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ABSTRACT

Infinite chains of edge-sharing octahedra occur as fundamental building blocks (FBBs) in the structures of several hundred

mineral species. Such chains consist of a backbone of octahedra to which decorating polyhedra may be attached. The general,

stoichiometric formula of such chains may be written as c[MATxVz] where M is any octahedrally coordinated cation, T is any

cation coordinated by a decoration polyhedron (regardless of coordination geometry), V is any possible ligand [O2–, (OH)–,

(H2O), Cl–, or F–], and c indicates the configuration of backbone octahedra. In the minerals in which they occur, these types of

chains will commonly (though not exclusively) form part of the structural unit (i.e., the strongly bonded part) of a mineral.

Hence, investigating the topology, configuration, and arrangement of such chains may yield fundamental insights into the

stability of minerals in which they occur. A discussion of the topological variability of chains is presented here, along with the

formulae necessary for their characterization. It is shown that many aspects of chain topology can be efficiently communicated

by a pair of values with the form ([x], [Bopqrst]), where [x] summarizes the symmetry operations necessary to characterize the

configuration of backbone octahedra, B indicates the length of the topological repeat, and o through t indicate the number of

individual decorations (related to B). A methodology for developing finite graphical representations for infinite chains is

presented in detail, showing that for any given chain, a single, irreducible finite graph exists that contains all topological

information. Such a graph, however, can correspond to multiple chain topologies, highlighting the importance of geometrical

isomerism. The utility of the graphical approach in facilitating the development of a hierarchy of chains and chain-bearing

structures is also discussed.

Keywords: chains of edge-sharing octahedra, [MV4] chains, chain backbone, chain decoration, graphical

representation, graphical isomer, geometrical isomer, structural unit.

INTRODUCTION

Infinite chains of octahedra are common topolog-

ical features in the structures of oxysalt compounds.

They can be considered as Fundamental Building

Blocks (FBBs) occurring in at least several hundred

mineral species and synthetic compounds. Three

fundamental types of chains can be distinguished on

the basis of whether constituent octahedra are

connected by vertex-, edge-, or face-sharing, corre-

sponding to the general stoichiometries ‘[MV5],
‘[MV4], and ‘[MV3], respectively [where M ¼ any

cation in octahedral coordination and V ¼ an

unspecified ligand, typically O2–, (OH)–, (H2O), F–,

or Cl–].

In a subsequent series of papers, we will focus on

the topology, frequency, and occurrence of the edge-

sharing chains in minerals. These chains are common-

ly observed with decoration polyhedra (e.g., tetrahe-

dra, trigonal planar groups) attached. Through the

variation in configuration of backbone octahedra,

chain repeat distance, and connectivity (and abun-

dance) of decoration polyhedra, a very large number of

possible topologies may be derived. This high degree

of complexity makes the characterization and discus-

sion of chains a non-trivial task; here, a systematic
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method for presenting this information, both mathe-

matically and graphically, is rigorously derived and

presented. This methodology will be essential to

developing and elucidating the geometric constraints

of such chains, the graphical enumeration of possible

topologies, and the hierarchical ordering of structures

in which chains are essential components of the

structural unit.

PREVIOUS WORK

In a pioneering paper, Moore (1970) considered the

structure hierarchy of chains of octahedra and

tetrahedra of the form [MV5]. He derived all possible

[MV5] chains with a repeat distance of ~7.2 Å
(corresponding to two octahedra in the repeat unit) and

showed that numerous minerals are based on these

chains. Moore & Araki (1974, 1977) followed with

detailed studies of various combinatorial polymorphs,

and there has been subsequent work done on these

[MV5] chain structures (e.g., Hawthorne 1983, Burns

& Hawthorne 1995) that has focused on the linkage of

such chains into sheets and frameworks. Surprisingly,

there has been little analogous work on chains of edge-

sharing octahedra in minerals. There have been

general surveys done as part of the development of

structure hierarchies involving oxyanions that decorate

such chains (e.g., Hawthorne 1985, 1986, 1990, 1998,

Hawthorne et al. 2000, Huminicki & Hawthorne 2002)

or detailed crystal chemistry on specific types of

chains (e.g., Sokolova & Hawthorne 2004, Fleck et al.

2002, Fleck & Kolitsch 2003, Kolitsch & Fleck 2005).

However, there has been no general work on their

topology.

CHAINS OF EDGE-SHARING OCTAHEDRA: TERMINOLOGY

Chain: A structural unit of (MV6)n– octahedra that

link infinitely in a single direction and that can be

broken by eliminating a single (MV6)n– octahedron

(Figs. 1a, b).

Ribbon: A structural unit of (MV6)n– octahedra

that link infinitely in a single direction and that cannot

be broken by eliminating any single (MV6)n– octahe-

dron (Fig. 1c). This work focuses on the characteriza-

tion of chains; ribbons will be addressed in a future

publication.

Backbone: Backbone octahedra are essential to the

existence of a chain; each backbone octahedron shares

edges with at least two other backbone octahedra.

Decoration: Additional polyhedra, denoted by

(TVm)n–, that decorate (link to) the backbone octahe-

dra and that are not essential for chain continuity. The

value of m corresponds to the coordination number of

the T cation, hence values of 3, 4, 5, and 6 correspond

to planar triangles, tetrahedra, pentahedral–hexahedral

polyhedra, and octahedra, respectively. Where a

stereoactive lone-pair of electrons emanates from the

central cation, it is represented by E, such as TV3E. An

anion belonging to a decoration polyhedron that does

not link to backbone octahedra is referred to as an x-

anion (Fig. 1b).

Crystallographic repeat unit: The minimal geo-

metrical arrangement of backbone octahedra (and

element-sharing decorations) required to generate the

chain via translation.

A list of all variables used throughout this text,

with definitions, is given in Table 1.

CONFIGURATION OF BACKBONE OCTAHEDRA

IN EDGE-SHARING CHAINS

In an infinite chain of edge-sharing octahedra, each

backbone octahedron shares (at least) two of its twelve

edges with two different octahedra. Backbone config-

urations can be readily distinguished based on the

symmetry operations that relate the shared edges on

any given backbone octahedron. The symmetry of a

holosymmetric octahedron (point group 4/m�32/m), is

as follows: 16 three-fold axes (eight proper, eight

improper), 15 four-fold axes (nine proper, six

improper), six two-fold axis, nine mirror planes, and

an inversion center. As successive octahedra are added

to form a complete chain, each set of shared edges on a

particular octahedron can be related by an appropriate

symmetry operation.

All possible sets of shared edges in non-cis chains

(see discussion below) associated with a single

octahedron are related by one of the [2]-fold axes of

the octahedron. In Figure 2a, each diad is illustrated

using a separate color: the solid-color dots indicate the

location where the axis enters/exits the octahedron,

and similar lines (dashing/shading) show those edges

related by the [2]-fold symmetry operation. The axes

are numbered, increasing clockwise about the [3]-fold

axis of the octahedron.

Figure 2b shows how an arbitrary non-cis chain can

be constructed through a defined sequence of [2]-fold

operators. For instance, using the orientation of the

octahedron in Figure 2a as a reference, the chain

results from the sequence given by the row matrix, [x],

[ 1 6 1 3 4 3 ]. As they occur in the chain, however, the

[2]-fold axes, labeled 6 and 4 in Figure 2a, are

equivalent to the inversion operation, i, about the

center of the octahedron and thus we will simplify to

[x]¼ [ 1 i 1 3 i 3 ].

The absolute orientation of the [2]-fold axis is

arbitrary, providing they are named sequentially about

an octahedral [3]-fold axis, and hence it is the relative

difference between these that defines the backbone
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configuration. Labeling the first, arbitrarily-chosen,

[2]-fold operator as D gives [x]¼ [ D i D Dþ2 i Dþ2 ].

Common chain backbones

If the repeat distance is considered variable, an

infinite number of possible chain backbone configura-

tions are possible. However, an examination of chain-

bearing structures in the literature suggests that four

basic types of backbone configurations occur with

significant frequency in minerals. These are illustrated

in Figure 3. As these are common, they can be more

easily referred to by the following names in subse-

quent discussion: trans, lox, mik, and cis (defined

below).

In a trans chain [ x ]¼ [ i ] (Fig. 3a), both linking

edges on any octahedron are related by inversion

through the octahedron center. The resulting undeco-

rated chain is (ideally) symmetric about three

orthogonal mirror planes and three orthogonal [2]-fold

axes. In a lox (Greek: loxótita, skew) chain, linking

edges are related by one rotation around the [2]-fold

axis of the central octahedron. There are two lox

backbone configurations, referred to here as lox, [x]¼
[ D ] (Fig. 3b) and lox-I, [x]¼ [ D D Dþ2 Dþ2 ] (Fig.

3c). In a mik (Greek: miktós, mixed) chain, any

combination of trans and lox linkages may occur. An

example of a common mik chain (occurring in

minerals such as borax and mirabilite) corresponding

FIG. 1. Basic components of (a–b) infinite chains and (c) ribbons composed of edge-sharing octahedra: backbone structure and

decoration polyhedra of differing coordination. Anion positions are labeled as discussed in the text.
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to [x] ¼ [ D D i ] is given in Figure 3d. The arbitrary

chain illustrated in Figure 2b also corresponds to a mik

chain. In a cis chain, certain backbone octahedra have

more than two shared edges, and these edges share a

common vertex. An infinite number of mik configu-

rations are possible, and the stoichiometry of the chain

backbone varies accordingly. Figure 3e illustrates an

example, although many configurations of cis chain

are possible.

The basic connectivity of each chain backbone is

also shown graphically; each purple vertex denotes a

backbone octahedron and each edge denotes a shared

octahedron vertex. Edges shared between octahedra

are shown as pairs of edges in the graph. Backbones

with trans, lox, and mik conformations have the same

graphical representation, whereas those with cis

conformations do not.

Above, we noted that non-cis chains can be

constructed via a sequence of [2]-fold rotation

operators or a sequence of [2]-fold rotation opera-

tors and inversion centers. However, it is preferable

to use i when possible. The reason for this can be

seen when comparing the trans and lox chains in

Figures 3a and 3b. Relative to a [2]-fold rotation

axis, both chains result from the repetition of one

[2]-fold axis orientation, hence both would corre-

spond to [x] ¼ [ D ], which is clearly not useful.

However, referring to sequences with inversion

operators results in the matrices [x] ¼ [ i ] and [x]

¼ [ D ], respectively, differentiating the two

backbone configurations.

Backbone anion notation

Constituent anions of backbone chains occur in

three types of coordinations, characterized by the

number of M-cations to which they are bonded. These

are the [1]
V- and [2]

V-anions, both of which occur in

all possible backbone configurations of chains (trans,

lox, mik, and cis) and ribbons (Fig. 1a–c), and the [3]
V-

anion, which occurs only in cis-backbone configura-

tions and ribbons (Fig. 1b–c).

TABLE 1. LIST AND DEFINITIONS OF VARIABLES AND FUNCTIONS

USED THROUGHOUT THE CURRENT WORK

M Any octahedrally coordinated cation in the backbone of an infinite chain.

T Any m-coordinated cation in a decoration polyhedron, (TVm), attached to a chain backbone.

V Any possible ligand [O2–, (OH)–, (H2O), Cl–, or F–].

A, X, z In the general formulae written in stoichiometric c[ MATXVz ] (Eq. 1) or matrix c[ A X z ]‘ (Eq. 3) form,

variables A, X, and z represent the stoichiometric quantity of M-octahedra, T-decorations, and V-li-

gands. Variable A also corresponds to the number of octahedra in the repeat unit of the chain.

h, i, j, k Variables indicating the stoichiometric content of decoration polyhedra with distinct coordination

number, as in (TV6)i (TV5)j (TV4)k (TV3E)l (TV3)m, where i þ j þ k þ l ¼ X.

[Bopqrst] In the topological (graphical) formulae written in stoichiometric ([x], [ MB ( [4]D[v,3]n
[2þ3þ2]D[e,2]o

[2þ3]D[v,3]p
[2þ2]D[v,2]q

[3]D[v,2]r
[2]D[v,1]s)]) or matrix ([x], [ B o p q r s t]) form, B represents the

number of backbone vertices, where as o through t represents the number of vertices of each

color, corresponding to different decoration polyhedra, with different values of
P

aD[s,N].

[x] Denotes a row matrix of integers indicating the sequence of octahedral [2]-fold axes that results in a

specific linking configuration of backbone octahedra.

B’ The number of backbone (purple) vertices required in the topological repeat graph.

[Cn]
V Denotes the coordination number, Cn, of the anion(s) linking decoration polyhedra to backbone

octahedra.
P

aD[s,N],P
aX[s,N]

Denotes the overall configuration of decoration polyhedra (D) or an added backbone octahedra (X),

as defined by the coordination number, a, of each linking anion. In square brackets, s, indicates

the polyhedral element shared between decoration and backbone octahedra (v, vertex; e, edge; f,

face). N indicates the number of individual backbone octahedra to which a given decoration is

linked.

V(G) The vertex-set of a graph.

E(G) The edge-set of a graph.
P

Ki [ ¼ V(G)], represents the total vertex set, broken down into individual, K-colored components.
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FIG. 2. In non-cis backbones, all pairs of shared edges (on a specific octahedron) are relatable by the operation of one of the six

octahedral [2]-fold axes or inversions. (a) The orientations of the axes are illustrated, and color-coded, relative to a

holosymmetric octahedron. The colored circles indicate the location of entries/exits of the axes on the solid form. Any non-

cis backbone can be constructed by specifying a sequence of [2]-fold axes operating in successive octahedra. (b) An

example of a hypothetical backbone resulting from the sequence [x] ¼ [1 i 1 3 i 3] ¼ [D i D Dþ2 i Dþ2]. Note that the

orientation of all octahedra in this figure (as well as Fig. 3b–e) are referenced to the black octahedron in (a).
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FIG. 3. Backbone topologies commonly observed in minerals. The basic graphical representation, as well the value of [x],

defined in the text, is also shown. For simplicity, these are referred to by common names: (a) trans, (b–c) lox, (d) mik, and

(e) cis. The pair of shared octahedron edges (with a common vertex) as required by the definition of a cis chain is

highlighted in red.
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CONFIGURATION OF DECORATION POLYHEDRA

Decoration polyhedra are characterized by how

they are connected to the backbone octahedra as

opposed to by chemical species (SiO4
4–, CO3

2–, etc.)

or by polyhedron geometry (tetrahedron, trigonal

planar, etc.). Any decoration, (TVm)n, may be

characterized by the coordination numbers of the

anions actively linking the backbone and decoration

polyhedra. This is denoted by the general termP
aD[s,N], where D indicates a decoration polyhedron,P
a corresponds to the coordination number of each

linking anion, which is written in sequence, e.g.,
P

a¼
[2þ2], s denotes the shared polyhedral element (i.e., v

¼ vertex, e¼ edge, and f¼ face), and N corresponds to

the number of backbone octahedra with which the

decoration is element sharing.

The number of possible values of
P

aD[s,N] is

constrained by the geometry of decoration polyhedra

and by backbone configuration and is relatively small.

An exhaustive approach to determining these illustrat-

ed in Figures 4 and 5 shows that there are 21 possible

decoration configurations. However, a thorough ex-

amination of over 250 chain-bearing structures reveals

that only six of these (Fig. 4) are observed in minerals

with significant frequency. In general, decorations

linked to backbone octahedra by vertex-sharing occur

often, whereas those linked to backbone octahedra by

edge- and face-sharing occur increasingly less often.

The six most commonly observed decoration polyhe-

dra are discussed in greater detail here.

(1) [2]D[v,1]-type: Where a decorating polyhedron is

linked to the backbone through a common [2]
V-

type anion; thus the anion coordination may be

written as MT where M is a backbone cation and T

is the cation of a decorating polyhedron (Fig. 4a).

(2) [3]D[v,2]-type: Where a decorating polyhedron is

linked to the backbone through a common [2]
V-

type anion, resulting in MMT coordination of the

anion (Fig. 4b).

(3) [2þ 2]D[v,2]-type: Where two vertices of a decorating

polyhedron link to two backbone octahedra; each

shared vertex corresponds to a [1]
V-type anion,

resulting in MT coordination (Fig. 4c).

(4) [2 þ 3]D[v,3]-type: Where two vertices of a deco-

rating polyhedron link to three backbone octahedra

through a [1]
V-type anion and a [2]

V-type anion,

resulting in one shared anion with MT coordination

and the other with MMT coordination (Fig. 4d).

(5) [2 þ 3 þ 2]D[f,2]-type: Where three vertices of a

decorating polyhedron link to two backbone octa-

hedra through sharing of two [1]
V-type anions and

one [2]
V-type anion, resulting in two anions with MT

coordination and one with MMT coordination; here,

two of the decoration edges are also shared (Fig. 4e).

(6) [4]D[v,3]-type: Where one vertex of a decorating

polyhedron links to three backbone octahedra

through a [3]
V-type anion, resulting in MMMT

FIG. 4. Decoration polyhedra are distinguished by the coordination state of the anion(s) linking them to backbone octahedra. Six

common types are observed in mineral structures: (a) [2]D[v,1]-type, (b) [3]D[v,2]-type, (c) [2þ2]D[v,2]-type, (d) [2þ3]D[v,2]-

type, (e) [2þ3þ2]D[e,2]-type, and (f) [4]D[v,3]-type.
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coordination; this decoration type is possible only

on cis-type chains (see below) and ribbons (Fig. 4f).

Backbone-decoration pairs

The linking of backbone configurations and

polyhedral decorations (
P

aD[s,N]) is limited by the

geometric constrains of both, i.e., it is not possible for

all values of
P

aD[s,N] to link to all backbones. For

instance, [3]D[v,2]-type decorations can occur on trans,

lox, mik, and cis chains, whereas [2þ2þ3]D[e,2]-type

decorations can occur only on chains with the trans

backbone. Table 2 lists the 21 possible decoration

configurations illustrated in Figures 4 and 5, indicating

FIG. 5. In addition to those illustrated in Figure 4, 15 additional configurations of [TUm] decoration polyhedra (shown here as

tetrahedra, m¼ 4) are possible in trans, lox, and cis chains. Here, these are separated into two groups, those that are related

to backbone octahedra by (a–g) edge-sharing and (h–n) face-sharing.
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the chain backbones with which they are geometrically

compatible.

Octahedron decorations

Where 3 � m � 5, the distinction between

decoration and backbone polyhedra is unambiguous:

i.e., all octahedra and non-octahedra are included as

backbone and decoration, respectively, regardless of

attachment conformation. However, adding an octa-

hedron (m ¼ 6) to a pre-existing backbone has the

possibility of resulting in either a decoration polyhe-

dron or a new backbone (or ribbon) configuration.

Distinguishing between these situations is straightfor-

ward, and consistent with the above-defined terms: an

octahedron is considered part of the backbone if it

shares (at least) two edges with (at least) two different

octahedra. All other configurations are decorations.

For the chains with backbone configurations

illustrated in Figure 3 (trans, lox, lox-1, cis), there

are four possible configurations with which a non-

decoration octahedron can be added to backbones.

Consistent with the format of decoration notation,

these are denoted as
P

aX[s,N]: (1) [2þ2þ3]X[e,2] (trans

backbone; Fig. 6a); (2) [2þ3þ3]X[e,3] (lox / cis

backbones; Fig. 6b); (3) [2þ2þ3þ3]X[e,3] (lox / cis

backbones; Fig. 6c–d); and (4) [2þ2þ3þ3þ3]X[e,4] (lox-1

backbone; Fig. 6e). Note: the addition of a
[2þ2þ3þ3]X[e,3] octahedron to a lox or a cis backbone

results in the formation of a cis backbone (Fig. 6c) and

ribbon (Fig. 6d), respectively; the [2þ2þ3þ3þ3]X[e,4]

octahedron may be added only to a lox-1 backbone,

forming a ribbon (Fid. 6e).

STOICHIOMETRIC FORMULAE FOR DECORATED CHAINS OF

EDGE-SHARING OCTAHEDRA

The general stoichiometry of all chains of decorat-

ed octahedra may be expressed as follows:

c MA TX Uz½ � ðEq: 1Þ

where the superscript c denotes the backbone config-

uration, i.e., trans, lox, mik, or cis; M is any

octahedrally coordinated cation; A is the number of

M-cations (or octahedra in a polyhedral representation)

in the crystallographic repeat of the chain; and Vz is all

backbone anions not linked to a decorating polyhe-

dron. For a chain, the complement of decorating

polyhedra occur with the stoichiometry

TU6ð Þh TU5ð Þi TU4ð Þj TU3Eð Þk TU3ð Þl
where

X ¼ hþ iþ jþ k þ l ðEq: 2Þ

For brevity, any chain stoichiometry can be

represented as the [ 1 3 3 ] matrix

c A X z½ � ðEq: 3Þ

FINITE GRAPHICAL REPRESENTATIONS

OF INFINITE CHAINS

In Graph Theory, a graph is defined as a

nonempty set of elements, V(G), called vertices,

and a nonempty set of unordered pairs of these

vertices, E(G), called edges (e.g., Wilson 1979).

Vertices and labels may be labelled (or colored) to

represent objects with specific characteristics. The

number of edges incident at a vertex is known as the

degree, d, of the vertex. The structure of any crystal

inherently lends itself to graphical representation,

with vertices corresponding to elements of the

structure (e.g., atoms or polyhedra) and edges

corresponding to linkages between those elements.

Graphs in which polyhedra are depicted as vertices

are very effective ways to represent the topology of

complex atomic arrangements (e.g., Hawthorne

1983, 2014, 2015, Hawthorne & Schindler 2000,

Burns & Hawthrone 1995, Krivovichev 2008, 2009).

Graphical representations have two major uses in

the current context. First, they are effective ways of

distilling complex topological information to simple

forms that facilitate visual comparison of other

TABLE 2. GEOMETRICALLY PERMISSIBLE

BACKBONE-DECORATION PAIRS

P
a D [s,N] trans lox cis Fig.

(1) [2] D [v,1] � � � 4a

(2) [3] D [v,2] � � � 4b

(3) [2þ2þ3] D [e,2] � 4c

(4) [2þ2] D [v,2] � � � 4d

(5) [2þ3] D [v,3] � � 4e

(6) [4] D [v,4] � 4f

(7) [2þ3] D [e,2] � � � 5a

(8) [3þ3] D [e,3] � � � 5b

(9) [2þ3þ3] D [e,3] � � 5c

(10) [2þ2] D [e,1] � � 5d

(11) [3þ3] D [e,3] � � 5e

(12) [2þ4] D [e,3] � 5f

(13) [3þ4] D [e,4] � 5g

(14) [2þ2þ3þ3] D [f,2] � 5h

(15) [2þ3þ3] D [f,3] � � 5i

(16) [2þ3þ3þ3] D [f,3] � � 5j

(17) [2þ2þ3] D [f,2] � � 5k

(18) [3þ3þ4þ4] D [f,4] � 5l

(19) [3þ3þ4] D [f,5] � 5m

(20) [2þ3þ3þ4] D [f,3] � 5n

(21) [2þ3þ4] D [f,4] � 5o
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structural entities that have similar (but distinct)

topological characteristics. Second, through the appli-

cation of enumeration methods, it is possible to derive

all possible topologies (e.g., Harary & Palmer 1973)

for a certain set of conditions. Hawthorne (1983)

illustrated the effectiveness of this approach by

considering isolated clusters of linked octahedra and

tetrahedra. He showed how, by imposing crystal-

chemical constraints on graphically possible topolo-

gies, a list of potential clusters could be derived. Cross

referencing all possible clusters to those that are

observed in crystal structures increases our under-

FIG. 6. The addition of backbone octahedra (mauve) to a pre-existing backbone chain (purple), resulting in the formation of (a–

c) cis-chains, and (d–e) ribbons.
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standing of the crystal-chemical rules governing

mineral stability. Both uses are of interest here. The

first is directly relevant to the hierarchical classifica-

tion of chain-bearing structures, which will be

developed in subsequent publications. The second is

of interest as it provides insight into why, although the

number of possible chain-topologies is large, only a

relatively small number are observed in minerals.

A graphical representation conveys the topological

information regarding the connectivity of chain

backbones and decoration polyhedra. Hence, for any

given segment of chain considered, there must be a

one-to-one correlation between linkages in the poly-

hedral and graphical representations. However, certain

complications arise when trying to represent an infinite

object (chain) by a finite graph, thus requiring a more

involved discussion.

The coloring of vertices

In the graphs derived here, vertices and edges

correspond to polyhedra and linking anions, respec-

tively. The color of vertices distinguishes: (1)

backbone vertices from decoration vertices; and (2)

the configuration (
P

aD[s,N]) of decoration polyhedra.

Vertex coloring in all graphs shown here adheres to the

scheme: (1) vertices mapping to backbone octahedra

are purple; and (2) vertices mapping to decorations are

colored based on values of
P

aD[s,N]. For the common

decoration polyhedra, denoted as [4]D[v ,3]-,
[2 þ 2 þ 3]D[v,2]-, [2 þ 3]D[v,3]-, [2 þ 2]D[v,2]-, [3]D[v,2]-,

and [2]D[v,1]-types, the corresponding vertex colors are

orange, brown, green, blue, red, and yellow, respectively.

In the text below, the total vertices mapping to all

observed decorations,
P
j
P

aD[s,N]j, in a particular chain

may be referred to as decoration (non-purple) vertices. In

this scheme, polyhedral geometries are not identified

graphically, however, we note that it would be possible

to add such information (e.g., by altering the shape of the

vertex such as triangle ¼ trigonal planar, square ¼
tetrahedron, etc.) without changing any of the significant

points discussed.

From infinite chains to finite graphical representations

Consider the derivation of graphical representa-

tions for the two chains illustrated in Figure 7. A

segment of the undecorated trans chain, trans[MU4],

is shown in Figure 7a. Such an illustration is

referred to as a segment polyhedron representation,

and the corresponding segment graph is derived by a

one-to-one mapping of each backbone octahedron to

purple (backbone) vertices (Fig. 7b). Similarly, from

the segment polyhedron representation of the
trans[M2T2U6] chain (Fig. 7e), the corresponding

segment graph is derived by a one-to-one mapping

of backbone octahedra, [2]D[v,1]-type decoration

polyhedra, and [3]D[v,2]-type decoration polyhedra,

to purple, yellow, and red vertices, respectively (Fig.

7f). Vertices are linked by edges corresponding to

the sharing of polyhedron vertices.

Although segment graphs are illustrative, they are

inherently incomplete and are not useful for graphical

enumeration. To overcome this problem, we must

derive a graph that: (1) is finite, and (2) correctly

represents the connectivity of all vertices (i.e., all

vertex degrees must be correct). Because neither chain

contains a decoration polyhedra that links to succes-

sive crystallographic repeats (see below), deriving the

correct graph for the chains in Figure 7 is straightfor-

ward; the segment graph is severed at the horizontal

dotted lines (i.e., corresponding to the crystallographic

repeat; Fig. 7c, g). In order to satisfy the above criteria,

the truncated, severed edges are connected, forming

looped edges linking purple (backbone) vertices (Fig.

7d, h). The looped edges also indicate how the

topology of the complete chain may be generated by

translation of a graphical entity.

Crystallographic and topological repeat units

In a chain, the crystallographic and topological

repeat units need not be equivalent. For a chain with

the general formula trans[ M2 T2 V6], a segment

polyhedron representation (segment length ¼ six

backbone octahedra) is illustrated in Figure 8a. In a

geometric segment graph (Fig. 8b), the relative

positions of vertices are drawn to be equivalent to

the relative positions of polyhedra in the polyhedron

representation. Drawing the graph in such a way is

useful, as it promotes an intuitive understanding of the

relation between the crystallographic (i.e., translation-

al) and topologic character of a chain.

However, a graph has no geometrical properties,

and thus the positions of the vertices may be moved

relative to each other without changing the information

content of the graph. For instance, moving all red

vertices to the same side of the chain results in the

graphical representation of Figure 8c. By moving

vertices (and preserving edge sets), there are an infinite

number of pictorial representations in which the

connectivity of the graph is preserved.

Analogous to the crystallographic repeat in the

polyhedron representation, the topologic repeat is the

smallest sub-graph of the segment graph that shows (1)

the repeat sequence of backbone (purple) vertices, and

(2) all the decorations linked to these backbone

vertices. The segment graphs for the trans[M2T2V6]

chain (Fig. 8b, c) show that all backbone (purple)

vertices are topologically equivalent, as are all

decoration (red) vertices; each of the former links to
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two decoration and two backbone vertices (degree 6),

and each of the latter links to two backbone vertices

(degree 2). The topological repeat of the chain

contains one topologically unique backbone vertex

and the two red vertices linked to it (pink highlighted

area in Fig. 8c).

From the topological repeat, we may derive the

irreducible topological repeat graph of any chain that

FIG. 7. The derivation of graphical representations. For trans[M1 T0 U4]: polyhedral and graphical representations of a chain

segment are illustrated in (a) and (b), respectively. The horizontal dashed lines indicate the crystallographic repeat unit, and

the isolated graphical segment is illustrated in (c). In (d) the final finite graph is illustrated, wherein the single vertex is

linked to itself with two arched edges. For trans[M2 T2 U4]: analogous polyhedral and graphical representations of a chain

segment are illustrated in (e) through (h); color-coding corresponds to decoration nomenclature as outlined in the text.
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FIG. 8. Crystallographic and topological repeat units need not be equivalent in all chains. For the trans[M2 T2 U5] chain: the

polyhedral segment (a) has a crystallographic repeat unit equivalent to two octahedra (A ¼ 2). Despite being visually

different, the two segment graphical representations (b and c) are topologically equivalent and show that each vertex is

topologically equivalent. Hence, the finite graphical representation (d) corresponds to (B ¼ 1), i.e., trans[1000020]. The

analogous construction is illustrated for the trans[M2 T1 U7] chain in (e) through (h). Note: In this and subsequent figures, the

B value appears in dark red to distinguish it from other values in the matrix.
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satisfies the two graph criteria listed above. This is

done by expanding the topological repeat graph in a

stepwise manner until the degrees of each vertex are

correct. The process for doing this is illustrated in

Figure 9 for one c[M2T2U6] chain and two topologi-

cally distinct c[M2T2U4] chains. Correct and incorrect

values of degree appear in black and red, respectively.

Step 1: A sub-graph corresponding to the topolog-

ical repeat unit is drawn (Fig. 9a).

Step 2: The addition of a backbone vertex increases

the degrees of the red vertices to the correct value of

[2] (Fig. 9b).

Step 3: For the backbone (purple) vertices, linking

these to each other increases their degrees to the

correct values of [6] (Fig. 9c) and results in the

topological repeat graph, which, unlike a segment

graph, is irreducible. The analogous steps for the
trans[M2T2U4] chains are illustrated in Figure 9d–i. In

FIG. 9. Stepwise derivation of the irreducible topologic repeat graph from the topologic repeat unit.
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following these steps for any chain, only one

topological repeat graph may be derived.

For a chain with decoration polyhedra
P
j
P

aD
[s,N]j, the number of required backbone (purple)
vertices, B’, in the irreducible topological repeat graph
is either (1) the largest value of N, where N is an
integer multiple of B (i.e., nB); or (2) the next highest
multiple of nB, where N is not an integer multiple of B.
For example, the graph corresponding to c[M2T2V6]
(Fig. 9a–c) contains two backbone (purple) vertices
because max(N) ¼ 2, which corresponds to 2B; by
contrast, the graph corresponding to lox[M2T2V4] (Fig.
9g–h) contains four backbone (purple) vertices as
max(N)¼ 3 and nB ¼ n(2) ¼ [2, 4, 6, . . ., nB].

Topological formulae of chains

The topological formula, consisting of a pair of
terms, is given by

x½ �; MB
4½ �D v; 3½ �o 2þ3þ2½ �D e; 2½ �p 2þ3½ �D v; 2½ �q 2þ2½ �
�h�

D v; 2½ �r 3½ �D v; 2½ �s 2½ �D v; 1½ �t
�i�

ðEq: 4Þ

The first term, [x], is a matrix indicating backbone
configuration; the second term corresponds to the
vertex-set of the topological repeat unit (not necessar-
ily the topological repeat graph) and is useful in the
hierarchical ordering of chain topologies. As above, B

is the number of backbone (purple) vertices that occur
in the topological repeat unit. The subscripts o through
t denote the total number of each color of non-purple
vertex that link to the B (purple) vertices. The
decoration polyhedra are ordered by decreasing
average coordination number of the linking anions.
Equation 4 may be condensed to the [ 1 3 7 ] matrix

x½ �; B o p q r s t½ �ð Þ ðEq: 5Þ

In Equations 4–5, only decoration types commonly
observed in minerals (i.e., Fig. 4) are included;
however, the expansion of these expressions to include
any plausible decoration type (i.e., Fig. 5) is straight-
forward.

The color content of the vertex-set of the
irreducible topological repeat graph is

V Gð Þ ¼ B0 þ oþ pþ qþ r þ sþ t ¼
X

Ki

ðEq: 6Þ

where each separate term indicates the number of K-
colored vertices.

Graphical and geometrical isomerism in chains

The graphical approach to representing chains

allows direct comparison of the topology of chains

(i.e., irrespective of stoichiometry, chemistry, and

decoration-polyhedron geometry). Consider the five

(labelled I through V) differently configured trans

chains in Figure 10, in which polyhedral (Fig. 10a–e),

segment geometrical (Fig. 10f–j), and topological

repeat graph (Fig. 10k–m) representations are shown.

Excepting those illustrated in Figure 10b and 10c, all

these chains have different formulae and backbone/

decoration connectivities (i.e., values of
P
j
P

aD
[s,N]j). Highlighted regions of the segment graphs

show that for each chain, the topological repeat

consists of a single, topologically unique backbone

(purple) vertex (i.e., B¼1) linked to two (oþ pþ qþ r

þ s þ t¼ 2) decoration (non-purple) vertices.

In the finite graphical representations of Figure 10,

the decoration (non-purple) vertices are colored grey;

this simplification allows a more straightforward

comparison of the connectivities between backbone

and decoration polyhedra. From the graphical repre-

sentations, two significant observations can be made.

First, the graphs corresponding to chains-II, -III, and

-IV are identical (Fig. 10l) – the corresponding chains

are geometrical isomers, having different arrange-

ments of equivalently connected polyhedra. Second,

graphs in Figures 10l and 10m have identical vertex-

sets, but different edge-sets – the corresponding chains

are graphical isomers, having equal numbers of

components that are differently connected. Chain-I is

not isomeric to the others, despite the similarities

noted above.

HIERARCHICAL ORDERING OF CHAIN TOPOLOGIES

In a structure hierarchy, constituent structures are

ordered such that topological complexity increases

with hierarchical sequence. For hierarchies that consist

of minerals with varying dimensionalities of connec-

tivities, this typically takes the following form:

isolated polyhedra � cluster � chains � sheet �
framework (e.g., silicates, Matchatski 1928, Bragg

1930; sulfates, Hawthorne et al. 2000; phosphates,

Huminicki & Hawthorne 2002; arsenates, Majzlan et

al. 2014; tellurates, Christy et al. 2016; beryllates,

Hawthorne & Huminicki 2002; uranyl oxysalts, Burns

1999, 2005, Lussier et al. 2016; borates, Grice et al.

1999). Though only chains are considered here, an

analogous ordering scheme, where hierarchical order

reflects increasing topological complexity, can be

developed.

In an ordered series of chains, there should be a

general trend toward increasing the connectivity of

constituent elements (polyhedra or vertices) with

hierarchical depth. As has been shown, multiple

attributes (i.e., backbone conformation, number of

decorations, connectivity of decorations, crystallo-
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graphic repeat, topological repeat, etc.) characterize a

chain and any ordering scheme needs to take into

consideration multiple pieces of information.

Here, chains are ordered by considering three

criteria: (1) the mean connectivity (degree) of

backbone (purple) vertices, ,dbb.; (2) the number

of decoration (non-purple) vertices in the topological

formula,
P

dec.( ¼ o þ p þ q þ r þ s þ t); and (3) the

mean connectivity (degree) of decorations, ,ddec..

Chains with unique triplets (,dbb.,
P

dec., ,ddec.)

are ordered by the magnitude of ,dbb., followed byP
dec., followed by ,ddec.. For the following

hypothetical series of triplets, order would be: (4,0,0)

� (5,1,2) � (5,1,3) � (5,2,1).

FIG. 10. Graphical versus geometrical isomerism in chains of edge-sharing octahedra.
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FIG. 11. Examples of observed and hypothetical trans, lox, and mik (where [x]¼ [1i11]) chains ordered hierarchically, based on

increasing connectivity of constituent elements. Topological repeats are highlighted in pink. The formulae for non-

equivalent backbone configurations are scaled by the crystallographic repeat, A. Those occurring in known minerals, as

indicated with a circled letter, correspond to: (A) rutile group, [M4þO2]; (B) wodginite group, [M4
xþO8] ; (C) borax,

{Na2(H2O)8} [B4O5(OH)4] (Gainsford et al. 2008); (D) boralsilite, [Al16B6Si2O37] (Peacor et al. 1999);
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FIG. 11. (continued) (E) stercorite, {(NH4)(H2O)4} [Na(PO3OH)] (Ferraris & Franchini-Angela 1974); (F) linarite, {Pb}

[Cu2þ(SO4)(OH)2] (Bachmann & Zemann 1960); (G) mélonjosephite, {Ca} [Fe2þFe3þ(PO4)(OH)] (Kampf & Moore 1977);

(H) kentrolite, {Pb2} [Mn2Si2O9] (Gabrielson 1962);
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FIG. 11. (continued) (I) yvonite, {H2O} [Cu(AsO3OH)] (Sarp & Černy 1998); (J) eosphorite, {H2O} [MnAl(PO4)(OH)2] (Hoyos

et al. 1993); (K) falsterite, {Ca2(H2O)14} [MgMn2þ
2(Fe2þ

0.5Fe3þ
0.5)4 Zn4(PO4)8(OH)4] (Kampf et al. 2012); (L)

brackebuschite supergroup, {A2} [M(TO4)2(OH)]. Note: Formulae appear written in binary notation, where { } and [] denote

the compositions of the interstitial complex and the structure unit, respectively (see Hawthorne 1985, 1990, 1992).
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This is illustrated for a series of chains (both

hypothetical and observed) in Figure 11 (trans, lox,

and mik backbones) and in Figure 12 (cis backbones).

This deliberate selection of chains emphasizes many of

the concepts (such as graph determination and

isomerism) that are introduced above. Important points

of note (all referring to Fig. 11) include:

(1) Chains occurring on the same row (regardless of

backbone conformation) are of equivalent hierar-

chical rank (and are geometrical isomers), despite

having different crystallographic repeats, A. A

group of chains formed by rows k l are all

geometrically isomeric.

(2) A group of chains formed by rows c, f, and h are

all graphically isomeric.

(3) The geometric isomers in rows k and l both have

equivalent (,dbb.,
P

dec., ,ddec.) triplets of

(8,4,2). In this (relatively) uncommon occurrence,

these chains are ordered with increasing mean

number of shared vertices linking decorations to

the backbone polyhedra. This corresponds to the

average number of terms in summations,
P

a, for

all decorations,
P
j
P

aD[s,N]j, in the topological

formula. The chains in row k show four decora-

tions, each with [2]D[v,1], to the backbone

octahedra by sharing one vertex: (1þ1þ1þ1)/4 ¼
1, whereas the chains in row l show two and two

decorations linked to backbone octahedra by

sharing one ([2]D[v,1]) and two ([2þ2]D[v,2])

vertices, respectively: (1þ1þ2þ2)/4 ¼ 1.5. Hence,

chains in row l outrank those in row k.

FIG. 12. Examples of cis chains ordered hierarchically, based on increasing connectivity of constituent elements.
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SUMMARY

(1) Chains of edge-sharing octahedra are common in

minerals. These consist of a backbone of octahedra

which may be decorated by other polyhedra.

(2) Four configurations of backbone octahedra are

common and are denoted as trans, lox, mik, and

cis. The sequence of shared edges in octahedra of

(non-cis) backbones can be defined by the

sequence of octahedron [2]-fold rotation operators.

(3) Decoration polyhedra are characterized by the

symbol
P

aD[s,N], where the summation
P

a

indicates the number and coordination of all

linked vertices, and s indicates the dimension of

shared elements (v ¼ vertex, e ¼ edge, f ¼ face).

There are 21 distinct values of
P

aD[s,N] for chains

with trans, lox, cis, and mik backbones; however,

only 6 of these are common in minerals: [2]D[v,1],
[2þ2]D[v,2], [3]D[v,2], [2þ3]D[v,2], [2þ3þ2]D[e,2], and
[4]D[v,3].

(4) The backbone-decoration connectivity of any

chain can be illustrated using either polyhedron

or graphical representations.

(5) In the polyhedron representation, the crystallo-

graphic repeat is the smallest fragment of a chain

that, repeated through translation, shows: (i) the

configuration of backbone octahedra (i.e., trans,

lox, cis, or mik), and (ii) the stoichiometry, relative

positions, and connectivity of the decorating

polyhedra.

(6) A chain may be represented graphically with

either: (i) a segment graph, which is both reducible

and infinite in size, and (ii) a topologic repeat

graph, which is irreducible and has finite size. The

topologic repeat unit is the smallest fragment of a

segment graph that, repeated through translation,

generates the complete segment graph. The

topologic repeat is defined by backbone (purple)

vertices in the repeating sequence and the number

of decoration (non-purple) vertices linked to the

topologically unique backbone vertices; it is

represented by the matrix [Bopqrst].

(7) For any specific chain, there is only one topologic

repeat graph; however, multiple chains may

correspond to the same topologic repeat graph.

Chains corresponding to the same graphs are

geometrical isomers.

(8) Chains for which the irreducible graphs have

equivalent vertex-sets (where all non-purple ver-

tices are re-cast as monochromatic) but non-

equivalent edge sets are graphical isomers.

(9) Using the irreducible graphs, chains may be

hierarchically ordered to reflect increasing topo-

logical complexity.
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