al. 1992). As expected, 
the bonded radii of the Si and O atoms in stishovite are 0.05 Å 
larger than those in quartz, cristobalite, and coesite, given that 
each Si atom is bonded to six O atoms in stishovite, whereas 
the Si atoms are bonded to four O atoms in quartz, cristobalite, 
and coesite (Gibbs et al. 2009). Furthermore, because each Si 
atom in stishovite is bonded to six equal-sized O atoms and that 
each Si atom in the other three silica polymorphs is bonded to 
four equal-sized O atoms, the Si and O atoms are unpolarized.

The bonded radius of the Si atom determined for pyrope and 
the framework silica polymorphs are virtually the same, whereas 
the bonded radii of the O atoms display a large range of values. 
Gibbs et al. (2013a) showed that the bonded radius of the O atom 
is not fixed but increases as the M-O bond length and the row 
number of the M atom increase.

Discussion and analysis of Pauling’s rules

Pauling’s first rule
According to Pauling’s first rule, M-O bond lengths are equal 

to the radius sum of the bonded atoms, and the coordination 
number of the M atom is determined by the radius ratio of the 
bonded pair.

The classic test of the radius-ratio rule involves the AB 
structures and the following structure types: CsCl, NaCl (halite), 
ZnS (sphalerite), and ZnS (wurtzite). As is apparent from Figure 
2a, the separation of structure types by radius ratio is not very 
good as 38 of 99 structures fall in the wrong fields. Moreover, 
different structure types overlap and are not well-separated into 
unique fields by ionic radii.

Table 1. Comparison of bonded (rb), crystal (rc), and ionic (ri) radii 
Cnm	 <rb(M)>	 rc(M)	 ri(M)	 <rb(O)>	 Cnm	 <rb(M)>	 rc(M)	 ri(M)	 <rb(O)>
IVAl	 0.74	 0.53	 0.39	 1.00	 VIK	 1.44	 1.52	 1.38	 1.43
VAl	 0.78	 0.62	 0.48	 1.08	 IH	 0.19	 0.24	 0.38	 0.79
VIAl	 0.80	 0.68	 0.54	 1.12	 VILi	 0.82	 0.90	 0.76	 1.39
IIIAs3+	 0.87	 0.92			   IVMg	 0.84	 0.71	 0.57	 1.07
IIIB	 0.46	 0.15	 0.10	 0.91	 VMg	 0.90	 0.80	 0.66	 1.17
IVB	 0.49	 0.25	 0.11	 0.99	 VIMg	 0.94	 0.86	 0.72	 1.20
IVBe	 0.58	 0.41	 0.27	 1.07	 VIIIMg	 0.96	 1.03	 0.89	 1.31
IIIC	 0.46	 0.06	 0.08	 0.83	 VIMn2+	 1.10	 0.97	 0.83	 1.12
VICa	 1.18	 1.14	 1.00	 1.18	 VIIIMn2+	 1.15	 1.10	 0.96	 1.18
VIICa	 1.22	 1.20	 1.06	 1.23	 IIIN	 0.60	 0.04	 0.10	 0.64
VIIICa	 1.25	 1.26	 1.12	 1.27	 VNa	 1.08	 1.14	 1.00	 1.36
IXCa	 1.25	 1.32	 1.18	 1.26	 VINa	 1.09	 1.16	 1.02	 1.35
VICo2+	 1.05	 0.72	 0.58	 1.08	 VIINa	 1.12	 1.26	 1.12	 1.40
IVFe2+	 0.98	 0.77	 0.63	 0.99	 IVP	 0.63	 0.31	 0.17	 0.91
VIFe2+	 1.08	 0.92	 0.78	 1.10	 IVS	 0.58	 0.26	 0.12	 0.89
VIIIFe2+	 1.13	 1.06	 0.92	 1.17	 IVSi	 0.67	 0.40	 0.26	 0.95
IVGe	 0.83	 0.53	 0.39	 0.91	 VISi	 0.72	 0.54	 0.40	 1.06
Notes: rb and rc values from Gibbs et al. (2013b). ri values from Shannon (1976).
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Almost 50  years ago, pseudopotential radii (Simons and 
Bloch 1973; Zunger and Cohen 1978; Cohen 1980) were used to 
try and produce a better sorting of AB structures and were quite 
effective. The indices Rσ

AB = |(rA
p + rA

s ) – (rB
p + rB

s )| = |(rA
σ – rB

σ ) and 
RП

AB = |(rA
pП + rA

sП) – (rB
pП + rB

sП)| = |(rA
П – rB

П)|, where rA
s and rA

p are 
the s- and p-orbital radii for an atom A, rB

s and rB
p are the s- and 

p-orbital radii for an atom B, rA
σ and rA

pП are the σ and π bonding 
radii of an atom A, and rB

σ and rB
pП are the σ and π bonding radii 

of an atom B, work quite well in this regard. Chelikowsky and 
Phillips (1977), Zunger (1980), and Bloch and Schatteman (1980) 
produced a much better sorting of structure types but no a priori 
predictions of the location of the field boundaries. Burdett et al. 
(1981) showed that rA

σ and rB
σ have a much-improved structural 

mapping (Fig. 2b), although, again, they do not accurately predict 
coordination numbers from Pauling’s first rule.

At the time the radius-ratio rule was proposed, it was thought 
that, in a given valence state and for a given coordination number, 
the radius of a bonded atom is constant; however, more recent 
work has shown this not to be the case. Electron density distribu-
tions for a relatively large number of minerals (Gibbs et al. 2001) 
show that the bonded radius of the oxygen atom is not fixed but 
increases systematically in parallel trends as the bonded radii of 
the M atoms increase. George et al. (2020) recently reported in 
a “statistical study” of Pauling’s (1929) first rule that only 66% 
of the time did the radius ratio of the metal ions and the O ions 
agree with Pauling’s radius-ratio rule, using univalent radii as 
recommended by Pauling (1960). Given that the bonded radius 

Figure 1. Level-line contour map of the electron density distribution 
for the coesite structure generated in a plane containing the nuclei of 
the atoms comprising the Si(1)-O(5)-Si(2) angle. The contour interval is 
0.0625, 0.125, 0.250, ... e/Å3. The circle centered at the nucleus of O(5), 
labeled B&S (Bragg 1920; Slater 1964) defines the outermost limits of 
the atomic radius (0.60 Å) for the O atom, the one labeled S&P (Shannon 
and Prewitt 1969) defines the 1.25 Å outermost crystal radius for the 
oxide anion, and the one labeled G defines the Goldschmidt (1926) 1.32 Å 
outermost limit of the ionic radius for the oxide anion (from Gibbs et al. 
2013a). Permission has been granted by the American Chemical Society 
to re-use Figure 1 in Gibbs et al. (2013a).

of the O atom is not fixed but increases systematically as the 
bonded radii of the metal atoms increase, significant departures 
from the radius-ratio rule are not surprising.

Figure 3a shows the range in cation-coordination numbers 
as a function of Lewis acidity of the cation (values from Gagné 
and Hawthorne 2017) for all elements in their various valence 
states for which good crystal-structure data are available (~10 000 
inorganic structures) from H+ to Cm3+. If Pauling’s first rule 
were adhered to exactly, all data in Figure 3a should lie within 
the dashed lines, i.e., should show only one or two coordination 
numbers for a given anion, e.g., O2−. Pauling’s first rule involves 
radius ratios for [4]-, [6]-, [7]-, [8]-, [9]-, and [12]-coordination 
(Pauling 1960; page 545). Figure 3b shows the mean observed 
coordination number for all ions, and the broken lines show 
which ions fall within this range (i.e., most of them). It is apparent 
that most ions show a much wider range of coordination numbers 
than predicted by Pauling’s first rule, particularly those ions of 
lower Lewis acidity.

Brown (1988) examined the factors determining cation-
coordination numbers using primarily the valence-matching 
principle from BVT (Brown 2002a, 2016), which states that 
stable structures will form when the Lewis acidity of the cation 
closely matches the Lewis basicity of the anion. As an example, 
consider schiavinatoite, ideally Nb(BO4) (Demartin et al. 2001), 
and behierite, ideally Ta(BO4) (Mrose and Rose 1962). The Lewis 
basicity of the (BO4)5− oxyanion is 0.42 v.u., the Lewis acidities 
of Nb5+ and Ta5+ are 0.835 and 0.822 v.u. (Gagné and Hawthorne 
2017), and the mean observed coordination numbers) for Nb5+ 
and Ta5+ are 5.99(2) and 6.09(2) for 250 and 152 polyhedra 
(Gagné and Hawthorne 2020), respectively. The Lewis acidities 
of Nb5+ and Ta5+ do not match the Lewis basicity of the (BO4)5− 
oxyanion, and the criterion for a stable structure is not met for 
[6]-coordinated Nb5+ and Ta5+. This forces Nb5+ and Ta5+ into 
higher coordination numbers; schiavinatoite and behierite adopt 
the zircon structure with Nb5+ and Ta5+ in [8]-coordination and 
effective Lewis acidities of 5/8 = 0.63 v.u. The match is now 
significantly closer: 0.42 vs. 0.63 v.u., and a structure is possible, 
although highly strained (Hawthorne 2018).

Brown (1988) also concluded that to predict both coordination 
numbers and interatomic distances in oxide-oxysalt structures, 
it is necessary to use a variable radius for O2−, expressed as rO2− 
= 1.12 + 0.23 ln(N – 2) Å where N is the cation-coordination 
number involved. This result parallels that of Gibbs et al. (2013a), 
who showed that the radius of O2− in particular is quite variable 
as a function of its local environment (including interatomic 
distances).

Based on the electron density distributions and bond paths 
determined for silicates and oxides by Gibbs and co-workers, 
Pauling’s first rule might be modified to read, “A coordination 
polyhedron of O atoms is formed about each metal atom M, 
the M-O distance being given by the sum of the bonded radii 
of the M and O atoms and the coordination numbers of the 
atoms being determined by the number of bond paths that radi-
ate from the atoms” (Gibbs et al. 2001, 2013a). However, an 
alternative modification of Pauling’s first rule is offered here: 
“A coordination polyhedron of O atoms is formed about each 
metal atom M, the M-O distance and the bonded radii of the 
M and O atoms being determined by the characteristic forces 

file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\156
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\189
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\52
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\50
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\188
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\21
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\46
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\77
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\72
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\132
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\133
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\27
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\158
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\155
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\89
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\83
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\83
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\67
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\133
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\38
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\39
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\42
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\55
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\121
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\67
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\69
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\95
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\38
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\83
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\77
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\83


GIBBS ET AL.: PAULING’S RULES AND BOND VALENCE THEORY 1225

American Mineralogist, vol. 107, 2022

Figure 2. (a) Map of 
structure types for 99 AB 
compounds as a function of 
cation (r+) and anion (r–) 
radii. (b) Map of structure 
types of the same AB 
compounds as a function of 
s- and p-orbital radii (rA

σ and 
rB

σ). The solid lines indicate 
the boundaries between 
structure types predicted 
by the radius ratio for [4]- 
and [6]-coordination and 
the dashed lines are drawn 
between the CsCl and halite 
structures and between the 
halite structures and the 
sphalerite and wurtzite 
structures (after Burdett et 
al. 1981).

between the two atoms forming the bond and the coordination 
numbers of the atoms being determined by the number of bond 
paths that radiate from the atoms.” As pointed out by Bader 
(2009), the characteristic forces associated with a bond path are 
the Feynman force exerted on nuclei (Feynman 1939) and the 
Ehrenfest force exerted on the electrons of the bonded atoms 
(Pendás and Hernández-Trujillo 2012).

These suggested modifications of Pauling’s first rule do not 
allow a simple back-of-the-envelope prediction of bond lengths 
because the interatomic forces characteristic of the atoms in a 
chemical bond must be calculated for each bond using a quantum 
mechanical model such as density functional theory to optimize 
molecular geometries (bond lengths and angles), followed by 
determining the minimum in electron density, the bond-critical 
point, along the bond path (Gibbs et al. 2003).

Pauling’s second rule
As observed in the Introduction, few definitions have had more 

impact as a basis for understanding bond-length variations and 
bonded interactions in minerals than Pauling’s (1929) definition 
of bond strength, s = v/κ, of a M-O bonded interaction. One of the 
beauties of this simple yet powerful definition is that the sum of 
the bond strengths involved in a bonded interaction often closely 
matches the magnitude of the valence of the anion that is bonded 
to the M cation. Pauling’s second rule was formulated in part from 
a comprehensive knowledge of the crystal structures of minerals 
and other materials known prior to 1929, from Born’s elegant work 
on lattice energy, and likely from Pauling’s (1960) knowledge of 
resonance theory for the bonded interactions in molecules and his 

belief that the rule holds equally well for crystals. It is important to 
realize that the rule was considered to be neither rigorous nor global 
in its application, but as pointed out later by Pauling (1960), it has 
been successfully used to verify the structures of several minerals, Gibbs, Hawthorne, Brown – Figures  

 2 

 
 

 
 
Figure 3(a): Variation in range of coordination number as a function of Lewis acidity for 135 
cations; the broken red lines denote the maximum extent of data according to Pauling’s radius-
ratio rule. Figure 3b: Variation in mean coordination number as a function of Lewis acidity for 
135 cations; the broken black lines denote the maximum extent of data according to the radius-
ratio values of Pauling (1960). 
 

►Figure 3. (a) Variation in range of coordination number as a 
function of Lewis acidity for 135 cations; the broken lines denote the 
maximum extent of data according to Pauling’s radius-ratio rule. (b) 
Variation in mean coordination number as a function of Lewis acidity 
for 135 cations; the broken lines denote the maximum extent of data 
according to the radius-ratio values of Pauling (1960).
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as will be discussed in the Applications section. Furthermore, as 
observed by Sir Lawrence Bragg (1937), the rule favors a system 
of low potential energy and, accordingly, high stability. He added 
that although the rule is simple, it imposes rigorous constraints 
on the topology of the bonded interactions in a crystal. Indeed, 
as pointed out by George et al. (2020), the rule accounts for the 
Si-O bonded interactions of quartz, where the sum of the bond 
strengths of the bonded interactions match the valence of the O 
atom in the structure exactly.

With the discovery that the Si-O bond lengths and Si-O-Si angle 
of the H6Si2O molecule are virtually the same as those in quartz 
(Gibbs 1982), Gibbs et al. (1987) completed molecular orbital 
geometry optimization calculations for the structures of several 
simple oxyhydride molecules containing Slater (1964) first- and 
second-row metal atoms (see Fig. 1). The bond lengths, R(M-O)mol, 
generated in the calculations scatter along two well-defined parallel 
power-law trends when plotted against the Pauling bond strength, 
s, of the M-O bonded interactions (Fig. 4a) and scatter along a 
single trend when plotted against s/r, where r is the Slater (1964)
row number of the atoms in the periodic table. Regression analysis 
of the molecular data set resulted in the power-law expression 
R(M-O)mol = 1.39(s/r)−0.22 (Fig. 4b) with more than 95% of the 
variation of R(M-O) dependent on s/r.

To determine the extent to which the bond lengths, 
R(M-O)mol = 1.39(s/r)−0.22, observed for molecules, match 
the bond lengths of the crystals calculated using the sum of 
the ionic radii, R(M-O)Shan = rc(M) + 1.24 Å, R(M-O)mol was 
plotted in terms of R(M-O)Shan (Fig. 5), where rc(M) is the 
Shannon crystal radii of the metal atoms M, and 1.24 Å is the 
assumed radius of the bonded O atom (Gibbs et al. 2015). 
The agreement between the Shannon bond lengths and the 
bond lengths generated with the molecular power law-based 
expression indicates that the bonded interactions observed for 
molecules are comparable with those observed for crystals, as 
argued earlier by Gibbs et al. (1987). This agreement suggests 
that the bond lengths for oxide crystals are governed in large 

part by short-ranged molecular forces (Gibbs 1982; Gibbs 
et al. 1987). Despite the relative simplicity of the R(M-O)mol 

expression, it reproduces 40% of the Shannon bond lengths to 
within 0.05 Å, 75% to within 0.10 Å, 85% to within 0.15 Å, 
and 95% to within 0.20 Å. (Gibbs et al. 2015). The success of 
the molecular-based expression in matching the bond lengths 
in crystals is ascribed to a one-to-one connection between the 

Figure 4. (a) Correlations of average cation (M)-oxygen (O) distance (in angstroms) predicted from the sum of Shannon and Prewitt (1969) 
radii values for first- and second-row atoms with Pauling bond strength (s). (b) The same correlations after dividing the bond strength by the row 
number (r) of the M metal atom in the periodic table (from Gibbs et al. 2008). Permission has been granted by Walter de Gruyter GmbH 2021 to 
re-use of Figure 1 in Gibbs et al. (2008).

Figure 5. A scatter diagram of the individual Shannon (1976) 
bond lengths, R(M–O)Shan = rc(M) + 1.24 in angstroms where rc(M) are 
the crystal radii for the cations given in Shannon’s (1976) Table 1 and 
1.24 Å is the radius assumed for the oxide anion plotted in terms of 
bond lengths generated with the molecular-based power law expression 
R(M–O)mol

 = 1.39(s/r)−0.22 (in angstroms). The solid line is the regression 
line R(M–O)Shan = 0.91 R(M–O)mol + 0.18 bounded by dashed line 95% 
confidence limits that define where future observation may be expected 
to fall (from Gibbs et al. 2015). Reprinted by permission from Springer 
Nature: Nature/Springer/Palgrave, Physics and Chemistry of Minerals, 
Bond length estimates for oxide crystals with a molecular power law 
expression (Gibbs et al. 2015).
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electron density accumulated between the bonded atoms and 
the Pauling bond strength of the bonded interactions.

In a theoretical study of several perovskite crystals, geometry 
optimized with quantum mechanical density functional methods 
at pressures as high as 80 GPa, Gibbs et al. (2012) (see also Gibbs 
et al. 2013b) found that the value of the electron density, ρ(rc), de-
termined at the bond critical points, rc, of the bonded interactions, 
scatter along four roughly parallel power-law trends when plotted 
in terms of the geometry-optimized second Slater (1964) row Al-O 
bond lengths, the third-row Ca-O bond lengths, the fourth-row Y-O 
and Sn-O bond lengths, and the fifth-row La-O bond lengths (Fig. 
6a) generated as a function of pressure. When the bond lengths 
were plotted against ρ(rc)/r, where ρ(rc) is the value of the elec-
tron density determined at the bond critical point of the bonded 
interaction, the trends match those observed between R(M-O) 
and s/r for the molecules almost exactly (Fig. 6b), demonstrating 
that the Pauling bond strength of a M-O bonded interaction is in 
“exact” agreement with the accumulation of the electron density 
at the bond critical points of the bonded interactions.

In a later study of Pauling’s rules based on the experimental 
and calculated electron density distributions determined for M-O 
bonded interactions, Gibbs et al. (2014) showed that the results 
agree with Pauling’s first two rules. Recasting the expressions 
R(M-O) = 1.39(s/r)−0.22 and R(M-O) = 1.41[ρ(rc)/r]−0.21 in terms of 
s and ρ(rc), respectively, the resulting expressions s = r[1.39/R(M-
O)]4.54 and ρ(rc) = 1.41/[R(M-O)]4.76 show that s and ρ(rc) agree 
to within ~5% (Fig. 7). The close agreement between the bond 
strength of a bonded interaction and ρ(rc) is a testament to Paul-
ing’s genius in choosing a simple yet powerful parameter, s, as a 
measure of the strength of a bonded interaction for the second rule. 
Pauling’s first rule was modified above to satisfy the radius-ratio 
constraints and coordination number of a bonded atom in terms of 
the bond paths and the bonded radii of the bonded atoms.

In the recent statistical study of Pauling’s second rule, stress-

ing the limits and range of the rule in terms of the chemistry and 
structures for about 5000 oxides, George et al. (2020) concluded 
that “The rule was found to be nearly exactly fulfilled for roughly 
20% of all O atoms, indicating a much lower predictive power 
than expected.”

Comparison of theory and experiment
As discussed in several previous sections on Pauling’s first 

and second rules, density functional theory (CRYSTAL98 and 
TOPOND) and full potential linearized augmented plane wave 

Figure 6. (a) A scatter diagram of R(M-O) Å plotted in terms of the value of the electron density at the bond critical point, ρ(rc), for periodic 
table second row, r = 2, Al-O bonded interactions, periodic table third row, r = 3, Ca-O bonded interactions, periodic table fourth row, r = 4, Sn-O 
and Y-O bonded interactions, and periodic table fifth row, r = 5, La-O bonded interactions. (b) The bond length data displayed in a is plotted in 
terms of ρ(rc)/r. A regression analysis of R(M-O) vs. ρ(rc)/r data for the perovskites resulted in the power law expression R(M-O) = 1.41[ρ(rc)/r]−0.21 
(graphed as a solid line). A regression analysis of the optimized M-O bond lengths calculated for the oxide molecules resulted in the expression, 
R(M-O) = 1.39(s/r)−0.22 (graphed as a dashed line). It is noteworthy that both ρ(rc)/r and s/r plot along the same axis in the figure both as a function 
of R(M-O) (from Gibbs et al. 2012).

Gibbs, Hawthorne, Brown – Figures  
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Figure 7: Averaged experimental M-O bond lengths, <R(M-O)> Å, plotted in terms of the 
averaged value of the electron density, <ρ(rc)>/r, Å3, accumulated at the bond critical 
point, rc, between bonded pairs of M and O atoms for five rows of atoms of the 
periodic table. The open circle data are procrystal data calculated for first- and second-row bonded 
atoms (from Gibbs et al., 2013a). 
 
 

 
 

 
 
 

Figure 7. Averaged experimental M-O bond lengths, <R(M-O)> Å, 
plotted in terms of the averaged value of the electron density, <ρ(rc)>/r, 
Å3, accumulated at the bond critical point, rc, between bonded pairs of 
M and O atoms for five rows of atoms of the periodic table. The open 
circle data are procrystal data calculated for first- and second-row bonded 
atoms from Gibbs et al. (2014).
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theory (FLAPW and WIEN2k) were used by Gibbs and co-
workers to calculate electron density distributions along bond 
paths of various crystalline materials (e.g., YAlO3 and silicate 
minerals, including the silica polymorphs). The electron density 
distributions obtained using these different theoretical methods 
are in very close agreement. Moreover, Gibbs et al. (2007, 2009) 
showed that the predicted electron density distributions of these 
and other crystals (e.g., Fe- and Cu-sulfides) and siloxane mol-
ecules match those obtained with high-resolution single-crystal 
synchrotron X‑ray diffraction (Kirfel et al. 2005). This body of 
work shows that DFT predictions of electron density distributions 
are consistent with the experiment and with the predictions of 
Pauling’s second rule in many cases.

Pauling’s third, fourth, and fifth rules
Pauling’s third rule is related to the presence of shared edges 

and shared faces of polyhedra in a crystal structure and their impact 
on the structure and stability of a crystal. Pauling observed that 
the edges shared in common between polyhedra are uniformly 
shorter than the unshared ones, a feature he ascribed to the reduc-
tion of the M-M repulsion between the metal atoms in adjacent 
edge- or face-sharing polyhedra. George et al. (2020) tested the 
rule by identifying all connected pairs of polyhedra and computing 
the fraction of the connected pairs that are corner- (63%), edge- 
(27%), or face-sharing (10%), concluding that “This agrees well 
with Pauling’s rule.”

An important departure from the third rule occurs in the 
α-Al2O3 structure type, which includes corundum, a mineral 
that forms in high-pressure metamorphic rocks, and hematite 

(α-Fe2O3) and ilmenite (FeTiO3), both of which form in low-
temperature–low-pressure environments. Pauling and Hendricks 
(1925) solved the structures of corundum and hematite and found 
them to consist of somewhat distorted hexagonal close-packing 
of O atoms in which 2/3 of the octahedral interstices are occupied 
by M cations. These three minerals and others with this structure 
type consist of chains of face-sharing octahedra, which results in 
increased M3+-M3+ repulsion.

The olivine structure-type ([6]M2
[4]SiO4) provides an instruc-

tive example of Pauling’s third rule and is commonly described 
as a somewhat distorted hexagonal close-packed array of oxygen 
anions in which one-eighth of the tetrahedral and one-half of the 
octahedral interstices are occupied by Si4+ and divalent M cations 
(most commonly Mg2+ and Fe2+), respectively. Figure 8a shows 
the idealized HCP olivine structure. Cation-containing polyhedra 
in minerals and other crystalline solids are often distorted and thus 
can have a range of M-O bond lengths (Table 2).

The M(1)O6 octahedron shares six of its 12 edges with other 
polyhedra [two with other M(1)O6 octahedra, two with M(2)O6 
octahedra, and two with SiO4 tetrahedra], whereas the M(2)O6 
octahedron shares only three edges [two with M(l)O6 octahedra and 
one with a SiO4 tetrahedron]. Pauling’s third rule predicts that the 
shared polyhedron edges in olivine will be shorter than unshared 
edges such that cation-cation distances across shared edges are 
maximized and cation-cation repulsive forces are minimized. This 
rule is indeed obeyed in the actual olivine structure, which is shown 
in Figure 8b. The resulting polyhedron distortions are significant. 
The point group or site symmetries (given in Schoenflies nota-
tion with Hermann-Mauguin notation in parentheses) of the M(l)
O6 and M(2)O6 octahedra are reduced from Oh (or 4/m 32/m) in 
the ideal HCP structure to Ci (or 1) and Cs (or m), respectively, 
in the actual structure, and that of the SiO4 tetrahedron is reduced 
from Td (or 43m) in the HCP structure to Cs (or m) in the actual 

Figure 8. Polyhedron drawings of (a) the idealized hexagonal 
close-packed (hcp) structure of forsterite and (b) the actual structure of 
forsterite, illustrating the distortion from hcp resulting from cation-cation 
repulsion across shared edges of the M(1)O6 and M(2)O6 octahedra and 
the SiO4 tetrahedron (after Brown 1980).

Table 2.	 Comparison of selected interatomic distances [R(M-O) in 
angstroms] for the ideal hexagonal close-packed olivine 
structure type and the forsterite [(Mg0.9Fe0.10)2SiO4] structure 
(after Brown 1980)

SiO4 tetrahedron	 HCPb	 Forsterite (Fo)c	 Δ = (HCP-Fo)
R(Si-O)	 1.690	 1.637	 –0.053
R(O-O)(s)1a	 2.760	 2.569	 –0.191
R(O-O)(u)2a	 2.760	 2.757	 –0.003

M(1)O6 octahedron
R[M(l)-O]	 1.952	 2.101	 0.149
R(O-O)(s,o)3a	 2.760	 2.854	 0.094
R(O-O)(s,t)4a	 2.760	 2.557	 –0.203
R(O-O)(u)2a	 2.760	 3.169	 0.409

M(2)O6 octahedron
R[M(2)-O]	 1.952	 2.135	 0.183
R(O-O)(s,o)3a	 2.760	 2.854	 0.094
R(O-O)(s,t)4	 2.760	 2.593	 –0.167
R(O-O)(u)2a	 2.760	 3.079	 0.319

Metal-metal distances
R[M(1)B-M(1)B]	 2.760	 2.997	 0.217
R[M(1)B-M(2)B]	 2.761	 3.210	 0.449
R[M(1)B-SiB]	 2.323	 2.703	 0.380
R[M(2)B-SiB]	 2.324	 2.799	 0.475
a 1(s) indicates shared edge. 2(u) indicates unshared edge. 3(s,o) indicates edge 
shared between octahedra. 4(s,t) indicates edge shared between octahedron 
and tetrahedron.
b Calculated using the cell parameters a = 4√3/3<M-O> = 4.508 Å; b = 2√6<M-O> 
~9.563 Å; c = 2√2<M-O> ~5.521 Å where <M-O> is the average M-O distance. 
The only assumption made was that oxygen anions of 1.38 Å radius (Shannon 
1976 for fourfold-coordinated oxygen) are in tangential contact.
c Interatomic distances for forsterite (Fo) [(Mg0.9Fe0.1)2SiO4] are from Birle et al. 
(1968).
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structure. However, for the purpose of spectral analysis, the point 
symmetries of the M(l)O6 and M(2)O6 octahedra in olivine are 
generally regarded as approximately D4h (or 4/mmm) and C3v 
(or 3m), respectively. The cause of these distortions has conven-
tionally been attributed to cation-cation repulsions across shared 
edges following Pauling’s third rule.

Comparison of the shared and unshared O-O edge lengths for 
MO6 octahedra in forsterite (Table 2) shows that the shared O-O 
edges are indeed significantly shorter than the unshared edge 
lengths [Δu-s = 0.315 Å for M(1)O6 octahedra and Δu-s = 0.225 Å 
for M(2)O6 octahedra]. Comparisons of the shared and unshared 
O-O edge lengths for SiO4-MO6 edge sharing show that the shared 
edge lengths are significantly shorter than the unshared O-O 
tetrahedron edges (Δu-s = 0.188 Å). In addition, comparison of 
the M(1)B-M(1)B distance (2.977 Å) across the shared O(1)-O(2) 
edge and the M(1)B-M(2)B distance (3.210 Å) across the O(1)-
O(3) shared edge for forsterite are significantly longer than these 
distances for the ideal HCP olivne structure [ΔM(1)-M(1) = 0.237 Å 
and ΔM(1)-M(2) = 0.449 Å]. The shorter O-O shared edge lengths and 
the longer M-M distances of the actual forsterite structure vs. the 
ideal HCP olivine structure are consistent with Pauling’s idea that 
shared edges shorten and M-M distances lengthen across shared 
O-O edges to reduce M-M repulsion.

Another way of visualizing the effect of metal-metal repulsive 

forces in forsterite on bond angles and interatomic distances is to 
extract the structural cube of forsterite shown in Figure 9a and 
create planar projections of the unique M-O-M-O and M-O-Si-O 
faces of the distorted cube of nearest-neighbor cations and anions 
(Fig. 9b), which show bond-angle strains and interatomic distances 
(Fig. 10). The various interatomic distances shown in the planar 
projection of Figure 10 were discussed in the previous paragraph. 
The bond-angle strains shown in Figure 10 are consistent with the 
cation-cation repulsive interactions in forsterite.

The largest bond-angle strains are observed for the following 
angles (Fig. 10 right): O(3)-M(2)B-O(3) (–18.6°), O(3)-M(1)B-O(2) 
(–15.3°), SiB-O(3)-M(1)B (+19.1), SiB-O(3)-M(2)B (+17.7°), and 
SiB-O(2)-M(1)B (+17.3°), which reflects the greater repulsive 
forces between Si4+ and M2+ cations. As expected, the bond-angle 
strains shown in Figure 10 (left) are much smaller, ranging from 
+2.5 ° to –9.1°, and reflect the smaller repulsive forces between 
M2+ cations. 

Pauling’s fourth rule notes that in a crystal structure containing 
several cations, those of high valency and small coordination num-
ber tend not to share polyhedron elements. The olivine structure 
discussed above is a departure from this rule because SiO4

4− tetra-
hedra share edges with both M(1)O6 and M(2)O6 octahedra that 
contain Mg2+ and Fe2+. Although α-Al2O3 (corundum) and α-Fe2O3 
(hematite) have only one type of cation, Al3+ and Fe3+ occupy 
octahedra that share faces and are highly distorted to minimize 
cation-cation repulsive forces (see Pauling and Hendricks 1925). 
In their statistical analysis of Pauling’s rules, George et al. (2020) 
found that 40% of the tested structures departed from Pauling’s 
fourth rule.

Pauling’s fifth rule states that the number of different kinds 
of constituents in a crystal tends to be small (rule of parsimony). 
Quartz (α-[4]SiO2), with only one distinct tetrahedral site, and garnet 
([8]X3

[6]Y2
[4]Si3O12), which has one type of tetrahedron, one type 

of octahedron, and one type of distorted dodecahedron (Novak 
and Gibbs 1971), are examples of minerals with a small number 
of constituents or distinct cation sites. Amphibole-supergroup 
minerals {[10-12]A0–1

[8]X2
[6]Z5

[4][(Si,Al,Ti)8O22](OH,F,Cl,O)2}, where 
A = , Na, K, Ca, Pb2+; X = Li, Na, Mg, Fe2+, Mn2+, Ca; Z = Li, 
Na, Mg, Fe2+, Mn2+, Zn, Co, Ni, Al, Fe3+, Cr3+, Mn3+, V3+, Ti, Zr 
(Hawthorne et al. 2012) are structurally more complex than garnet 

Figure 9. (a) Perspective view of a portion of the olivine crystal 
structure illustrating oxygen bonded to M(1), M(2), and Si. (b) Portions 
of the distorted cube shown in the center of the figure to the left, flattened 
to illustrate angular distortions from ideal hexagonal close-packing 
geometry (after Brown 1980).

Figure 10. Planar projections of the unique M-O-M-O and M-O-Si-O faces of the distorted cube of nearest-neighbor cations and O atoms in 
forsterite [(Mg0.90Fe0.10)2SiO4], showing “bond-angle strain” values (in degrees), (i.e., the difference between bond angles of the perfect hexagonal 
close-packed olivine structure and the actual forsterite structure) and bond distances (in angstroms). Cell parameters and atomic coordinates of 
atoms in the asymmetric unit of the forsterite structure were used to calculate interatomic distances and angles are from Birle et al. (1968).
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and can incorporate an extremely wide variety of different ions. 
An example of a mineral structure with a large number of distinct 
sites is manitobaite (Na16)Mn2+

25Al8(PO4)30, which has 80 distinct 
cation sites and 120 distinct anion sites (Tait et al. 2011). This 
structure clearly departs significantly from Pauling’s rule of parsi-
mony. George et al. (2020) also pointed out major departures from 
Pauling’s fifth rule, particularly for alkali and alkaline-earth metals, 
which are accommodated in a wide range of local coordination 
environments, and a few main-group elements, including B, Ga, 
and Ge. Overall, George et al. (2020) found that only 13% of the 
tested structures satisfy the second to fifth rules simultaneously.

Bond-valence theory
Pauling’s second rule defined bond strength as cation charge 

divided by cation coordination number and noted that the bond 
strength incident at an anion is approximately equal to the anion 
valence (with the sign reversed). Pauling’s definition of bond 
strength implicitly assumes that all bonds within a given coor-
dination polyhedron have the same bond strength. Zachariasen 
(1954) showed that bond strength varies with bond length, as 
shown in Figure 11 for some uranyl compounds. Baur (1981) 
also pointed out that there is a strong correlation between bond 
length and Pauling bond strength.

What is now known as bond-valence theory (BVT) gradu-
ally developed from this realization that the strength of a bond, 
now referred to as its bond valence in valence units (v.u.), cor-
relates very strongly with its bond length. Brown and Shannon 
(1973) proposed a model in which a structure consists of atom 
cores held together by valence electrons associated with the 
chemical bonds between the atoms. They state explicitly that 
the valence electrons may be associated with chemical bonds 
in a symmetric (covalent) or asymmetric (ionic) manner. Thus 
a priori knowledge of the electron distribution is not required 
to use this approach. In addition, they proposed algebraic forms 
for the relation between bond valence and bond length and 
provided parameters for 25 cation-O2− pairs derived from 417 
crystal structures. Burdett and Hawthorne (1993) showed that the 
form of the bond-valence curves may be derived algebraically 
from a molecular-orbital description of a solid in which there 
is a significant energy gap between the interacting orbitals on 

adjacent atoms, whereas Preiser et al. (1999) gave an ionic jus-
tification of the bond-valence model. Thus, one may conclude 
that the bond-valence model is not a theory of “ionic” bonds 
or “covalent” bonds. It is a simple yet quantitative method 
that allows us to examine and analyze the stereochemistry and 
physical properties of inorganic solids. It is used primarily for 
crystals but also can be used for oxide surfaces (Hiemstra et al. 
1996; Bargar et al. 1997a, 1997b, 1997c; Schindler et al. 2004a, 
2004b; Bickmore et al. 2004, 2006; Hawthorne and Schindler 
2014); poorly crystalline materials (e.g., ferrihydrite; Gilbert et 
al. 2013); silicate glasses (Farges et al. 1991, 1992); and silicate 
liquids (Brown et al. 1995; Farges and Brown 1996; Farges et 
al. 1996a, 1996b).

Examples of applications of BVT in these different areas will 
be discussed in the Applications section. Although the idea of 
bond valence grew out of Pauling’s second rule, the wide variety 
of its applications and subsequent examination of its theoretical 
underpinnings show that it is a theory of atomic arrangements 
in its own right, without any reference to specific models of the 
chemical bond. Its power lies in the fact that: (1) it is a back-
of-the-envelope method in which the physical details are not 
obscured by complexities of computation; (2) it can be used for 
disordered crystal structures, such as solid solutions; and (3) 
it may be used to constrain the behavior of dynamic systems 
involving diffusion and adsorption, all of which are extremely 
common in minerals and other Earth materials.

Bond-valence curves
For any pair of bonded atoms, bond valence is inversely 

proportional to the length of the bond: large bond valences are 
associated with short bonds, and small bond valences are associ-
ated with long bonds. To obtain numerical values for the bond 
valences, each bond is assigned a bond valence such that the 
valence-sum rule is satisfied (Brown 2002a): The sum of the bond 
valences at each atom is equal to the magnitude of the atomic 
valence. Thus, bond valences are scaled to the formal valences 
of the cations and anions involved in the chemical bonds. If 
this is done for a relatively large number of structures, one may 
derive numerical parameters, bond-valence parameters (or bond- 
valence curves) that may be used to calculate bond valences 
from bond lengths. Using a data set of 180 194 bond lengths 
from 31 489 coordination polyhedra in 9367 (filtered) crystal-
structures, Gagné and Hawthorne (2015) tested 19 two-parameter 
and 7 three-parameter equations, showed that the expression of 
Brown and Altermatt (1985) is optimum, and calculated bond-
valence parameters for 135 cations bonded to O2−.

The basic axioms of bond-valence theory
BVT has three principal axioms: (1) the valence-sum rule; 

(2) the path (loop) rule; and (3) the valence-matching principle, 
which are discussed below.

The valence-sum rule. The sum of the bond valences at each 
ion is equal to the magnitude of the atomic valence. For any field, 
Gauss’s flux theorem relates the distribution of electric charge to 
the resulting electric field: the flux of the field intensity through 
a closed surface is related to the total net charge enclosed within 
that surface. The valence-sum rule is thus a corollary of Gauss’s 
flux theorem applied to the electrostatic potential field. Preiser et 

Figure 11. Bond length vs. bond strength curve for U-O and U-F bonds 
in a series of uranyl compounds (after Zachariasen 1954). Reproduced with 
permission of the International Union of Crystallography.
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al. (1999) show that the fluxes linking atoms correlate strongly 
with the bond valences assigned by the bond-valence method. 
Topological properties of the various fields associated with an 
array of atoms are discussed by Brown (2002b). Long-range 
Coulombic interactions are inductively transmitted through a 
crystal by the operation of Gauss’s theorem on the Coulomb 
field at each atom in the crystal (Preiser et al. 1999). This was 
the first axiom to be developed and had its origins in Pauling’s 
second (bond strength) rule.

The path rule. The sum of the directed bond-valences along 
any path between crystallographically equivalent ions is equal to 
zero (Gagné et al. 2018). This definition includes closed paths 
(≡ loops) as this was originally formulated just for loops (Brown 
1980). As bond valences are equal to bond fluxes, this rule is 
dictated by the conservation of electric charge via Maxwell’s 
third equation.

The valence-matching principle. The Lewis-acid strength 
of a cation may be defined as its characteristic (bond) valence, 
which is equal to its atomic (formal) valence/mean coordination-
number (Brown 1980, 2002a, 2016); comprehensive values 
(based on ~10 000 crystal structures) are given by Gagné and 
Hawthorne (2017). The Lewis-base strength of an anion can be 
defined as the characteristic valence of the bonds formed by the 
anion. If two ions form a bond, the magnitude of the strength 
of the bond from the cation to the anion is controlled by the 
Lewis-acid strength of that cation, and the magnitude of the 
strength of the bond from the anion to the cation is controlled 
by the Lewis-base strength of that anion. However, the bond 
from the cation to the anion is the same bond as that from the 
anion to the cation, and hence the magnitudes of the Lewis 
acid strength and the Lewis base strengths of the constituent 
ions must be approximately the same for that bond to form. In 
other words, as a chemical bond involves both a cation and an 
anion, the electron-attracting capacity of the cation must match 
the electron-donating capacity of the anion for a chemical bond 
to form. This argument is based on the handshaking principle 
of graph theory (e.g., Wilson 1979), and leads to a particular 
criterion for chemical bonding, the valence-matching principle 
(Brown 2002a, 2016): Stable structures will form where the 
Lewis-acid strength of the cation closely matches the Lewis-base 
strength of the anion. The valence-matching principle is the most 
important and powerful idea in BVT (Hawthorne 2012, 2015); it 
allows us not just to interpret known structures or compounds. We 
can test the stability of possible compounds (in terms of whether 
they can or cannot exist), which moves us from a posteriori to 
a priori analysis. Below, we discuss modern applications of BVT 
in crystal chemistry, mineralogy, and geochemistry.

A priori bond-valence calculations
The bond-valence model has two important theorems (see 

above): (1) the valence-sum rule, which states that the sum of 
the bond valences at each atom is equal to the magnitude of the 

atomic valence, and (2) the path rule that states that, in a structure, 
the sum of the directed bond-valences along any path of bonds 
beginning and ending on symmetrically equivalent ions is zero. 
Equations describing the valence-sum rule and the path rule may 
be written in terms of the constituent bond valences. These are 
collectively called network equations (Brown 2016) and can be 
solved to calculate a priori bond-valences for a crystal structure 
(e.g., Gagné et al. 2018). A priori bond valences depend only 
on the formal valence of the ion at each site in the structure and 
the bond-topological characteristics of the structure (i.e., the ion 
connectivity) and represent bond valences arising solely from the 
topological characteristics of the structure without any contribu-
tion from effects due to the specific electronic characteristics 
of the constituent ions or to strain arising from mapping bond 
valences into bond lengths in three-dimensional Cartesian space. 
Bond-valence curves may be used to calculate the corresponding 
a priori bond-lengths, and topological strain can be evaluated by 
distance-least-squares refinement of the resulting structure.

In some cases (e.g., spinel-supergroup minerals, garnet-
supergroup minerals), the valence-sum equations are sufficient 
for solution. However, this is not usual, and for most structures, 
a combination of valence-sum and path equations is necessary 
for solution. Consider the structure of divalent-cation clinopy-
roxenes of the form M(2)M(1)Si2O6, e.g., diopside, CaMgSi2O6, 
and hedenbergite, CaFe2+Si2O6, both of which are monoclinic, 
space group C2/c (Clark et al. 1969; Cameron et al. 1973). The 
generalized bond-valence table of the relevant charge arrangement 
is shown in Table 3.

M(2) is [8]-coordinated with four crystallographically distinct 
M(2)-O distances, M(1) is [6]-coordinated with three crystallo-
graphically distinct M(1)-O distances, and Si is [4]-coordinated 
with four crystallographically distinct Si-O distances. There are 
two pairs of M(2)-O bonds (to O3) that are crystallographically 
distinct but topologically identical, and hence there are only three 
distinct M(2)-O bond-valences (labeled a, b, and c in Table 3). 
There are two Si-O bonds (to O3) and two pairs of M(1)-O bonds 
(to O1) that are similarly merged in the bond-valence table, which 
thus has eight distinct bond-valences: a through h. The valence-
sum rule for the cations gives the following equations:

2a + 2b + 4c = M(2)V = 2	 (1)
4d + 2e = M(1)V = 2	 (2)
f + g + 2h = SiV = 4	 (3)

The valence-sum rule for the anions gives the following 
equations:

a + 2d + f = 2	 (4)
b + e + g = 2	 (5)
2c + 2h = 2	 (6)

As these six equations are constrained by electroneutrality, 
there are five linearly independent valence-sum equations, and 
Equation 6 was omitted from consideration. There are eight 
independent variables and hence the system is underdetermined 
considering just the valence-sum equations. Thus, we must use 
the path rule, the equations for which may be written in general 
form as Σsij = 0 where the summation is over a path that starts 

Table 3. Bond-valence table for M(2) M(1) Si2 O6

	 2+	 2+	 4+	 Σanion
O1	 ax2↓	 dx4↓ x2→	 f	 2
O2	 bx2↓	 ex2↓	 g	 2
O3	 cx4↓ x2→	 	 hx2↓ x2→	 2
Σcation	 2	 2	 4
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and finishes on symmetrically equivalent vertices in the directed 
graph of the bond network of the structure. This rule introduces 
the idea of directed bond-valences, whereby bonds from a cation 
to an anion are considered positive, and bonds from an anion to 
a cation are considered negative in sign. There are five linearly 
independent valence-sum equations, and thus we need three 
linearly independent path equations to solve for the eight a priori 
bond-valences of divalent-cation clinopyroxene. Paths may be 
read off the bond-valence table (Table 3):

M(2) → O1 → M(1) → O2 → M(2), resulting in the following 
equation:

a – d + e – b = 0	 (7)

M(2) → O1 → Si → O2 → M(1) → O1 → Si → O3 → M(2), 
resulting in the following equation:

a – f + g – e + d – f + h – c = 0	 (8)
M(2) → O2 → Si → O3 → M(2), 

resulting in the following equation:

b – g + h – c = 0.	 (9)

These equations (Table 4) may be written in matrix form 
as Ax = b, where A contains the coefficients of the network 
equations, x contains the a priori bond-valences (unknown), 
and b contains the formal charges of the ions at the sites, 
together with the zeros associated with the path equations. 
These equations may be solved for a–h in the usual way; the 
resulting a priori bond-valences are given in Table 5, together 

with the corresponding a priori bond-lengths for diopside and 
hedenbergite, calculated with the bond-valence parameters of 
Gagné and Hawthorne (2015).

Comparison of the a  priori and observed bond lengths 
(Table 5) shows reasonable accord between the two sets of 
data. The a priori bond lengths are not expected to agree with 
the observed values as the former are affected solely by the 
distribution of formal charges over the sites in the structure and 
the bond topology, whereas the latter will be affected by addi-
tional electronic effects such as coupled electronic-vibrational 
degeneracy (Gagné et al. 2018). Gagné and Hawthorne (2020) 
introduced two distortion indices, Δtopol and Δcryst, that allow the 
determination of the primary cause(s) of bond-length variation 
for individual coordination polyhedra and ion configurations, 
and quantify the distorting power of cations via electronic 
effects by subtracting the bond-topological contribution to 
bond-length variation.

Bond-valence mapping
An advantage of BVT is that one can look at dynamic process-

es such as adsorption, dissolution, and diffusion. For diffusion in 
particular, one may place an ion at a series of positions on a grid 
throughout a crystal and, using the bond-valence parameters for 
that specific ion and the ions to which it can bond, calculate the 
incident bond-valence sums at that ion throughout the crystal, 
and produce a contoured map of the net incident bond-valence 
for that anion at all positions in the crystal. One may use the 
resulting map either to: (1) locate an ion in the crystal (e.g., 
Waltersson 1978), or (2) examine possible diffusion paths for 
that ion through the crystal (e.g., Schindler et al. 2006a).

Several vanadium oxides of the general form (Li,Na)x(V3O8) 
have potential as insertion electrodes for rechargeable Li batteries 
(e.g., Kumagai et al. 1997). These compounds consist of VO5 and 
VO6 polyhedra that share edges and vertices to form chains that 

Table 4.	 System of equations for the a priori bond-valences for [8]M2+ 

[6]M2+ Si2 O6 clinopyroxene
v1	 2	 2	 4	 0	 0	 0	 0	 0	 	 a		  2
v2	 0	 0	 0	 4	 2	 0	 0	 0	 	 b		  2
v3	 0	 0	 0	 0	 0	 1	 1	 2	 	 c		  4
v4	 1	 0	 0	 2	 0	 1	 0	 0	 x	 d	 =	 2
v5	 0	 1	 0	 0	 1	 0	 1	 0	 	 e		  2
L1	 1	 –1	 0	 –1	 1	 0	 0	 0	 	 f		  0
L2	 1	 0	 –1	 1	 –1	 –2	 1	 1	 	 g		  0
L3	 0	 1	 –1	 0	 0	 0	 –1	 1	 	 h		  0

Table 5.	 These are a priori bond-valences (v.u.), a priori bond lengths 
(Å), and observed bond lengths (Å) for diopside and heden-
bergite

Site	 a priori bond valence	 Diopside	 Hedenbergite
M(2)	 a	 0.325	 2.367	 2.360	 2.367	 2.355
	 b	 0.425	 2.257	 2.352	 2.257	 2.341

	 c	 0.125	 2.758	 2.561	 2.758	 2.627
				    2.717		  2.719

M(1)	 d	 0.300	 2.141	 2.064	 2.196	 2.140
				    2.115		  2.164

	 e	 0.400	 2.014	 2.050	 2.068	 2.087
Si	 f	 1.075	 1.596	 1.602	 1.596	 1.601
	 g	 1.175	 1.561	 1.584	 1.561	 1.586

	 h	 0.875	 1.676	 1.664	 1.676	 1.666
				    1.687		  1.686
Reference				    Clark et	 	 Cameron
					     al. (1969)		 et al. (1973)

Figure 12. The structure of Na0.7Li0.7[V3O8] viewed down [010]. 
M(1) = red circles; M(2) = green circles; M(3) = yellow circles. Black 
lines show the proposed paths of diffusion (modified from Schindler 
et al. 2006a). 
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are arranged in layers parallel to (101) (Fig. 12). These structures 
can accommodate up to three additional Li+ ions per formula 
unit without disrupting the vanadate layer, and this reversible 
intercalation-removal process is charge-balanced by reduction-
oxidation of V5+–V4+ in the vanadate layer (e.g., de Picciotto 
et al. 1993). The M1+x[V3O8] phases have also been tested as 
positive electrodes for Na and Mg (Novak et al. 1995) batter-
ies. Kumagai et al. (1997) examined the Li1–x Na[V3O8] solid 
solution as a positive material for secondary Li batteries. Here, 
Li0.7Na0.3[V3O8] showed the best electrochemical performance 
among several Li1–xNa[V3O8] compounds, which was attributed 
to a higher chemical diffusion coefficient of the interstitial cations 
between the vanadate sheets in this compound.

Schindler et al. (2006a) refined the crystal structures of 
Li1.2[V3O8], Na1.2[V3O8], and Na0.7Li0.7[V3O8]. They showed that 
in Li1.2[V3O8], Li fills the M(1) site, the remaining Li occupies 
the M(2) site, and the M(3) is vacant; in Na1.2[V3O8], Na fills the 
M(1) site, and the remaining Na is equally distributed between 
the M(2) and M(3) sites; in Na0.7Li0.7[V3O8], all Na occupies the 
M(1) site and Li is Picanto distributed in decreasing amounts over 
the M(1), M(2), and M(3) sites. Figure 12 shows the M sites ar-
ranged between the layers of vanadate chains in Na0.7Li0.7[V3O8]. 
Figure 13 shows bond-valence maps for Li in Na0.7Li0.7[V3O8] 
in the ac-plane at y = 0.25 (a) calculated with the bond-valence 
parameter for V5+ and containing 15 contour levels at an interval 
of 0.30 v.u., and (Fig. 13b) calculated without any information 
on V5+ and containing 15 contour levels at an interval of 0.35 v.u.

Where the calculation involves V5+ (Fig. 13a), there is a lot of 
detail within the vanadate chains, but this is not relevant to the 
diffusion of alkali-metal cations as the calculated bond valences 
are too large to allow alkali metals to occur there. Where the 
calculation omits consideration of V5+ (Fig. 13b), there is no 
detail about the vanadate chains, but the detail in the channels 
between the chains is more apparent. The alkali-metal sites lie 

within these channels, and contouring of the bond valence within 
these channels shows that all along the central axis of the channel, 
the bond valence for Li+ is fairly close to ideal (1 v.u.), and Li+ 
can move freely without major deviations from its bond-valence 
requirements. At the M(1) site, the sum for Na+ is 1.3 v.u. and 
the sum for Li+ is 0.5 v.u., and at the M(2) and M(3) sites, the 
sums for Li+ are 0.70 and 1.2 v.u., respectively, in accord with 
the observed site-occupancies. Thus Li+ may more easily diffuse 
along an individual channel. However, to move through the 
crystal, the diffusing ion must be able to move from one channel 
to another. The cross-section of the bond-balance sum at these 
connections between channels is shown in Figure 13c. For Li+, 
the minimum bond-valence sum in the center of this connection 
is 1.4 v.u., whereas the minimum for the corresponding sum for 
Na+ is 3.5 v.u. Thus Li+ may move from one channel to another, 
whereas Na+ is trapped in a single channel.

Figure 14a shows a bond-valence map for Li[V3O8]. Again, 
this map shows the prominent channels along which there are 
diffusion paths for Li+ between the vanadate chains. The cross 
sections for Li+ and Na+ across the connections between the 
channels (Fig. 14b) show that the barriers to diffusion between 
channels are somewhat larger (Li+: 1.8 v.u.; Na+: 4.3 v.u.) than is 
the case in Na0.7Li0.7[V3O8] (Li+: 1.3 v.u.; Na+: 3.4 v.u.; Fig. 14c, 
suggesting that diffusion should be easier in Na0.7Li0.7[V3O8]). 
This finding suggests that electrochemical performance in these 
(and other) compounds could be optimized from the viewpoint 
of chemical composition by systematic bond-valence mapping 
for the range of possible chemical compositions.

Figure 13. Bond-valence maps for Li+ in Na0.7Li0.7[V3O8] in the 
ac-plane at y = 0.25 and containing 15 contour levels with an interval 
of 0.30 v.u. (a) calculated using information on V5+, the contour line 
representing the bond-valence sum of 1.0 v.u. is marked with a thick 
black line. (b) Calculated without V5+; M(1) = red circles; M(2) = green 
circles; M(3) = yellow circles. Black lines show the proposed paths of 
diffusion. (c) Cross sections of the narrow paths joining adjacent channels 
showing the variation in bond-valence sums for Li+ and Na+ (modified 
from Schindler et al. 2006a). Figure 14. (a) Bond-valence map for Li+ in Li[V3O8] in the ac-plane 

at y = 0.25 and containing 15 contour levels with an interval of 0.07 
v.u. (b) Calculated without any information on V5+; the first contour line 
denotes a bond-valence sum of 0.9 v.u. and the 1.0 v.u. contour line is 
marked by a thick black line. (c) Cross sections of the narrow paths 
joining adjacent channels showing the variation in bond-valence sums 
for Li+ and Na+ (modified from Schindler et al. 2006a).
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Selected applications of bond-valence theory to 
Earth materials

Use of bond-valence theory to locate H+ ions in crystal 
structures

Perhaps the most common use of BVT, apart from checking 
the probable correctness of a structure, is the location of H+ 
ions, usually as constituents of (OH)– and/or (H2O) groups. The 
first example of this was by Warren (1930) in his solution of the 
crystal structure of tremolite, ideally Ca2Mg5Si8O22(OH)2. Prior to 
this work, the role of hydrogen in the very common and widely 
distributed amphibole-supergroup minerals was uncertain: was 
it there as (OH)–, (H2O), or as an analytical contaminant? The 
crystal structure of tremolite showed that the O(3) oxygen ion is 
coordinated by three [6]-coordinated Mg2+ ions for an incident 
bond strength of 0.333 × 3 = 1 v.u. To accord with Pauling’s 
second rule, the O2− ion at the O(3) site must also bond to a H+ 
ion, forming an (OH)– group. This was a very nontrivial result 
as it brought order and understanding to the numerous chemical 
analyses of amphiboles up to that time (Kunitz 1930).

The positional parameters for H derived from X‑ray data show 
a significant systematic error. The electron density notionally as-
sociated with the H atom is partly delocalized into the O-H bond, 
leading to O-H distances that are shorter than the corresponding 
internuclear O-H distances and experimental H···O (hydrogen-
bond) distances that are systematically longer than the H···O 
internuclear distances. One can obtain much better results during 
the refinement process by restraining the Odonor-H distance to be 
very close to an ideal distance, usually in the range 0.96–0.98 Å. 
Better O-H and H···O distances may be obtained using neutron 
diffraction, but this is not practical for many materials for which 
the crystals are very small. To avoid possible bias present in X‑ray 
data, Gagné and Hawthorne (2018) used only neutron data to 
derive bond-valence parameters for the H+-O2− bond.

Bond-valence analysis of water in nominally anhydrous 
mantle minerals

Two of the great unanswered questions in Earth sciences are 
how much water, in the form of OH and/or H2O groups, is stored 
in Earth’s interior and where this water is stored. Smyth (1987, 
1994) and others (e.g., Bell and Rossman 1992; Thompson 1992; 
Kohlstedt et al. 1996; Ohtani et al. 2004; Huang et al. 2005; Panero 
et al. 2013; Purevjav et al. 2014, 2018; Ohtani 2021) proposed that 
OH groups can be stored in nominally anhydrous minerals thought 
to be abundant in Earth’s mantle, such as β-(MgxFe1–x)2SiO4 
(wadsleyite) (at depths of 410–525 km) and γ-(MgxFe1–x)2SiO4 
(ringwoodite) (at depths of 525–660 km), which are high-pressure 
polymorphs of olivine [α-(MgxFe1–x)2SiO4] (at depths of 0–410 km) 
[see Ito and Katsura (1989) for details]. The crystal structure of 
wadsleyite is based on a slightly distorted cubic close-packing of 
oxygen anions, with four non-equivalent cations, one of which is 
Si4+ in tetrahedral coordination with oxygen and three of which 
are Mg2+ in octahedral coordination with oxygen (Horiuchi and 
Sawamoto 1981). Wadsleyite is a sorosilicate with one of the O 
atoms [O(1)] bonded to five Mg2+ cations but not bonded to Si4+. 
Smyth (1987) examined Pauling bond-strengths in the wadsleyite 
structure and showed that O(1) has a low-incident bond-strength 
sum, 1.67 v.u., whereas the bond-strength sum is 2.33 v.u. for O(2) 
and 2.0 v.u. for the O(3) and O(4) O atoms. Based on this result 

and comparison of the electrostatic potentials of the oxygen sites in 
wadsleyite, which show that the O(1) oxygen potential is more sim-
ilar to that of hydroxyl groups than oxygen, Smyth concluded that 
some of the O(1) oxygen sites are partially occupied by hydroxyl 
groups, with charge balance maintained by partial M-site vacancy. 
This study led Smyth (1987) to propose that β-(MgxFe1–x)2SiO4  
may be a host phase for water in the middle part of Earth’s up-
per mantle (410–525 km). A later crystal-structure analysis of 
monoclinic hydrous wadsleyite containing 2.24 wt% water and 
4.95 wt% FeO by Smyth et al. (1997) showed that cation vacan-
cies at Si sites and at the M(3) site are major charge-compensation 
mechanisms that control the amount of water in wadsleyite.

Smyth (1987) used classical Pauling bond strengths (i.e., 1.0 
v.u. for [4]Si-O bonds and 0.33 v.u. for [6] Mg-O bonds) to calculate 
the bond-strength sums at the four O atoms of wadsleyite. This 
raises the question of how the four non-equivalent O atoms devi-
ate from the valence-sum rule, based on Brown and Altermatt 
(1985) bond valences. Unlike Pauling bond strengths, the Brown-
Altermatt bond valences take into account the inverse correlation 
between bond valence and bond length. The local coordination 
environments of the four non-equivalent O atoms in wadsleyite 
are summarized in Table 6, together with their bond lengths to 
cations, bond valences, and bond-valence sums.

Ringwoodite [γ-(MgxFe1–x)2SiO4], the highest-pressure cubic 
polymorph of olivine, is another candidate mineral in the Earth’s 
deep mantle that has been proposed as a host for significant 
amounts of hydrogen. An experimental study by Kohlstedt et al. 
(1996) on the stability of the three olivine polymorphs found up to 
0.12 wt% water in olivine (Fo90), up to 2.4 wt% water in hydrous 
wadsleyite, and up to 2.7 wt% water in hydrous ringwoodite. A 
recent study using IR and Raman spectroscopy, secondary ion mass 
spectrometry, and proton-proton scattering on ringwoodite, which 
is believed to be the most abundant mineral in the lower 150 km of 
Earth’s transition zone, suggests that ringwoodite can incorporate 
up to 1.5 to 2 wt% H2O as hydroxyl defects (Thomas et al. 2015).

Panero et al. (2013) did a synchrotron-based FTIR study of 
hydrous ringwoodite and resolved multiple IR stretching bands in 
Fe-bearing and Fe-free hydrous ringwoodite samples that they as-
signed primarily to O-H stretches at oMg+2(H+) defects. Purevjav 
et al. (2014, 2018) did neutron, time-of-flight, single-crystal Laue 
diffraction analysis of synthetic hydrous ringwoodite with the 

Table 6.	 Brown-Altermatt bond-valence analysis of oxygen coordi-
nation environments in wadsleyite (β-Mg2SiO4)

Oxygen environment	 Multiplicity	 Bond lengths (Å)a	 Bond valences (v.u.)b

O(1)-Mg(3) 	 [4]	 2.129	 0.417
O(1)-Mg(2)	 [1]	 2.035	 0.397
B.V. sum			   2.065
O(2)-Mg(2)	 [1]	 2.095	 0.337
O(2)-Si	 [2]	 1.702	 0.810
B.V. sum			   1.957
O(3)-Mg(1)	 [1]	 2.115	 0.320
O(3)-Mg(3)	 [2]	 2.123	 0.313
O(3)-Si	 [1]	 1.638	 0.963
B.V. sum			   1.909
O(4)-Mg(1)	 [1]	 2.046	 0.385
O(4)-Mg(2)	 [1]	 2.093	 0.339
O(4)-Mg(3)	 [1]	 2.129	 0.308
O(4)-Si	 [1]	 1.631	 0.981
B.V. sum			   2.013 
a Bond lengths from Horiuchi and Sawamoto (1981).
b The following Brown and Altermatt (1985) bond-valence parameters were used: 
r0 (VIMg-O) = 1.693 Å; r0 (IVSi-O) = 1.624 Å.
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formula Mg1.93H0.28Si0.98O4 [corresponding to 1.9(2) wt% of H2O]. 
They found that H+ ions occur only at Mg sites in the ringwoodite 
structure, which compensates for the reduced occupancies of Mg2+ 
and Si4+ ions at octahedrally and tetrahedrally coordinated sites, 
respectively. The model most consistent with the neutron diffrac-
tion results assumes that three H+ ions are at one vacant M site, 
which requires four Mg2+ vacancies and one Si4+ vacancy (4Mg2+ 
+ 1Si4+ ↔ 12H+). There is only one crystallographic M site in the 
ringwoodite structure, in contrast to the four different M sites in 
the wadsleyite structure, and a crystallographically constrained 
water capacity of 3.3 wt% (see Smyth 1994). Considering the 
proposed exchange mechanism in ringwoodite, it has a larger 
water capacity in the lower half of the transition zone in Earth’s 
mantle, compared with that of wadsleyite in the upper half of the 
mantle transition zone. Ohtani (2021) reviews the current state 
of knowledge of the distribution of water in Earth, including the 
water content of nominally anhydrous minerals in Earth’s mantle. 

Based on these and other studies of the structure and proper-
ties of wadsleyite and ringwoodite (e.g., Hirschmann et al. 2005; 
Smyth et al. 2003, 2006; Smyth and Jacobsen 2006; Schmandt 
et al. 2014), there is growing evidence that Earth’s mantle could 
contain several ocean’s worth of water in nominally anhydrous 
minerals such as wadsleyite and ringwoodite. Bond-valence 
analysis played an important role in the recognition that water in 
the form of hydroxyl groups is very likely present in these miner-
als in Earth’s mantle.

Application of bond-valence theory to uranyl-oxide and 
uranyl-oxysalt minerals

Many oxide and oxysalt minerals conform well to the idea of 
binary representation of a structure wherein a complicated struc-
ture is considered as two constituents, a strongly bonded (usually 
anionic) structural unit and a weakly bonded (usually cationic) 
interstitial complex (Hawthorne 1983). Where this is the case, 
we may look at the interaction between these two constituents 
using the valence-matching principle (Brown 2002a, 2016): 
Stable structures will form when the Lewis-acid strength of the 
cation closely matches the Lewis-base strength of the anion. The 
Lewis-acid strength of a cation can be defined as the characteristic 
valence of the bonds formed by that cation, and the Lewis-base 
strength of an anion can be defined as the characteristic valence 
of the bonds formed by that anion. Lewis-acid strengths of cations 
bonded to O2− are given by Gagné and Hawthorne (2017). Lewis-
base strengths for simple anions are too variable to be useful in 
examining structure. However, simple oxyanions, e.g., (SO4)2−, 
(SiO4)4−, show a much more limited variation (e.g., Brown 2009; 
Hawthorne 2012) and may be used effectively via the valence-
matching principle. The valence-matching principle deals with 
single ion-ion interactions, whereas the structural unit and the 
interstitial complex in many common hydroxy-hydrated oxysalt 
minerals are large aggregations of ions and (H2O). If we can de-
fine a Lewis acidity for a structural unit and a Lewis basicity for 
an interstitial complex, we may look at the aggregate interaction 
between these units using the principle of correspondence of Lewis 
acidity-basicity (Hawthorne and Schindler 2008), the mean-field 
equivalent of the valence-matching principle.

The role of (H2O). The (H2O) group is very important be-
cause of its polar nature: on the O2− side, the group acts as an 

anion, whereas on the H+ side, the group acts as a cation. As a 
result, an (H2O) group may: (1) moderate Lewis acidity and (2) 
propagate chemical bonds to anions too distant from a cation to 
bond to it directly.

Consider the atomic arrangements in Figures 15a and 15b. 
A cation, M, bonds to an anion S with a bond valence of v v.u., 
and a cation, M, bonds to an (H2O) group, and the (H2O) group 
bonds to anions, S. In Figure 15a, the anion receives one bond of 
bond valence v v.u. from the cation M. In Figure 15b, the donor 
O2− ion of the (H2O) group receives a bond valence of v v.u. from 
the cation; the bond-valence requirements of the donor O2− ion 
are satisfied by two short O2−H+ bonds of strength (1 – v/2) v.u. 
Each H+ forms a hydrogen bond with an S anion to satisfy its own 
bond-valence requirements, and the S anion thus receives a bond 
valence of v/2 v.u., one half (Fig. 15b) of what it received where 
it bonded directly to the M cation (Fig. 15a). The (H2O) group 
is functioning as a bond-valence transformer, dividing one bond 
into two bonds of half the bond valence; this type of (H2O) group 
is called a transformer (H2O) group (Hawthorne and Schindler 
2008). Consider next the atomic arrangement in Figure 15c: two 
cations bond to an (H2O) group, which bonds to two anions. The 
O2− ion receives a bond valence of 2v v.u. from the cations, and 
the valence-sum rule at this O2− ion is satisfied by two short O-H 
bonds of strength (1 – v) v.u. Each H+ forms a hydrogen bond with 
a neighboring anion, which receives the same bond valence (v v.u., 
Fig. 15c) where it is bonded directly to one M cation (Fig. 15a). 
The (H2O) group does not act as a bond-valence transformer; it is 
a non-transformer (H2O) group. Consider the atomic arrangement 
in Figure 15d: (H2O) is involved only in a hydrogen-bond network. 
In such an environment, the O2− anion is usually [4]-coordinated, 
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Figure 15. The bond-valence structure around (H2O) as a function of 
local bond topology: (a) a cation (light gray sphere labeled “M”) bonded 
to an anion, S (light gray sphere labeled “S”) with bond valence v v.u.; 
(b) a cation M bonded to an (H2O) group (larger darker gray spheres 
representing oxygen and small black spheres representing hydrogen) with 
bond valence v v.u.; the H atoms hydrogen-bond to the anions S with bond 
valence v/2 v.u. per bond; (c) two cations bonded to an (H2O) group with 
bond valence v.u. per bond; the H atoms hydrogen-bond to the anions S 
with bond valence v v.u. per bond; (d) two H atoms hydrogen-bonded to an 
(H2O) group with bond valence v v.u. per bond; the H atoms of the (H2O) 
group hydrogen-bond to the anions S with bond valence v v.u. per bond.
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and the (H2O) group participates in two O-H (donor-hydrogen) 
bonds and two H···O hydrogen bonds. Two hydrogen bonds of 
strength v v.u. are incident at the O atom of the (H2O) group, the 
bond-valence requirements of the central O atom are satisfied by 
two O-H bonds of strength (1 – v) v.u., and each H atom forms 
a hydrogen bond of strength v v.u. to another anion (Fig. 15d). 
Hence an (H2O) group accepting two hydrogen-bonds does not 
modify the strengths of its existing chemical bonds; it propagates 
them to more distant anions, as is the case where the (H2O) group 
is bonded to two cations (Fig. 15c); this type of (H2O) is also 
designated non-transformer (H2O).

Calculation of Lewis-base strengths. Details of how to 
do this are provided by Hawthorne and Schindler (2008). To 
maintain electroneutrality of the entire structure, the bonds to the 
structural unit must neutralize the charge of the structural unit, 
and the Lewis basicity of the structural unit is the charge on the 
structural unit divided by the number of bonds to the structural 
unit. Thus, to calculate the Lewis basicity, we need to know: (1) 
the effective charge on the structural unit and (2) the number 
of bonds incident at the structural unit from adjacent interstitial 
complexes and neighboring structural units. For structural units 
with no H+ ions, the effective charge on the structural unit is the 
formal charge. For structural units containing H+ ions, it is neces-
sary to account for the charge transferred from the structural unit 
by hydrogen bonds to external anions (commonly 0.20 v.u.; Brown 
1980; Hawthorne 1992).

Hawthorne and Schindler (2008) defined the charge defi-
ciency per anion (CDA) of a structural unit as its formal charge 
modified by any hydrogen bonds emanating from the structural 
unit divided by the number of anions. Examination of the crystal 
structures of well-refined uranyl-oxide and uranyl-oxysalt minerals 
shows that there is a relation between the number of bonds from 
the interstitial species to the structural unit and the CDA of the 
structural unit (Fig. 16).

As shown in Figure 16a, the data define a band across the 
plot; this is to be expected as the aggregate Lewis acidity of the 
interstitial species depends on the Lewis acidity of the interstitial 
cations plus the transformer effect of interstitial (H2O) groups. 
Thus, for a specific Lewis basicity of a structural unit, there is a 
range in the number of interstitial bonds per cation correspond-
ing to variation in pH of the nascent aqueous solution from 
which the mineral crystallizes. Consider the structure of curite, 
[9]Pb3

2+(H2O)2[(UO2)8O8(OH)6)](H2O) (Li and Burns 2000). The 

effective charge of the structural unit, [(UO2)8O8(OH)6)]6−, is the 
formal charge minus the charge transferred from the structural 
unit by the constituent hydrogen bonds (–6 – 6 × 0.20) = –7.2 v.u. 
There are 30 anions in the structural unit, and hence the CDA = 
–7.2/30 = 0.24 v.u. Plotting this value on the abscissa of Figure 
16b allows the range in number of bonds per anion to be read off 
the ordinate: 0.95–1.44. There are 30 anions in the structural unit 
in curite and hence the range in the number of interstitial bonds is 
(0.95–1.44) × 30 = 28.5–43.2. The effective charge of the structural 
unit is –7.2 v.u., and hence the resulting range in Lewis basicity 
is 7.2/(28.5–43.2) = 0.17–0.25 v.u.

The Lewis acidity of the interstitial complex is inversely 
correlated with the number of transformer (H2O) groups and 
the coordination numbers of the interstitial cations. If more than 
one cation species is present in an interstitial complex, we may 
use the weighted arithmetic mean of their charge and coordina-
tion number. Where interstitial (OH–) is present, we can sum the 
charges of the cation(s) and the interstitial (OH–) and treat the 
complex as containing a cation of the resultant net charge, i.e., M3+ 
+ (OH)– ≡ M2+. We may plot the range in the basicity of a specific 
structural unit on a graph of the variation in Lewis acidity of cation 
complexes. Where the properties of the structural unit and the 
interstitial complexes intersect, the principle of correspondence of 
Lewis acidity-basicity is satisfied, and structures of those specific 
compositions are stable. Where the properties of the structural 
unit and interstitial complexes do not overlap, the principle of 
correspondence of Lewis acidity-basicity is not satisfied, and 
structures of those compositions are not stable.

Prediction of the amount of transformer H2O in oxide 
and oxysalt structures. The variation in Lewis acidity of an 
interstitial complex may be shown graphically as a function of 
the number of transformer (H2O) groups for specific charges and 
coordination numbers of cations (Fig. 17). The range in Lewis 
basicity (0.17–0.25 v.u.) (calculated above) of the structural unit 
[(UO2)8O8(OH)6]6− is indicated in yellow in Figure 17. Immediately 
it is apparent that monovalent cations with coordination numbers 
<[6] will not occur, whereas divalent cations with coordination 
numbers >[5] may occur with the appropriate numbers of trans-
former (H2O) groups. Thus curite, [9]Pb3

2+(H2O)2(UO2)8O8(OH)6)]
(H2O), and sayrite, [9]Pb2

2+(H2O)4(UO2)5O6(OH)6)], fall within the 
yellow band of agreement with the principle of correspondence 
of Lewis acidity-basicity and are found as minerals. Figure 18 
compares the predicted and observed number of transformer H2O 

Figure 16. (a) Correlation 
between the charge deficiency per 
anion (CDA) of structural units 
and the average number of bonds 
from the interstitial complex and 
adjacent structural units, <NB>, 
to O atoms in the corresponding 
structural units of uranyl oxide 
and uranyl oxysalt minerals. The 
upper and lower bounds of the 
distribution are used to define the 
characteristic range in the number 
of bonds accepted by a specific 
structural unit. (b) Derivation of the minimum and maximum number of bonds per anion of the structural unit from the interstitial species and 
adjacent structural units for a structural unit of CDA = 0.24 v.u.

file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\97
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\31
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\91
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\97
file:///\\chenas03\smartedit\Normalization\IN\INPROCESS\115


GIBBS ET AL.: PAULING’S RULES AND BOND VALENCE THEORY 1237

American Mineralogist, vol. 107, 2022

groups per cation in a series of sheet-structure uranyl oxide and 
oxysalt minerals, and there is general correspondence within ±1 
H2O group per cation.

These arguments, based on BVT, can explain the role of, and 
successfully predict the amount of, transformer H2O groups bond-
ed to interstitial constituents in uranyl oxide and oxysalt minerals, 
and a variety of other oxysalt minerals: borates (Schindler and 
Hawthorne 2001a, 2001b, 2001c), hydroxy-hydrated uranyl-oxide 
and oxysalts (Schindler and Hawthorne 2004), sulfates (Schindler 
et al. 2006b), and aluminofluorides (Hawthorne and Herwig 2021).

Bond-valence analysis of proton, cation, and oxyanion 
adsorption at mineral-aqueous solution interfaces

The surfaces of metal-(oxyhydr)oxides and other oxide-
based minerals, such as silicates, in contact with water have 
ionizable hydroxide sites, XOH, that undergo protonation and 
deprotonation reactions (Stumm et al. 1970; Stumm 1992; 
Schindler et al. 1976a, 1976b). These types of reactions are 
among the most important in the natural world (Stumm et al. 
1987; Brown 2001) and result in pH-dependent surface charge 
and potential, both of which are zero at a solid-specific pH value 
(i.e., the pHPZC or pHPZNPC) (Parks 1965, 1967; Sverjensky 1994). 
Although protons play a major role in the complex interfacial 
chemistry of oxide-based minerals in the presence of water, we 

have little molecular-level information about the role protons 
play in sorption/desorption reactions or about the structure and 
stoichiometry of reactive surface sites and sorption complexes 
at mineral-aqueous solution interfaces. As discussed below, 
BVT provides a simple means of placing chemically reason-
able constraints on the local coordination environments and 
stoichiometries of mineral-aqueous solution interface species, the 
reactive sites on mineral surfaces to which these species adsorb, 
and the structural role of protons in sorption reactions. BVT has 
also been used to predict pHPZC values of minerals in contact with 
water (Sverjensky 1994), intrinsic proton affinities of reactive 
surface groups of metal (hydr)oxides (Hiemstra et al. 1996), and 
acidity constants (pKa values) of oxyacids and hexaquo cations 
sorbed on oxide mineral surfaces (Bickmore et al. 2004, 2006). 
As shown below, the simple constraints provided by BVT can be 
quite useful in interpreting the results of spectroscopy and X‑ray 
scattering experiments on mineral-aqueous solution interfaces.

The field of solid-water interface chemistry/geochemistry has 
experienced major growth over the past 50 years due in large part 
to the recognition that chemical reactions occurring at mineral-
aqueous solution interfaces impact many natural and anthropo-
genic processes, including sorption/desorption of environmental 
contaminants and plant nutrients on/from mineral surfaces as well 
as the chemical weathering of minerals (Stumm 1992; Brown et 
al. 1999). Another key reason for major advances in this field is 
the development of surface-sensitive X‑ray spectroscopic (Hayes 
et al. 1987; Brown 1990; Liu et al. 1998; Brown and Parks 2001; 
Brown and Sturchio 2002; Yamamoto et al. 2010; Brown and 
Calas 2012) and X‑ray scattering (Bedzyk et al. 1986, 1990; Eng 
et al. 2000; Fenter 2002; Fenter and Sturchio 2004; Trainor et al. 
2004) methods that utilize very high-brightness synchrotron X‑ray 
sources. There have also been major advances in the application 
of synchrotron-based X‑ray photoelectron spectroscopy (XPS), 
including near-ambient pressure XPS (AP-XPS) (Yamamoto et 
al. 2010; Newberg et al. 2011) and standing wave ambient pres-
sure photoelectron spectroscopy (SWAPPS) (Nemsak et al. 2014). 
In addition, advances in surface-sensitive infrared spectroscopy 
(attenuated total reflectance Fourier transform infrared or ATR-
FTIR) have resulted in an improved understanding of the interaction 
of organic molecules, oxyanions, and water with mineral surfaces, 
including the surfaces of atmospheric aerosol particles and natural 
nanoparticles such as ferrihydrite (e.g., Arai and Sparks 2001; Al-
Abadleh and Grassian 2003a, 2003b; Usher et al. 2003; Yoon et 
al. 2004; Johnson et al. 2005; Carabante et al. 2010).

Synchrotron-based X‑ray absorption fine structure (XAFS) 
spectroscopy has become the experimental method of choice 
for characterizing sorbed metal-ion complexes at mineral-water 
interfaces since it was first used for this purpose (Hayes et al. 
1987). Synchrotron-based X‑ray scattering methods, such as 
X‑ray reflectivity and crystal truncation rod (CTR) diffraction, 
provide critical information on the average molecular-level 
structure of hydrated mineral surfaces, which is essential for 
understanding differences in chemical reactivity of different 
mineral surfaces. However, neither of these methods is capable 
of providing detailed information about the association of pro-
tons with oxo, hydroxo, or aquo groups on hydrated mineral 
surfaces. This is true because X‑rays are relatively insensitive 
to protons due to their limited X‑ray scattering power.

Figure 18. Predicted vs. observed number of transformer (H2O) groups 
per cation for some well-refined sheet structure uranyl-oxide-oxysalt minerals.

Figure 17. Variation in Lewis acidity of a general interstitial complex 
as a function of the number of transformer (H2O) groups per cation. 
The lines shown are for interstitial cations with formal charges and 
coordination numbers shown to the left of the plot. The range in Lewis 
basicity of the structural unit 0.17–0.25 v.u. is shown by the box; the 
dashed line shows the interpolated relation for a [9]-coordinated divalent 
interstitial cation (modified after Hawthorne and Schindler 2008).
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Quantum chemical modeling of mineral-water interfaces at the 
DFT level can also provide quantitative information on the structure 
and bonding of metal complexes on hydrated mineral surfaces as 
well as the distribution of surface-bound protons (e.g., Mason et al. 
2009, 2010, 2011). However, such studies are relatively rare to date 
because of the complexity of these types of calculations, particularly 
those involving the structure and properties of interfacial water (e.g., 
Bandura et al. 2004; Aboud et al. 2011). Clearly consistent with the 
electron density distribution in minerals and molecules (see earlier 
section on Pauling’s second rule), BVT provides a simple way of 
obtaining information of this type.

Our approach combines (1) BVT (Brown and Altermatt 1985) 
to calculate bond valences of sorption complexes; (2) XAFS 
spectroscopy (e.g., Hayes et al. 1987) to determine the structure, 
stoichiometry, and mode of attachment of metal ion complexes to 
hydrated mineral surfaces; and (3) surface X‑ray scattering (e.g., 
Trainor et al. 2004; Ghose et al. 2010) to determine the average 
hydrated surface structure. The variation of M-O bond valence, 
sM-O, with M-O bond length (rM-O) was defined by Brown and 
Altermatt (1985) as:

sM–O = exp[(r0 – rM–O)/0.37] valence units (v.u.)	 (10)

where r0 depends upon the identity and formal valence of the cation 
and values of r0 were empirically determined by fitting Equation 
10 to known oxide crystal structures (Brown and Altermatt 1985).

Bargar et al. (1997a, 1997c) used the bond-valence approach, 
coupled with carefully determined O-H bond lengths in crystal-
line materials using neutron diffraction, to show that the range of 
O-H bond lengths at metal oxide-aqueous solution interfaces is 
approximately 1.03 to 0.95 Å, which results in bond valences of 
0.68 ≤ sOH ≤ 0.88 v.u. for surface hydroxyls (Bargar et al. 1997a). 
The corresponding range of realistic hydrogen bond lengths was 
shown to be 1.65 to 2.50 Å, which gives a range of bond valences 
for H-bonds, so···H, of 0.25 to 0.13 v.u., respectively. These results 
were used by Bargar et al. (1997c) to derive a more accurate de-
scription of O-H bond valence (Eq. 11) (Fig. 19) than Equation 10:

sOH = 0.241/(ROH – 0.677) (v.u.)	 (11)

This bond-valence–bond-length relation for O-H bonds was 
used by Bargar et al. (1997a, 1997b, 1997c) and Towle et al. (1999) 
to constrain the types of hydrogen bonds and hydroxo and aquo 
groups that can form as a result of the sorption of aqueous Co2+ 
and Pb2+ on oriented single-crystal alumina and hematite surfaces 
in contact with water, as will be discussed below for alumina sur-
faces. We have also used this relation to help evaluate the stability 
of different types of surface complexes of selenate and selenite 
oxyanions sorbed at the α-FeOOH-aqueous solution interface, as 
discussed in the next subsection.

Sorption of selenate and selenite oxyanions at the goethite-
water interface. We begin with the sorption of aqueous sel-
enate (Se6+O4)2− and selenite (Se4+O3)2− oxyanions on α-FeOOH 
(goethite) surfaces in contact with water. Selenium in these 
oxidized forms is a toxic environmental contaminant in soils and 
groundwaters, particularly in the western U.S. and western China. 
Knowledge of the molecular-level speciation of Se is required 
to assess its potential toxicity and bioavailability (Pickering et 
al. 1995). To provide this type of information, we did an XAFS 

spectroscopic study of aqueous selenate and selenite oxyanions 
sorbed on goethite particles in contact with water (Hayes et al. 
1987). The XAFS spectrum of selenate shows a single frequency 
corresponding to four [4]Se6+-O bonds with an average [4]Se6+-O 
bond length of 1.65 Å. This spectrum is identical to that of selenate 
oxyanions in a 25 mM aqueous solution (no goethite particles), and 
shows that selenate forms dominantly outer-sphere complexes on 
hydrated goethite particle surfaces (Hayes et al. 1987) (Fig. 20). In 
contrast, the XAFS spectrum of selenite sorbed on goethite consists 
of two frequencies that, when Fourier transformed, correspond to 
three [3]Se4+-O bonds at 1.70 Å and two [3]Se4+-O-[6]Fe3+ linkages, 
with an Se-Fe distance of 3.38 Å. As illustrated in Figure 20e, the 
presence of two [3]Se4+-O-[6]Fe3+ linkages indicate that selenite is 
adsorbed dominantly as inner-sphere, bidentate complexes on 
hydrated goethite particle surfaces.

Also shown in Figure 20 are the Brown-Altermatt bond 
valences of the Se-O bonds in selenate and selenite oxyanions 
(1.452 and 1.35 v.u., respectively, calculated using the empirical 
parameter r0 of 1.788 Å for [4]Se6+-O and 1.811 Å for [3]Se4+-O). 
Beginning with selenate oxyanions, if we assume that an aver-
age oxygen on the hydrated goethite surface is bonded to one 
[4]Se6+ ion and two [6]Fe3+ ions but no protons (Fig. 20e), with an 
[4]Se6+-O distance of 1.65 Å (Hayes et al. 1987) and an [6]Fe3+-O 
distances of ~2.10 Å (Wang et al. 2006), the bond-valence sum 
at the oxygen is 2.25 v.u. (1.452 + 0.398 + 0.398 v.u.) (using an r0 
value of 1.759 Å for [6]Fe3+-O), which departs from the valence-
sum rule. The lack of accord with the valence-sum rule is even 
greater if this oxygen is a hydroxo group (with a bond-valence 
contribution of ~0.8 v.u. and a bond-valence sum of ~3.05 v.u.) 
or if it is weakly H-bonded to a nearby water molecule (with a 
bond-valence contribution of ~0.2 v.u. and a bond-valence sum of 
~2.45 v.u.). If we assume that a IVSe6+ ion and two [6]Fe3+ ions are 
bonded to an O1 oxygen at the goethite-water interface, using the 

Figure 19. Bond-length–bond-valence curves for O–H bonds. The 
solid line is Equation 2 and includes data points used for calibration. The 
dashed line is from Brown (1987) (after Bargar et al. 1997c).
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Fe-O1 distance of 1.956 Å (Wang et al. 2006), which corresponds 
to a bond valence of 0.587 v.u., the bond-valence sum is ~2.63 v.u. 
This bond-valence analysis indicates that fully hydrated selenate 
oxyanions should form dominantly outer-sphere complexes at 
the goethite-water interface, as was shown to be the case using 
XAFS spectroscopy. This result helps explain the ionic-strength 
dependence of selenate uptake from aqueous solution onto goethite 
particle surfaces as a function of pH. The reasoning here is that 
increasing ionic strength would move the isotherm for a weakly 
bound, outer-sphere sorption complex to lower pH values, as 
observed, but would not affect the isotherm of a strongly bound, 
inner-sphere complex, which we also observed. It also explains 
why significant uptake of selenate onto goethite does not begin 
until pH values well below the pHPZC of goethite (~9.0: Sverjensky 
1994) (Fig. 21), where the goethite surface in contact with water 
should have a near-zero charge. This type of behavior is consistent 
with an increasing electrostatic attraction between the negatively 
charged selenate oxyanion and the increasingly positively charged 
goethite surface as pH decreases.

A similar bond-valence analysis of selenite sorbed at the 
goethite-water interface is also consistent with our XAFS 
spectroscopy results, which show that selenite oxyanions form 
dominantly inner-sphere, bidentate surface complexes at the 
goethite-water interface. Assuming such a surface complex (Fig. 
20e), the bond-valence sum at an oxygen ion on the goethite 

Figure 20. Possible structures for selenite adsorbed to α-FeOOH: (a) an outer-sphere, ion-pair adsorption complex with the first hydration 
sphere shown as a shaded area; (b) a solid solution of selenite in the oxide phase; and (c, d, e) inner-sphere complexes sorbed on the goethite particle 
surface. Distances determined from the selenium EXAFS analysis are shown for the model structure (e), which is consistent with the EXAFS data. 
The goethite is shown as the striped area below the line in e, which represents the goethite-water interface (after Hayes et al. 1987).

Figure 21. Uptake of aqueous selenite oxyanions (solid symbols) 
and aqueous selenate oxyanions (hollow symbols) on goethite particle 
surfaces as a function of pH and ionic strength. The sorption of selenite 
oxyanions is not affected by increasing ionic strength (1 to 1000 mM 
NaNO3), which is generally indicative of inner-sphere sorption 
complexes. However, selenate sorption is affected significantly by 
increasing ionic strength, which shifts the isotherms to lower pH. This 
behavior is generally indicative of outer-sphere sorption complexes 
(after Hayes et al. 1987).
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surface bonded to a [3]Se4+ ion at a distance of 1.70 Å (1.35 v.u.) 
and to two [6]Fe3+ in the goethite surface structure, with an [6]Fe3+-
O distance of ~2.10 Å (Wang et al. 2006) (0.398 v.u.) would be 
~2.15 v.u. Lengthening the two [6]Fe3+-O surface bonds to ~2.15 Å 
would reduce this sum to ~2.04 v.u. Adsorption of this type of 
selenite surface complex would also require deprotonation of 
the surface hydroxo group to which it bonds.

At the time this study was done, we did not have good structural 
models for the most common goethite surfaces [e.g., the (100) 
cleavage surface] in contact with water, so we assumed that the 
average structure of a goethite particle surface is a simple termina-
tion of the bulk structure, which is a slightly distorted hexagonal 
close-packed O-atom arrangement with Fe atoms occupying one-
half of the octahedral interstices. The [6]Fe3+O6 octahedra share 
edges to form double chains parallel to c. There are two distinct 
oxygen sites, O1 and O2, both of which are coordinated to three 
Fe3+ ions; the O2 oxygen is also bonded to a proton at a distance of 
0.88 Å (Yang et al. 2006). The Fe-O1 distance is 1.956 Å, and the 
Fe-O2H distances are 2.100 and 2.106 Å. Some years later, Ghose 
et al. (2010) procured a natural goethite specimen with a (100) 
cleavage surface suitable for crystal truncation rod diffraction 
analysis. Their study showed that the goethite (100)-water interface 
structure is a double-hydroxyl, double-water terminated interface 
with significant atom relaxations and an interface stoichiometry 
of (H2O)-(H2O)-OH2-OH-Fe-O-O-Fe-R), where R represents the 
bulk goethite structure. Two types of terminal hydroxyls were 
identified by Ghose et al. (2010), based on bond-valence analysis, 
including a bidentate (B-type) hydroxo group and a monodentate 
(A-type) aquo group, both of which can act as Lewis base sites. 
This analysis assumed that adding a proton to a surface oxygen 
to form a hydroxo group resulted in a bond-valence contribution 
of ~0.8 v.u. to the oxygen, and that a hydrogen bond contributed 
~0.2 v.u. (see Fig. 19). The double hydroxyl-terminated surface 
dominates, with an 89% contribution to the (100) cleavage surface 
structure. The B-type hydroxo groups are bonded to two VIFe3+ 
ions. The surface Fe-OH bond lengths are 2.16 ± 0.03 Å and 
2.09 ± 0.03 Å, which are close to the bulk-structure Fe-OH dis-
tances. Using these Fe-(O,OH) distances for the hydrated goethite 
surface to calculate bond valences results in values ranging from 
0.409 v.u. to 0.338 v.u., which reduces the slight predicted excess 
bond-valence at the surface oxygen to which the selenite oxyanion 
is bonded (Σs = 2.04 v.u.). The fact that selenate oxyanions form 
dominantly weakly bound outer-sphere sorption complexes on 
common Fe3+-oxyhydroxides and that selenite forms more strongly 
bound bidentate inner-sphere complexes explains why selenate 
can easily desorb from goethite surfaces and be transported in 
surface and ground waters, resulting in a greater environmental 
impact than selenite.

Sorption of aqueous Pb2+ and Co2+ at alumina-water inter-
faces. Next, we show how bond-valence analysis can be combined 
with XAFS spectroscopic analysis and CTR diffraction results to 
determine the type(s) of sorption complexes of aqueous Pb2+ and 
Co2+ at surface functional groups on α-Al2O3 (0001) and (1102) 
surfaces in the presence of water (Bargar et al. 1996, 1997a, 1997b, 
1997c; Towle et al. 1999; Eng et al. 2000; Trainor et al. 2002).

There is dramatically less uptake of Pb2+ on the hydrated 
α-Al2O3 (0001) surface than on the hydrated α-Al2O3 (1102) sur-
face (sorption density Γ = 0.1 ± 0.05 µmoles/m2 on (0001) vs. Γ = 

1.7 ± 0.1 µmoles/m2 on (1102) (Bargar et al. 1997c). The density 
of surface functional groups is about the same on both surfaces, 
so the free energy of Pb2+ adsorption is roughly 20 times lower 
on the hydrated α-Al2O3 (0001) surface than on the hydrated 
α-Al2O3 (1102) surface. XAFS spectroscopic measurements on 
Pb2+ sorbed on powdered α-Al2O3 in contact with water indicate 
that Pb2+ forms dominantly inner-sphere bidentate complexes 
with average Pb-O distances ranging from 2.2 to 2.3 Å, which 
are consistent with an average coordination number of 3 to 4 (O 
atoms) (Bargar et al. 1997a). In contrast, grazing-incidence (GI) 
XAFS spectroscopy showed that aqueous Pb2+ forms dominantly 
outer-sphere complexes on the α-Al2O3 (0001) surface in the pres-
ence of water (Bargar et al. 1996).

XAFS spectroscopy results for Pb2+ sorbed at the α-Al2O3 

(1102)-aqueous solution interface indicate that Pb2+ forms domi-
nantly inner-sphere complexes. When Pb2+ bonds to a threefold-
coordinated oxo group (i.e., Al3-O) on the α-Al2O3 (1102) surface, 
it becomes fourfold-coordinated by O atoms, with an average 
XAFS-derived [4]Pb-O distance of 2.25 Å.

To help interpret the results of XAFS spectroscopic analysis, 
Bargar et al. (1997c) did a bond-valence analysis of the possible 
functional groups on the hydrated α-Al2O3 (0001) and (1102) sur-
faces, assuming the surface structures are simple terminations of 
the bulk structure (Fig. 22; Tables 7 and 8). This analysis revealed 
that α-Al2O3(0001) is dominated by Al2-OH sites and indicates that 
an Al2-OH-Pb bonding configuration is not stable because the O 
atoms in these complexes would be significantly oversaturated, 
with a bond-valence sum of 2.21 v.u. (Fig. 22). In order for such 
a surface complex to form, Pb2+ adions must replace H+ in the 
Al2-OH surface groups; however, as shown in Figure 22 (center 
surface complex), this replacement would cause a coordinatively 
saturated surface oxygen to become significantly undersaturated 

Gibbs, Hawthorne, Brown – Figures  

 16 

 
 

 
 

Figure 22: Schematic illustration of [4]Pb2+ and [6]Co2+ adsorption complexes on the a-Al2O3(1-
102) (left-most) and (0001) (right) surfaces, showing bond-valence sums (Ss) to the surface oxo 
and hydroxo groups.  The larger open circles represent oxygens, the grey circles represent Al3+ 
ions, and the small black circles represent protons. Pb2+ and Co2+ ions are labeled (after Bargar et 
al., 1997a). The sum of bond valences to each surface oxygen calculated using the Brown and 
Altermatt (1985) bond valences for M-O bonds and the Bargar et al. (1997c) bond valences for H-
O bonds is indicated above each site. This analysis suggests that Pb2+ does not bond to doubly-
coordinated surface hydroxyl groups while Co2+ does (after Bargar et al., 1997c). 
 
 

 
 
 

  

Figure 22. Schematic illustration of [4]Pb2+ and [6]Co2+ adsorption 
complexes on the α-Al2O3(1102) (left-most) and (0001) (right) surfaces, 
showing bond-valence sums (Σs) to the surface oxo and hydroxo groups. 
The larger open circles represent O atoms, the gray circles represent Al3+ 
ions, and the small black circles represent protons. Pb2+ and Co2+ ions 
are labeled (after Bargar et al. 1997a). The sum of bond valences to each 
surface oxygen calculated using the Brown and Altermatt (1985) bond 
valences for M-O bonds and the Bargar et al. (1997c) bond valences for 
H-O bonds is indicated above each site. This analysis suggests that Pb2+ 
does not bond to doubly coordinated surface hydroxyl groups while Co2+ 
does (after Bargar et al. 1997c).
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and therefore is unlikely to occur (Bargar et al. 1997c).
Instead, as shown by Equation 12, Pb2+ forms dominantly 

outer-sphere complexes:

(0001):

 

( ) :0001

3

2

3Al
Al

Al
AlOH (aq) OH     

Pb Pb2+
	

(12)

This prediction is consistent with the results of Pb L3-edge 
XAFS spectroscopic analysis, which shows that Pb2+ forms 
dominantly outer-sphere complexes at the α-Al2O3 (0001)-aque-
ous solution interface (Bargar et al. 1996, 1997c). It is also 
consistent with our CTR diffraction study of the hydrated 
α-Al2O3 (0001) surface (Eng et al. 2000), which shows that 
doubly coordinated surface functional groups (Al2-OH) are the 
dominant type of surface site on the hydrated (0001) surface.

In the case of sorption of aqueous Pb2+ on α-Al2O3(1102), 
bond-valence analysis (Table 8) predicts that the most stable 
bonding configuration is the bonding of Pb2+ to Al3-O surface 
sites. A less favorable but plausible configuration is Pb2+ bond-

ing to singly coordinated hydroxo groups (Al-OH) (Table 8). 
Our CTR diffraction study of the hydrated α-Al2O3 (1102) 
surface (Trainor et al. 2002), shows that this surface in the 
presence of water has roughly equal numbers of O atoms 
coordinated by one, two, and three [6]Al3+ ions. Equation 13 
was chosen to illustrate the reaction of aqueous Pb2+(H2O)4 
complexes with Al3-O and Al-O surface functional groups on 
the α-Al2O3 (1102) surface.

(1102): (AlAl
Al

  > O) + (Al-OH2) + Pb2+(H2O)4 =

[(AlAl
Al

  > O)(Al-O)]Pb(H2O)2 + 2H3O+ 	 (13)

The [4]Pb-O bond valence for the observed Pb-O distance 
(2.25 Å) is 0.53 v.u. using the I.D. Brown and Altermatt (1985) 
bond-valence parameters. Each of the [6]Al-O bonds contributes 
~0.5 v.u., so the sum of bond valences to a fourfold-coordinated 
surface oxo group on α-Al2O3(1102) that is also bonded to [4]Pb2+ 
is ~2 v.u. This bonding configuration satisfies Pauling’s second 
rule and thus is predicted to be stable (Table 8).

Grazing-incidence XAFS spectroscopic measurements of 
aqueous Co2+ sorbed on these two alumina surfaces show that 
Co2+ forms inner-sphere complexes (Co-O distances of 2.05 to 
2.10 Å, depending on whether the X‑ray beam was normal to 
the surface or perpendicular to it) on both the (0001) and the 
(1102) surfaces of α-Al2O3 (Towle et al. 1999). From our CTR 
diffraction study of the hydrated α-Al2O3 (1102) surface (Trainor 
et al. 2002), we know that this surface in contact with water has 
roughly equal numbers of O atoms coordinated by one, two, 
and three VIAl3+ ions.

The most plausible sorption reaction for aqueous Co2+ on 
the α-Al2O3 (0001) surface, based on XAFS and CTR results 
and bond-valence analysis (Table 7), is given by Equation 14:

(0001): 
( ) :

( ) ( )

0001

3
3

2
2 6 3

2
2 3 2Al

Al
Al
AlOH OH       Co H O Co H O H O	 (14)

which indicates that Co2+ adsorbs dominantly to doubly coordi-
nated hydroxo groups in a tridentate configuration above tetrahe-
dra interstices (Bargar et al. 1997c; Towle et al. 1999). As shown 
in Figure 19, this bonding configuration results in a bond-valence 

Table 7.	 Bond-valence analyses for surface functional groups and 
Co2+ and Pb2+ sorption complexes on hydrated α-Al2O3 (0001) 
(Bargar et al. 1997c)

	 Σsm-o at oxygen (v.u.)	 Oxygen	 Prediction
	 No H-bonds	 W/H bondsa	 coordination
			   statea

Mononuclear surface complexes
[Al

Al>O–]	 ≤1.00	 ≤1.50	 Unsaturated	 Plausibleb

[Al
Al>OH]	 ≤1.88	 1.81–2.13	 Saturated	 Most stable

Al
Al>O–Co	 1.35	 ≤1.60	 Unsaturated	 Plausibleb

Al
Al>O–Pb	 1.53	 ≤1.78	 Unsaturated	 Plausibleb

Al
Al>(OH)–Co	 ≥2.03	 ≥2.03	 Saturated	 Most stable
Al
Al>(OH)–Pb	 ≥2.21	 ≥2.21	 Oversaturated	 Does not occurc

Binuclear surface complexesd

[Al
Al>HO2

+]	 ≥2.36	 ≥2.36	 Oversaturated	 Does not occurc

Al
Al>O<Co

Co	 1.70	 1.70	 Unsaturated	 Plausibleb

Al
Al>O<Pb

Pb	 2.06	 2.06	 Saturated	 Stable
Note: Formal charges are not ascribed to groups that have adsorbed metal ions 
since the net charge on such surface complexes will depend upon the number 
of surface groups bonded to the adion.
a Including hydrogen bond-valence contributions from neighboring water 
molecule(s) and assuming 0.13 ≤ so···H ≤ 0.25 v.u. (see text).
b It is possible that this species could be present at significant concentrations 
given appropriate solution conditions, e.g., at higher pH, or higher [Pb]tot, or 
higher [Co]tot . However, other species are predicted to be more stable, e.g., 
[Al2OH] or [Al2(OH)Co2+] at pH 7–8 and [Me]tot ~ 10–4 M. 
c This species is present at vanishingly small concentrations.
d Stabilities of these complexes are not directly comparable to the others because 
of increased cation–cation repulsion and other additional energy contributions.

Table 8.	 Bond-valence analyses for surface functional groups and Co2+ and Pb2+ sorption complexes on hydrated α-Al2O3 (1102) (Bargar et al. 
1997c)

	 Σsm-o at oxygen (v.u.)
	 Mononuclear surface complexes	 No H-bonds	 W/H bondsa	 Oxygen bonding statea	 Prediction
O atoms triply coord. by bulk Al	 [AlAl

Al > O–1/2]	 1.50	 ≤1.75	 Unsaturated	 Plausibleb

	 [AlAl
Al > OH1/2]	 ≥2.18	 ≤2.18	 Oversaturated	 Does not occurc 

	 AlAl
Al > O–Pb 	 2.03	 2.03	 Saturated	 Most stable 

	 AlAl
Al > O–Co	 1.85	 1.85	 Unsaturated	 Plausibleb

O atoms singly coord. by bulk Al	 [Al–OH–1/2]	 ≤1.38	 ≤1.88	 Unsaturated	 Plausibleb

	 [Al–OH2
+1/2]	 1.86–2.26	 ≥1.99	 Saturated	 Most stable

	 Al–(OH)–Co	 ≤1.73	 ≤1.98	 Unsaturated	 Plausibleb

	 Al–(OH)–Pb	 ≤1.91	 1.84–2.16	 Saturated 	 Stable 
	 Al–(OH2)–Co	 ≥2.21	 ≥2.21	 Oversaturated	 Does not occurc

	 Al–(OH2)–Pb	 ≥2.39	 ≥2.39	 Oversaturated	 Does not occurc

Note: Formal charges are not ascribed to groups that have adsorbed metal ions since the net charge on such surface complexes will depend upon the number of 
surface groups bonded to the adion.
a Including hydrogen bond-valence contributions from neighboring water molecule(s) and assuming 0.13 ≤ so···H ≤ 0.25 v.u. (see text).
b It is possible that this species could be present at significant concentrations given appropriate solution conditions, e.g., at higher pH or higher [Pb]tot or [Co]tot. 
However, other species are predicted to be more stable, e.g., [Al-OH2

+1/2] or [Al3-O–Pb] at pH 7–8 and [Me]tot ~ 10–4 M.
c This species is present at vanishingly small concentrations.
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sum of 2.03 v.u., whereas a similar bonding configuration for the 
hypothetical Al2-OH-Pb inner-sphere sorption complex would 
have a bond-valence sum of 2.21 v.u. and is therefore predicted 
to be unstable. This difference in the bond-valence sums of the 
Al2-OH-[6]Co2+ and Al2-OH-[3]Pb2+ sorption complexes is due to 
the fact that the first coordination shell of sorbed Co2+ consists 
of six oxo or hydroxo groups ([6]Co2+-O bond valence of 0.35 
v.u.), whereas the first coordination shell of sorbed Pb2+ would 
consist of only four oxo groups.

An example of a dominant sorption reaction of aqueous Co2+ 
on the α-Al2O3 (1102) surface in the presence of water is shown 
in Equation 15 (Bargar et al. 1997c).

(1102): (AlAl
Al

  > O)2 + (Al-OH2)3 + Co2+(H2O)6 =

[(AlAl
Al

  > O)2(Al
Al

  > OH)(Al-OH)]Co2+(H2O)2 + 2H+ + 5H2O 	 (15)

Comparison of predictions of bond valence theory with 
density functional theory results for Pb2+ sorption on hydrated 
α-Al2O3 (1102) and (0001). We now address the results of a density 
functional theory (DFT) study of Pb2+ sorption on the α-Al2O3 

(0001) and (1102) surfaces based on Pb/α-Al2O3 DFT surface 
geometry optimization (Mason et al. 2011) and compare the predic-
tions with those from BVT.

Mason et al. (2011) used DFT-GGA to optimize the geometry of 
Pb2+ sorbed on the hydrated (0001) and (1102) surfaces of α-Al2O3. 
They identified four optimized bonding configurations—one for the 
(0001) surface, which is dominated by doubly coordinated Al2-OH 
functional groups, and three for the hydrated (1102) surface, which 
contains equal numbers of singly, doubly , and triply coordinated 
functional groups (i.e., Al-O, Al2-O, and Al3-O). They ascribed the 
greater reactivity of the hydrated α-Al2O3 (1102) surface relative 
to the α-Al2O3 (0001) surface with respect to aqueous Pb2+ cations 
to the ability of oxygen functional groups in the corrugated (1102) 
surface to hybridize more effectively with Pb2+ electronic states than 
oxygen functional groups in the topologically flat (0001) surface. 
Mason et al. (2011) also did a bond-valence analysis of the four 
DFT geometry-optimized bonding configurations and found that 
the Pb2+ in the Pb2+/(0001) configuration had significant excess 
bond-valence (sum of 2.30 v.u.), which is consistent with the bond-
valence predictions made earlier for this bonding configuration by 
Bargar et al. (1997c). In contrast, Mason et al. (2011) found that 
their DFT-optimized Pb2+/(1102) configurations had bond-valence 
sums at the Pb2+ cations in the surface complexes of 1.71, 1.76, and 
1.87 v.u. They ascribe the non-ideal bond-valence sums to a break-
down of the bond-valence model and suggest that a limitation of the 
bond-valence model in predicting surface complexation geometries 
is the parameterization, which relies on well-characterized bulk 
reference structures. Mason et al. (2011) also suggest that the DFT 
Pb2+/(1102) configurations “are not severely under-coordinated, 
as indicated by the valence sums.” Instead, they suggest that the 
bond-valence model needs to account for the angles between the 
central atom and all coordinating species. In the case of Pb2+/(1102) 
adsorption complexes, they point out that Pb-O bonding has a 
strong directional dependence and is able to “participate in bond-
ing through both side-to-side and top-to-bottom orbital overlap 
with oxygen p states.” Although the Mason et al. (2011) study did 

not account for the effects of explicit hydration, they suggested 
that the under-coordinated Pb2+ cations on the (1102) surface will 
be reactive to water molecules. As shown in Figure 19, hydrogen 
bonding at distances of 1.65 to 2.50 Å between a water molecule 
and the Pb2+/(1102) surface complex would result in an additional 
bond-valence contribution of 0.25 to 0.13 v.u., which would reduce 
or eliminate the bond-valence deficiency at the Pb2+ cations in the 
surface complex.

Bond-valence and XAFS analysis of the local coordination 
environments of highly charged cations in silicate glasses

Bond-valence theory can also be used to constrain the local 
coordination environments of cations in aluminosilicate glasses 
and melts, as will be demonstrated below. Because these types of 
Earth materials have no long-range order at the molecular level, 
determining the local environments of cations in them is challeng-
ing. Most structural information on glasses and melts has come 
from X‑ray scattering methods (e.g., vitreous SiO2; Mozzi and 
Warren 1969; NaAlSi3O8 (albite)-composition glass; Taylor and 
Brown 1979). However, the development of XAFS spectroscopy 
in the early 1970s (Sayers et al. 1971), resulted in a new method 
that could provide quantitative, short-range structural information 
on virtually any element in all types of materials (gas, liquid, solid 
(crystalline or non-crystalline), and at mineral-water interfaces). By 
combining the results of XAFS spectroscopy with bond-valence 
analysis, we can gain additional insights into the local coordina-
tion environments of cations in silicate glasses and melts. Here we 
examine the local coordination environment of a highly charged 
cation (Zr4+) in aluminosilicate glass using this approach.

Bond-valence analysis of Zr4+ environments in aluminosili-
cate glasses. Farges et al. (1991) did a detailed XAFS spectroscopic 
study of the incompatible element Zr4+ in aluminosilicate glass and 
showed that plausible local structural models for Zr4+ and other ions 
in aluminosilicate glasses and melts can be developed using bond-
valence theory. The following discussion draws heavily from our 
earlier study (Farges et al. 1991). Bond-length–bond-valence plots 
for each M-O bond type present in the glasses studied (Fig. 23) 
can be used to adjust their classical Pauling bond strengths (s(IV)Si-O 

Figure 23. Plot of bond valence vs. bond length for Si-O, Al-O, 
Na-O, and Zr-O bonds using bond-valence parameters from Brown and 
Altermatt (1985) (from Farges et al. 1991).
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= 1.0 v.u.; s(IV)Al-O = 0.75 v.u.; s(VI)Zr-O = 0.67; s(VIII)Zr-O = 0.5 v.u.; 
s(VI)Na-O = 0.167 v.u.) for variations in bond length. However, the 
basic requirement of Pauling’s second rule should still be valid in 
predicting the local coordination environments in these glasses, 
based on the observation by Gibbs (1982, 1987) that the short-
ranged bonding forces in the simple oxyhydride molecule H6Si2O 
are similar to those in quartz and result in bond lengths and bond 
angles that are virtually the same. In developing possible models 
for the local environment of Zr4+ in silicate glasses, Farges et al. 
(1991) also accounted for the possibility of variations in individual 
cation-oxygen distances in a glass or melt structure, where the 
constraints of periodicity are relaxed. Consideration of numer-
ous, well-refined sodium aluminosilicate structures showed that 
individual Si-O bonds may vary between about 1.54 and 1.70 Å, 
with bond valences ranging between 1.28 and 0.82 v.u., respec-
tively, and that individual Al-O bonds can vary between about 
1.63 and 1.82 Å, with bond valences between 1.04 and 0.63 v.u., 
respectively. Similarly, Na-O bond lengths may vary from about 
2.2 to 3.4 Å with bond valences between 0.29 and < 0.02 v.u., 
respectively. Individual Zr-O bond lengths show less variation in 
crystal structures, with values between about 2.03 and 2.11 Å for 
sixfold-coordinated Zr and 2.13 to 2.35 Å for eightfold-coordinated 
Zr, corresponding to bond valences between 0.78 and 0.30 v.u. 
Adjustments of Si-O, Al-O, and Na-O bond lengths within these 
limits for a given molecular model (see Figs. 24 and 25) such that 
the total bond valence to each type of oxygen is near 2.0 v.u. can 
be made to test the validity of different models with R(Zr-O) fixed 
at the XAFS-derived value (2.07 Å).

This modeling indicates that sixfold-coordinated Zr4+ cannot 
bond directly to a bridging oxygen in the albite-composition glass/
melt network at the observed R(Zr-O) distance (2.07 Å) without 
significantly lengthening (Si,Al)-O bonds and disrupting the tet-
rahedral network. For example, if [6]Zr bonded directly to Si-O-Si 
or Si-O-Al linkages (Fig. 24a), the Si-O and Al-O bonds would 
be required to lengthen beyond their observed maximum value in 
aluminosilicates to result in a bond valence near 2.0 v.u. This is 
unlikely. It is possible that [6]Zr bonds in part to Al-O-Al linkages. 

Although such linkages are less likely than Si-O-Si and Si-O-Al 
linkages in sodium aluminosilicate glasses, they may be stabilized 
by [6]Zr. However, it is unlikely that a major portion of the Zr in 
the glass studied bonds preferentially to bridging O atoms in Al-
O-Al linkages because of the observed decrease in Zr solubility in 
peraluminous melts relative to peralkaline melts (Watson 1979). 
An alternative configuration could have [6]Zr bonding to a Si-O 
linkage without other charge-balancing cations (Fig. 24a); however, 
this would require the Si-O bond to shorten its minimum observed 
value, which is also unlikely. A more likely structural configuration 
is the linkage of [6]Zr to several non-bridging O atoms, as shown in 
Figure 24b. In this model, the bond-valence sums at the three types 
of O atoms shown are within 0.1 v.u. of satisfying the valence-sum 
rule and our XAFS results. In contrast, eightfold-coordinated Zr 
is predicted to bond preferentially to bridging O atoms (Fig. 25b) 
rather than non-bridging O atoms (Fig. 24a) on the basis of similar 
bond-valence bond-length reasoning. However, better local charge 
balance can be achieved where [8]Zr bonds to Al-O-Si linkages 
rather than to Si-O-Si linkages. In the latter case, Si-O bonds would 
be required to lengthen to their maximum values, whereas in the for-
mer case much less change in length from average observed values 
is required. The thermodynamic activity of Zr would be predicted 
to be highest in a melt with a local environment like those shown 
in Figures 24a and 25a and lowest in a melt where Zr is bonded 
stably to nonbridging (Fig. 24b) or bridging O atoms (Fig. 25b).

Based on the above analysis of Zr4+ in albite-composition 
glass, [6]Zr4+ should locally depolymerize the glass/melt tetrahedral 
network to accord with the valence-sum rule. The small amount 
of eightfold-coordinated Zr detected in albite-composition glass 
would most likely be accommodated within voids in the tetrahe-
dron network if the voids expand around [8]Zr relative to the Zr-free 
albite-composition glass structure (i.e., the Si-O and Al-O bonds 
locally lengthen and their bond valences are lowered) (Fig. 22b).

Bond-valence analysis of U4+,5+,6+ and Ti4+ environments 
in aluminosilicate glasses. A similar XAFS-bond valence ap-
proach was used by Farges et al. (1992) to constrain the local 

Figure 24. Bond-length and bond-valence models for ZrO6 polyhedra 
in an aluminosilicate glass/melt. (a) Examples of unlikely geometries with 
over- and under-bonded O atoms. (b) One possible environment around 
ZrO6 satisfying the Zr K-XAFS results of this study and Pauling’s second 
rule. The sum of bond valences (Σ values) at the three different types of 
O atoms (O1, O2, O3) is shown (from Farges et al. 1991).

Figure 25. Bond length-bond valence models for ZrO8 polyhedra in 
an aluminosilicate glass/melt. (a) Examples of unlikely geometries with 
over- and under-bonded O atoms. (b) One possible environment around 
ZrO8 satisfying the Zr K-edge XAFS results of this study and Pauling’s 
second rule. Some environments are similar to that observed in the mineral 
zircon (outlined by dotted line) and may be responsible for an increase in 
Zr activity in highly polymerized melts (from Farges et al. 1991).
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coordination environments of U4+, U5+, and U6+ cations in silicate 
glasses and melts. Bond valence-bond length calculations and 
constraints placed on loca1 bonding by the valence-sum rule 
suggest that U4+ and U5+ in sixfold-coordinated sites in silicate 
melts will preferentially bond to nonbridging O atoms (NBO’s) 
rather than bridging O atoms (BO’s). The unusually low sixfold 
coordination of U4+ and U5+ in relatively depolymerized silicate 
melts (e.g., peralkaline and halogen-rich melts) results in a high-
U-O bond valence in the melt that is not observed in crystalline 
U-bearing minerals. This difference in bond valence is partially 
responsible for the small crystal-melt partition coefficients of U4+.

Farges et al. (1996a, 1996b) did a similar XAFS-bond-valence 
analysis to determine the local coordination environments of 
Ti4+ in Na-, K-, and Ca-titanosilicate glasses, resulting in the 
discovery that [5]-coordinated Ti4+ in distorted square pyramids 
{([5]TiO)O4} is the dominant Ti species in the glasses, with one 
short Ti=O titanyl distance (1.67–1.70 ± 0.03 Å) and four long 
Ti-O distances (1.94–1.95 ± 0.02 Å). In addition, minor amounts 
of [4]Ti were detected, with the proportion of [4]Ti increasing in the 
order: Na glasses < K glasses. Bond-valence modeling explains 
why the relative proportions of [4]Ti and [5]Ti change when the 
type of low field strength cation (Na+, K+) or the type of network-
forming cation ([4]Si4+ vs. [4]P5+) changes in oxide glasses. These 
models also provide a structural basis for the study of glasses 
and melts at higher temperatures Farges et al. (1996a, 1996b).

Implications
Experimental and calculated electron-density distributions 

determined for oxide and silicate crystals and siloxane molecules 
during the last decade have provided a new perspective on the 
classic foundation of the crystal chemistry of oxide-based minerals, 
including atomic/ionic radii, the radius-ratio rule, and the connec-
tion of Pauling’s bond strength with resonance bond number and 
bond length. The electron density of a bonded oxygen atom is often 
highly distorted with its bonded radius decreasing systematically 
from 1.38 Å, when bonded to highly electropositive atoms like 
sodium, to 0.64 Å, when bonded to highly electronegative atoms 
like nitrogen. Bonded radii determined for metal atoms match the 
Shannon (1976) radii for the more electropositive atoms, but the 
match decreases systematically as the electronegativities of the 
M atoms increase.

George et al. (2020) concluded that their statistical study of 
Pauling’s rules calls for a new set of empirical rules that extend 
and improve the rules. They go on to say, “Our analysis and the 
data set of connectivity and local environment provide a first 
step toward building a new theory that could potentially benefit 
from the recent growth in the use of machine learning techniques 
in chemistry and materials science.” This statement is surprising 
as George et al. (2020) have not considered the large body of 
work that has built on Pauling’s rules and has greatly expanded 
our understanding of crystal structures and their participation in 
dynamic processes such as adsorption, dissolution, and diffusion. 
We subscribe to the authors’ citation of several of our theoretical 
calculations but are puzzled by the omission of the information 
content and the conclusions contained in our published papers that 
support the conclusions drawn from the studies presented here. 
These studies show the close agreement obtained between the 
Pauling strength of a bonded interaction and the accumulation of 

electron density in a Si-O bonded interaction. This is compelling 
evidence of Pauling’s genius in choosing a simple yet powerful 
parameter, the bond strength, as a measure of the strength of a 
bonded interaction. Furthermore, the bond paths of the atoms in 
a crystal structure, as stated in our modification of Pauling’s first 
rule, not only define the bonded radii of atoms but also constrain 
their coordination numbers and bond strengths and the connections 
between the bonded interactions and the electron density as was 
done by Gibbs et al. (2013a). This study also shows that the O 
atom is not in general spherical with a well-defined radius, but it 
is often highly polarized when bonded to several different metal 
atoms with different valences, electronegativities, and bonded 
radii. However, the electron density distributions for the O atoms 
comprising crystals that contain only one kind of M atom, like the 
silica polymorphs where rb(O) ranges between 0.995 and 0.946 Å 
for quartz, 0.937 and 0.938 Å for cristobalite, 0.932 and 0.952 Å 
for coesite and 1.047 and 1.071 Å for stishovite, are undistorted 
by the bonded interactions.

Pauling’s second rule assigns a bond strength to a bonded 
pair of atoms that depends only on the formal valence and the 
coordination number of the central cation or anion. Later stud-
ies showed that the bond strength is an inverse function of bond 
length (e.g., Zachariasen 1954; Brown and Shannon 1973), and 
the resulting bond strengths calculated from the observed chemical 
bonds are called bond valences to avoid confusion with Pauling 
bond-strengths. Brown (1980) developed bond-valence theory 
(BVT), which has evolved enormously over the last 40 years 
(Brown 2002a, 2002b, 2016). BVT is based on three axioms: 
(1) the valence-sum rule (a generalization of Pauling’s second 
rule): the sum of the bond valences at each ion is equal to the 
magnitude of the atomic valence, which is a corollary of Gauss’s 
flux theorem applied to the electrostatic potential field; (2) the 
path rule (originally described as the loop rule): the sum of the 
directed bond-valences along any path between crystallographi-
cally equivalent ions is equal to zero, which is dictated by the 
conservation of electric charge via Maxwell’s third Equation; and 
(3) the valence-matching principle: stable structures will form 
where the Lewis-acid strength of the cation closely matches the 
Lewis-base strength of the anion, which is based on the handshak-
ing principle in graph theory. The valence-matching principle is 
the most powerful idea in BVT as it allows us to interpret known 
structures or compounds. We can also test the stability of possible 
compounds (in terms of whether they can or cannot exist), which 
moves us from a posteriori to a priori analysis.

We also briefly discussed Pauling’s third, fourth, and fifth rules, 
the first two of which involve the sharing of edges and faces of 
polyhedra. The olivine [α-(MgxFe1–x)2SiO4] crystal structure was 
used to illustrate the distortions from hexagonal close packing of O 
atoms caused by metal-metal repulsion across shared polyhedron 
edges, as predicted by Pauling’s third rule.

George et al. (2000) conclude from their statistical work that 
new empirical rules are needed to extend our understanding of 
crystal chemistry beyond the almost one-century old Pauling’s 
rules. We feel that this statement ignores the tremendous develop-
ment of quantum mechanical methods and bond-valence theory 
that provides a vastly increased understanding of the chemical 
composition, bond topology, crystal chemistry, stereochemistry, 
and behavior of crystals in dynamic processes. One area that has 
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not kept pace with these advances is the treatment of inorganic 
structures, particularly minerals, in introductory chemistry and 
mineralogy textbooks. These textbooks tend to present Pauling’s 
rules as our current understanding of inorganic structures and need 
to be brought up to date.

Among the many applications of BVT to Earth materials, we 
show how a priori bond-valence calculations can predict unstrained 
bond-lengths in crystal structures and how bond-valence mapping 
can locate low-Z ions (e.g., Li) in a crystal structure and examine 
possible diffusion paths for ions through crystal structures. BVT 
may also provide considerable insight into the chemical compo-
sitions and bond topologies of complicated minerals. Here we 
give an example involving uranyl oxide and oxysalt minerals, 
where we show that a detailed examination of the bond topology 
and valences of the constituent ions can provide a rationale for 
the chemical compositions of the weakly bonded parts of the 
structures (involving monovalent and divalent cations, OH, and 
H2O groups), including reasonably accurate predictions for the 
amounts and coordination numbers of the cations and the amounts 
and coordination numbers of the H2O groups.

Another important application of BVT discussed in this review 
is its use to locate the positions of H+ ions in the crystal structures of 
hydrous minerals and nominally anhydrous minerals, particularly 
olivine [α-(MgxFe1–x)2SiO4] and its high-pressure polymorphs wad-
sleyite [β-(MgxFe1–x)2SiO4] and ringwoodite [γ-(MgxFe1–x)2SiO4], 
which are widely considered to be the most abundant minerals 
in Earth’s mantle over the depth ranges 100–410, 410–525, and 
525–660, respectively. Pauling bond strength sums were used to 
identify bond-valence deficient O atoms in these nominally anhy-
drous minerals that could bond to protons and satisfy the valence-
sum rule (Smyth 1987, 1994). When the enormous volumes of 
these mantle minerals are considered, there is growing evidence 
that Earth’s mantle could contain several ocean’s worth of water 
in nominally anhydrous minerals such as olivine, wadsleyite, and 
ringwoodite. (e.g., Hirschmann et al. 2005; Smyth et al. 2003, 
2006; Smyth and Jacobsen 2006; Schmandt et al. 2014).

We have also discussed how BVT, in combination with syn-
chrotron-based XAFS spectroscopy, can be used to constrain the 
compositions and molecular-level structures of aqueous oxyanions 
[e.g., selenate: ([4]Se6+O4)2– and selenite ([3]Se4+O3)2–] and aqueous 
cations [e.g., [3]Pb2+(H2O)3 and [6]Co2+(H2O)6] sorbed at metal 
oxide-aqueous solution interfaces. In addition, BVT combined 
with crystal truncation rod X‑ray diffraction studies can provide 
information on the composition, structure, and relative stabilities 
of different types of reactive functional groups on mineral surfaces 
in contact with aqueous solutions. The information resulting from 
the combination of synchrotron-based X‑ray spectroscopy and 
scattering and BVT is particularly important because it is critical in 
understanding and predicting the sequestration/release, transport, 
bioavailability, and fate of common environmental contaminants 
in soils, surface waters, and groundwater. These developments 
helped spawn the field of molecular environmental science in the 
1980s. The important role of protons in these types of sorption 
reactions cannot be determined by X‑ray spectroscopy and scat-
tering methods but can be evaluated using BVT.

A final application of BVT in this review is its use to constrain 
the local structural environments of high-valence, incompatible 
cations such as Zn4+, Ti4+, U4+, U5+, and U6+ in silicate glasses and 

melts in combination with XAFS spectroscopy. These studies show 
the importance of BVT in understanding why these and other high-
valence cations are incompatible, i.e., they do not partition readily 
from silicate melts to common silicate minerals during the crystal-
lization of silicate magmas because high-valence cations cannot 
be stably accommodated in common silicate mineral structures.
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