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Abstract

The patterns of linkage of chemical bonds in space contain significant energetic information that 
may be used as the basis of a theoretical approach to the structure and chemical composition of miner-
als. This approach combines aspects of graph theory, bond-valence theory, and the moments approach 
to the electronic-energy density-of-states to interpret topological aspects of crystal structures, and 
allows consideration of many issues of crystal structure, mineral composition, and mineral behavior 
that are not addressed by established theoretical methods. The chemical composition of a mineral is 
controlled by the weak interaction between the structural unit and the interstitial complex. The principle 
of correspondence of Lewis acidity-basicity asserts that stable structures will form when the Lewis-
base strength of the structural unit closely matches the Lewis-acid strength of the interstitial complex. 
This principle allows analysis of the factors that control the chemical compositions and aspects of the 
structural arrangements of minerals, and provides a mechanism to understand the relations between 
structure, the speciation of its constituents in aqueous solution, and its mechanism of crystallization. 
(H2O) groups in the structural unit limit the polymerization of the structural unit in one or more direc-
tions, controlling the polymerization of the structural unit. This is a major cause of structural diversity 
in oxygen-based minerals, and accounts for the systematic distribution in mineral species from the 
core to the surface of the Earth. 

The moments approach to the electronic-energy density-of-states provides a bond-topological in-
terpretation of the energetics of a structure. When comparing structures, the most important structural 
differences involve the first few disparate moments of the electronic-energy density-of-states. We may 
classify chemical reactions according to the lowest-order moment of the electronic-energy density-of-
states that is conserved, which allows us to identify the principal structural changes that drive chemical 
change: (1) coordination number for discontinuous reactions, and (2) short-range order for continuous 
reactions. This relation between the bond topology of a structure and its enthalpy of formation from 
constituent oxides is indicated by a correlation between change in anion-coordination number and 
reduced enthalpy of formation for the reactions [6]Mgm

[4]SinO(m+2n) = mMgO+nSiO2.
Keywords: Bond topology, graph theory, bond-valence theory, electronic-energy density-of-states, 

polyhedron linkage, chemical composition, structural unit, interstitial complex

Introduction

Minerals are the stuff of the Earth; without them, there would 
be no Earth or any other rocky planet. As geologists sensu lato 
(i.e., scientists who study the Earth), we are all interested in the 
properties of minerals and how minerals behave in Earth pro-
cesses—how they respond to changing temperature, pressure, 
etc., how they interact with each other, and especially how they 
interact with both natural and anthropogenic fluids. Moreover, 
minerals are our principal source of economic materials and a 
major constituent of soils, and their chemical compositions and 
surface properties are key in this regard. Thus, mineralogy has 
focused on describing minerals and characterizing their chemical 
compositions and physical properties, providing this information 
for use in petrology, geochemistry, geophysics, soil science, etc. 
However, from the perspective of Mineralogy as a science, we also 
wish to understand why minerals have the chemical compositions, 

atomic arrangements, and physical and surface properties that they 
do. Such understanding requires a theoretical framework within 
which we can consider the constitution and behavior of minerals, 
and it is such a framework that I will consider here.

Established theoretical methods

What kind of methods do we have to understand and interpret 
mineralogical information? We use crystal chemistry to system-
atize mineral properties, classical thermodynamics to analyze 
processes involving minerals, and computational mineralogy 
to understand mineral properties and to calculate properties of 
minerals, the stabilities of which are beyond the range of current 
experimental methods. Using thermodynamics, we can make 
calculations for mineral reactions while not knowing much about 
where the atoms are and what the atoms are doing. There is now 
an enormous amount of information on atomic arrangements in 
minerals, and we would prefer to have an atomic-scale under-
standing of the factors controlling atomic arrangements, chemical 
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compositions, mineral stability, and chemical reactions. We have 
gained significant understanding of minerals, mineral stability, 
and mineral reactions though crystal chemistry, thermodynamics, 
and computational mineralogy. However, these methods have 
tended to dictate the questions that we ask about minerals—we 
ask questions to which these methods can give us answers. There 
are many other questions of scientific interest, which resist our 
current theoretical approaches. Such questions tend to be ignored 
as they are seen as intractable, or even irrelevant to current issues 
in petrology, geochemistry, geophysics, etc. Let us consider some 
of these questions: (1) why do minerals have the chemical for-
mulas that they do; (2) why do they have their specific structural 
arrangements; (3) why are minerals stable over specific ranges 
of pH, Eh, temperature, pressure, and activities of their vari-
ous constituents; and (4) what are the relations between crystal 
structure and both enthalpy and Gibbs free energy of formation? 
Many of these questions are fundamental to our understanding of 
minerals and their behavior, and yet have tended to be ignored in 
the past because they are not susceptible to established theoretical 
techniques in physics and chemistry.

We conventionally represent a crystal structure as a space 
group plus a set of unit-cell dimensions plus a list of atom coor-
dinates (and displacement parameters), and we use these param-
eters together with techniques in computational mineralogy to 
calculate various properties of the crystal. This general approach 
is extremely successful in understanding the physical properties of 
materials, and it is successful for a reason. The underlying theories 
deal with electron sharing between atoms fairly rigorously, and 
many physical properties of crystals are dependent on the details 
of electron sharing between atoms. However, what the underly-
ing theory does not do is explain the origin of translational (and 
quasi-crystal) symmetry in crystals. Moreover, crystal-structure 
arrangements can be surprisingly insensitive to major variations 
in electron delocalization and corresponding variations in physical 
properties. For example, the NaCl structure is adopted both by the 
insulator LiF, with a band gap of 13.6 eV, and the semiconductor 
PbS, with a band gap of 0.37 eV. Here, structure type is quite in-
sensitive to bond type (although other semiconductors with small 
band gaps do adopt the sphalerite and wurtzite arrangements).

What is also interesting is that our perceptions of crystal 
structure are very insensitive to the structural parameters used 
for such calculations. We cannot generally appreciate the salient 
features of a crystal structure from its space group, unit-cell 
dimensions and atom coordinates; we need a picture of that 
structure to recognize these features. This has been obvious since 
the dawn of crystal-structure determination, and crystal structures 
have been classified and interpreted according to the details of 
their atom connectivity as expressed visually (e.g., Barlow 1883, 
1898; Bragg 1930; Belov 1961; Moore 1970, 1974; Burns 1999, 
2005; Krivovichev 2004, 2008, 2009; Krivovichev et al. 1998; 
Hawthorne 1985, 1986, 1990, 2014; Grice et al. 1999; Hawthorne 
and Huminicki 2002; Huminicki and Hawthorne 2002). This sug-
gests (at least to me) that if we wish to understand why crystal 
structures have the atom arrangements that they do, we should 
not seek this understanding via calculations that involve the shar-
ing of electrons between atoms/ions; we need to understand the 
commonalities and differences in atom connectivity in crystal 
structures (cf. Bowen 1928).

Mineral chemistry and structure
Consider the hydrated magnesium-sulfate compounds, 

Mg(SO4)(H2O)n where n = 0–7, 11: synthetic Mg(SO4), kieserite, 
sanderite, synthetic Mg(SO4)(H2O)3, starkeyite, Mg(SO4)(H2O)4, 
cranswickite, Mg(SO4)(H2O)4, pentahydrite, hexahydrite, epso-
mite and meridianiite, Mg(SO4)(H2O)11. The Mg(SO4) part of 
the chemical formulas is fixed by the electroneutrality principle, 
but other factors control the degree of hydration of each mineral. 
With increasing (H2O) content, there is a gradual depolymer-
ization of the (MgF6) and (SO4) polyhedra (F = O, H2O) as 
the valence-sum rule (Brown 2002a) prevents linkage of these 
polyhedra through (H2O) ligands (Hawthorne 1992; Hawthorne 
and Sokolova 2012). We know that (H2O) tends to depolymer-
ize the structures of minerals (and synthetic inorganic solids). 
However, we have little idea of (1) how such depolymerization 
is quantitatively related to increasing (H2O) content, and (2) 
what is the effect of interstitial cations on the bond topologies 
of the resulting structures.

Consider structurally and chemically complicated minerals 
such as botryogen, Mg2(H2O)12[Fe2

3+(SO4)4(OH)2](H2O)2, or 
metavoltine, K2Na6Fe2+(H2O)6[Fe3

3+O(SO4)6(H2O)3]2(H2O)6. Their 
chemical formulas are constrained by the requirement of elec-
troneutrality, but what dictates the other details of their chemical 
formulas? Why does botryogen have Mg2 as its interstitial cation, 
and not Ca2 or Na4? Why does botryogen have 14 (H2O) groups 
in its formula? Why does not it have (for example) 8 (H2O) 
groups? Why does botryogen contain any (H2O) groups at all 
and what are the roles of these (H2O) groups in the structure? 
How do these aspects of chemistry and structure relate to the 
stability of botryogen as a function of Eh and pH?

Such questions as these commonly cannot be addressed by 
our established methods of theoretical investigation, and for 
those that can, we often must be satisfied with explanations at 
the macroscopic scale. Here I will examine: (1) how we can 
address such questions for oxygen-bearing minerals from a theo-
retical perspective, and (2) what are the advantages of trying to 
incorporate process (e.g., crystallization, dissolution) into these 
considerations. The ideas given here are based on bond topology, 
the arrangement of chemical bonds in space. I also emphasize 
that these ideas are currently under development, and urge others 
(particularly students) to develop new modifications and applica-
tions of this approach (and other approaches) to answering the 
very basic questions raised here.

Graph theory
A graph is a mathematical structure that is used to examine pair-

wise relations between discrete objects. A chemical bond defines the 
pairwise relation between bonded atoms; similarly, linkage between 
structural fragments (e.g., coordination polyhedra) also defines such 
a pairwise relation. Thus a graph seems a natural representation of 
a bonded array of atoms, with the advantage that we may use graph 
theory to examine the properties of such bonded arrays.

A graph is defined as a nonempty set of elements, V(G), called 
vertices, and a nonempty set of unordered pairs of these vertices, 
E(G), called edges (Wilson 1979). We may label the vertices, we 
may color the vertices, we may assign a direction to the edges, and 
we may assign weights to the edges, resulting in a weighted labeled 
polychromatic digraph, shown pictorially in Figure 1a. The square 
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Figure 1. (a) A weighted polychromatic digraph with the colored 
vertex set {1, 2, 3, 4} and the directed weighted edge set {12, 32, 34, 14}; 
(b) a simple idealized square molecule consisting of four atoms labeled 
1–4; different chemical types of atoms are indicated by different colors.

molecule shown in Figure 1b corresponds to the graph of Figure 1a 
as there is a one-to-one mapping of the atoms of the molecule (Fig. 
1b) onto the vertex set of the graph (Fig. 1a) and of the chemical 
bonds of the molecule (Fig. 1b) onto the edge set of the graph (Fig. 
1a). We may represent this graph as a matrix (Fig. 2) in which each 
column and row of the matrix is associated with a specific (colored 
labeled) vertex and the corresponding matrix entries denote whether 
(positive) or not (zero) two vertices are adjacent (that is, joined by 
an edge). If the matrix elements are the weight functions of the 
edge set, then this matrix is called the adjacency matrix, which 
is thus a numerical representation of the graph. The number of 
edges involving a vertex is known as the degree of that vertex. In 
a digraph, the indegree of a vertex is the number of edges incident 
at that vertex, and the outdegree of a vertex is the number of edges 
exident at that vertex.

The handshaking lemma
The sum of the degrees of all the vertices of a graph is equal 

to twice the total number of its edges.
Each edge in a graph contributes two degrees to the sum of 

the degrees of all the vertices of a graph, and hence this sum must 
be even. This relation is known as the handshaking lemma (Wilson 
1979) for obvious reasons: each edge involves two vertices, just as 
a handshake involves two hands, and hence the sum of the degrees 
of all vertices in a graph is even, as is the number of hands shaken, 
independent of the number of vertices in the graph or the number 
of people shaking hands. The handshaking lemma is extremely 
powerful in dealing with problems involving coordination number 
and connectivity in structures, particularly where the vertex set is 
partitioned into two subsets, as is the case where there are signifi-
cant differences in electronegativity of the constituent atoms in a 
structure, and atoms of the same set do not bond to one another. For 
example, in AB compounds, the coordination numbers of A and B 
must be equal (e.g., [6] in NaCl and [8] in CsCl), whereas in AB2 
compounds, the coordination number of A must be twice that of B 
(e.g., [6] and [3] in TiO2 and [8] and [4] in CaF2).

Graphs with multiple edges
The definition of a graph given above is that of a simple 

graph; that is, a graph where there cannot be more than one edge 
connecting two vertices. We may define a general graph (or more 
simply, a graph) as a nonempty set of elements, V(G), called ver-
tices, and a nonempty family of unordered pairs of these vertices, 

E(G), called edges. A family is a collection of elements, some of 
which may occur several times in that collection. The existence 
of family (rather than a set) in the definition of a general graph 
allows multiple edges between a pair of vertices, and this gives 
us much greater flexibility in applying graph theory to crystal 
structures than would otherwise be the case.

Graphical representation of linkage between polyhedra
Above, we were using simple graphs to represent the linkage 

of individual atoms by chemical bonds. However, complicated 
crystal structures are widely considered as (and represented 
by) arrangements of linked coordination polyhedra. We may 
assign different coordination polyhedra to different vertices of 
a (general) graph, and the capability of having multiple edges 
allows us to efficiently denote the details of linkage between 
different coordination polyhedra (Hawthorne 1983). Polyhedra 
may be represented by colored vertices of a labeled graph in 
which different colors represent different coordination and labels 
denote chemically and crystallographically distinct polyhedra. 
Linkage is indicated by an edge or edges between vertices, and 
the number of edges between two vertices denotes the number 
of atoms common to both polyhedra (Fig. 3, M = octahedrally 
coordinated cation; T = tetrahedrally coordinated cation; j = 
unspecified ligand); round parentheses and curly parentheses 
denote a polyhedron or a group, e.g., (SO4), (H2O); square pa-
rentheses denote linked polyhedra, e.g., [M(TO4)2j4]. For two 
vertices, no edge denotes disconnected polyhedra (Fig. 3a), one 

Figure 2. The adjacency matrix corresponding to the graph in 
Figure 1a.

Figure 3. Graphical representation of polyhedron clusters; octahedra 
are shown in yellow, tetrahedra are shown in orange. Each cluster 
of polyhedra is represented by a graph in which the yellow vertices 
represent octahedra, the orange vertices represent tetrahedra, and the 
edges represent the number of vertices common to pairs of polyhedra: 
(a) (Mj6)2; (b) [M2j11]; (c) [M2j10]; (d) [M2(TO4)2j8]; (e) graphical 
isomers of [M(TO4)2j4].
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edge denotes corner-sharing between two polyhedra (Fig. 3b), 
and two edges denote edge-sharing between two polyhedra (Fig. 
3c). Figure 3d shows the cluster [M2(Tj4)2j8] and its graphical 
representation. In a graphical representation, geometrical in-
formation is lost. This is illustrated in Figure 3e, which shows 
two different possible arrangements of the corner-linked cluster 
[M(Tj4)2j4]. Both these clusters are described by the same graph; 
such clusters are called geometrical isomers (Hawthorne 1983). 
It is very useful to represent the fundamental building block 
(FBB) of a mineral in this graphical fashion as the hierarchical 
aspects of the classification are immediately grasped from the 
arrangement of the constituent graphs. This type of graphical 
representation is used quite commonly to consider the bond 
topology of complex structures (e.g., Hawthorne 1983, 1994; 
Hawthorne et al. 2000a; Krivovichev 2008, 2009; Burns 1995, 
1999, 2005; Burns et al. 1995).

Bond-valence theory

Bond topology, bond-valence theory, and bond-valence 
curves

Eighty-five years ago, Pauling (1929) introduced his “rules 
for ionic structures” (discussed in detail by Hawthorne 2007a). 
These rules were extremely useful in helping to solve crystal 
structures in the early days of structural crystallography. While 
some of the rules were given justification via somewhat vague 
ionic arguments (Burdett and McLarnan 1984), they are actually 
collective observations of the structural arrangements available 
at that time. Hence they need no “theoretical justification” and 
their long-term utility in comparing structural arrangements 
should not be surprising. For many years, Pauling’s rules were 
identified with “ionic materials,” despite the fact that Pauling 
(1929) discussed bond angles and Pauling (1960) states that quite 
covalent materials may obey rules similar to those applicable 
to ionic crystals. Moreover, Bragg (1930) interpreted Pauling’s 
second rule in terms of only nearest-neighbor forces, this being 
the first covalent interpretation of Pauling’s second rule (see 
Hawthorne 2007b for details).

In the late 1960s, it became apparent from the large amount 
of crystal-structure data (made available by the development of 
automated X‑ray diffractometers) that there are relations between 
the lengths of chemical bonds (for specific pairs of atoms) and 
the strengths of those bonds, and many schemes were put forward 

to relate these variables in a quantitative manner. Pauling (1929) 
introduced the term bond strength to represent the strength of a 
bond between a cation and an anion as measured by the cation 
valence divided by the cation coordination number. It became 
apparent in the 1970s that a new term was needed for the strength 
of a bond, where this strength is a function of bond length, to 
distinguish it from the Pauling bond-strength, and the term bond 
valence was introduced. Bond valence is defined as the strength 
of a chemical bond where, for any pair of bonded atoms, that 
strength is inversely proportional to the distance between those 
atoms. Brown and Shannon (1973) introduced their widely used 
bond-valence parameters; these have been (and are continually be-
ing) refined (e.g., Brown 2002a, 2009, 2013) and are now almost 
universally used to check the validity of refined crystal structures.

The bond-valence model: Background
I am interested primarily in oxide and oxysalt minerals, which 

have significant differences between the electronegativities of the 
bonded atoms; I will refer to these atoms as cations and anions, 
with no implication as to the character of their chemical bond-
ing. Let us define a crystal, liquid, or molecule as a network that 
consists of atoms connected by heteronuclear chemical bonds. 
Cations and anions alternate along any bond path through this 
network, and the network must conform to the law of electro-
neutrality: the total valence of the cations is equal to the total 
valence of the anions. Bond valence is defined as the strength 
of a chemical bond between any two ions.

There has been extensive work relating the form and numeri-
cal parameters of bond-valence curves to different models of 
chemical bonding (e.g., Burdett and Hawthorne 1993; Preiser et 
al. 1999; Gibbs et al. 2014), and it has become apparent that this 
approach is quite general in that it applies equally well to struc-
tures with predominantly ionic bonds and with predominantly 
covalent bonds. Brown (1981, 2002a, 2002b, 2009, 2013) has 
systematically developed this approach into a comprehensive 
model, the Bond-Valence Model that addresses many aspects of 
chemical bonding in inorganic crystals. The bond-valence model 
actually consists of two distinct parts, Bond-Valence Theory 
and empirical bond-valence curves (Fig. 4). Most scientists 
have tended to ignore bond-valence theory and focus solely on 
using empirical bond-valence curves for: (1) validating the ste-
reochemical details resulting from crystal-structure refinement, 
and (2) various crystal-chemical purposes. It does not seem to 
be generally realized that bond-valence theory is formally inde-
pendent of the analytical bond-valence curves used extensively 
in crystallography and crystal chemistry.

Bond-valence theory
Bond-valence theory is based on three principal axioms 

(Fig. 5): (1) the valence-sum rule; (2) the loop rule; and (3) the 
valence-matching principle.

The valence-sum rule. The sum of the bond valences at each 
atom is equal to the magnitude of the atomic valence.

For any field, Gauss’ law relates the flux of the field intensity 
through a closed surface to the total net charge enclosed within 
that surface. The valence-sum rule is thus a corollary of Gauss’s 
theorem applied to the electrostatic potential field, and the fluxes 
linking atoms in this model correlate very strongly with the bond 

Figure 4. The two components of the bond-valence model: Bond-
valence theory (left) and bond-valence curves (right).
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valences assigned in the bond-valence method (Preiser et al. 
1999). Topological properties of the various fields associated 
with an array of atoms are discussed by Brown (2002b). Long-
range Coulombic interactions are inductively transmitted through 
a crystal by the operation of Gauss’ law on the Coulomb field at 
each atom in the crystal (Preiser et al. 1999).

The loop rule. The sum of the directed bond valences around 
any closed path (loop) of bonds in the structure is equal to zero.

The valence-matching principle. The Lewis acid strength 
of a cation may be defined as its characteristic (bond) valence, 
which is equal to its atomic (formal) valence/mean coordination-
number (Brown 1981).

The Lewis-base strength of an anion can be defined as the 
characteristic valence of the bonds formed by the anion. If two 
ions form a bond, the magnitude of the strength of the bond from 
the cation to the anion is controlled by the Lewis-acid strength of 
that cation, and the magnitude of the strength of the bond from 
the anion to the cation is controlled by the Lewis-base strength 
of that anion. However, the bond from the cation to the anion 
is the same bond as that from the anion to the cation, and hence 
the magnitudes of the Lewis acid strength and the Lewis base 
strengths of the constituent ions must be approximately the same 
for that bond to form (Fig. 6). This argument leads to a particular 
criterion for chemical bonding, the valence-matching principle 
(Brown 2002a, 2009):

Stable structures will form where the Lewis-acid strength of 
the cation closely matches the Lewis-base strength of the anion.

As a chemical bond involves both a cation and an anion, the 
electron-attracting capacity of the cation must match the electron-
donating capacity of the anion for a chemical bond to form.

The above definition of Lewis basicity is often not very 
useful, as variations in bond valence around anions are much 
greater than variations in bond valence around cations, and 
any characteristic bond valence that is assigned has too large 
a dispersion to be useful. For example, in dravite (Hawthorne 
et al. 1993), Na is [9]-coordinated and the O atoms to which it 
is bonded receive on average 0.11 v.u. from each Na-O bond. 
In CrO3 (Stephens and Cruickshank 1970), which consists of 
pyroxene-like chains of [4]CrO3, one O is bonded only to Cr6+ 
and receives 2.00 v.u. from the Cr-O bond. With this amount of 
variation in bond valence, 0.11–2.00 v.u., it is not useful to define 
a Lewis-base strength for O2–. Consider a complex oxyanion such 
as (SO4)2– (Fig. 7): The central S6+ cation provides 1.5 v.u. to 

each coordinating O atom and these need an additional 0.5 v.u. 
from other neighboring cations. If the coordination number of 
O2– is [n], then the average valence of the bonds to O2– (exclusive 
of the S-O bond) is 0.5/(n – 1) v.u.; where n = 2, 3, 4, or 5, the 
mean bond valences to O2– are 0.50, 0.25, 0.17, or 0.11 v.u., 
respectively. The average bond valence received by the (SO4)2– 
group is the same as the average bond valence received by each 
individual O2– anion, and allows us to define a Lewis basicity 
for the oxyanion group. For the (SO4)2– oxyanion, the possible 
average bond valences are quite tightly constrained (0.50–0.11 
v.u.) and we may calculate a useful Lewis basicity. Tables 1 and 
2 list Lewis acidities and Lewis basicities for geochemically 
common cations and oxyanions.

The valence-matching principle is the most important and 
powerful idea in bond-valence theory (Hawthorne 2012): it al-
lows us not just to interpret known structures or compounds; we 
can test the stability of possible compounds (in terms of whether 
they can exist or not), which moves us from a posteriore to a 
priori analysis. I will consider three simple examples (taken from 
Hawthorne 1994) to illustrate this principle. 

Consider the composition Na2SO4. The Lewis basicity of the 
(SO4) group is 0.17 v.u. (Table 2) and the Lewis acidity of Na 
is 0.17 v.u. (Table 1). The Lewis basicity of the anion matches 
the Lewis acidity of the cation, the valence-matching principle 
is satisfied, and thenardite, Na2SO4, is stable.

Consider the composition Na4SiO4. The Lewis basicity of the 
(SiO4) group is 0.33 v.u. (Table 2) and the Lewis acidity of Na 

Figure 5. The three axioms of bond-valence theory.

Figure 6. The valence-matching principle.

Figure 7. The bond-valence structure of the (SO4)2– oxyanion in 
thenardite, with the individual bond valences shown in valence units 
(after Hawthorne 1994).
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is 0.17 v.u. The Lewis basicity of the anion does not match the 
Lewis acidity of the cation, the valence-matching principle is 
not satisfied, and Na4SiO4 is not a mineral (or stable structure).

Consider the composition Na[AlSiO4]. The Lewis basicity of 
the [AlSiO4] group is 0.13 v.u. and the Lewis acidity of Na is 0.17 
v.u. The Lewis basicity of the anion matches (approximately) 
the Lewis acidity of the cation, the valence-matching principle 
is satisfied, and nepheline, Na AlSiO4 is a stable structure. More-
over, nepheline shows incommensurate behavior (e.g., Angel et 
al. 2008), perhaps reflecting the slight mismatch between the 
Lewis basicity and acidity of its constituents.

These arguments illustrate the power of the valence-matching 
principle. We may consider the possible stability of specific 
chemical compositions of interest. It is important to recognize 
that this is a priori analysis; we need no crystal-structure infor-
mation to evaluate the potential stability (i.e., existence) of any 
chemical formula. Moreover, this is a “back-of-the-envelope” 
calculation that is not obscured by numerical complexity.

A priori bond valences. The valence-sum rule and the loop 
rule provide a series of simultaneous equations (sometimes called 
network equations) relating bond valences to the constraints 
of the valence-sum rule and the loop rule. We may designate 
these bond valences as a priori bond valences as they need no 
geometrical information (i.e., experimental bond lengths) to 
be calculated: they are derived from the bond topology of the 
structural arrangement and the charges of the ions at the vertices 
of the graph of this arrangement.

Bond-valence curves
For any pair of bonded atoms, bond valence is inversely 

proportional to the length of the bond: large bond valences are 
associated with short bonds, and small bond valences are associ-
ated with long bonds. To obtain numerical values for the bond 
valences, each bond is assigned a bond valence such that the 
valence-sum rule is satisfied (Brown 2002a): The sum of the bond 
valences at each atom is equal to the magnitude of the atomic 
valence. Thus bond valences are scaled to the formal valences of 
the cations and anions involved in the chemical bonds. If this is 

done for a relatively large number of structures, one may derive 
numerical parameters, bond-valence parameters (or bond-valence 
curves) that may be used to calculate bond valences from bond 
lengths. Such parameters are listed by Brown (2002a, 2009, 
2013) from a wide variety of sources, and are commonly used to 
validate experimentally derived crystal structures and to examine 
various crystal-chemical aspects of their atomic arrangements.

Brown and Shannon (1973) discussed the differences between 
the bond-valence model and the ionic model. In the bond-valence 
model, a structure consists of atom cores held together by va-
lence electrons associated with the chemical bonds between the 
atoms, and they explicitly state that the valence electrons may 
be associated with chemical bonds in a symmetric (covalent) 
or asymmetric (ionic) manner. Thus a priori knowledge of the 
electron distribution is not required to use this approach. Burdett 
and Hawthorne (1993) showed that the form of the bond-valence 
curves may be derived algebraically from a molecular-orbital 
description of a solid in which there is a significant energy gap 
between the interacting orbitals on adjacent atoms, whereas Prei-
ser et al. (1999) gave an ionic justification of the bond-valence 
model. One may conclude that the bond-valence model is not 
a theory of “ionic” bonds or “covalent” bonds. It is a simple 
yet quantitative method that allows us to examine and analyze 
the stereochemistry and physical properties of both simple and 
complex solids; it is used primarily for crystals, but also can be 
used for surfaces (Schindler et al. 2004a, 2004b; Bickmore et 
al. 2004, 2006), glasses, and liquids. Although the idea of bond 
valence grew out of Pauling’s second rule, the wide variety of 
its application and subsequent examination of its theoretical 
underpinnings show that it is a theory of atomic arrangements 
in its own right, without any reference to specific models of the 
chemical bond. Its power lies in the fact that it is a back-of-the-
envelope method in which the physical details are not obscured 
by complexities of computation. Each year sees new applications 
to an increasing array of problems as the bond-valence model 
takes a central role in our understanding of complex materials.

Bond-topological controls on the structure and chemical 
composition of oxysalt minerals

The valence-matching principle is a powerful method of 
assessing the stability (i.e., existence or otherwise) of potential 
chemical compounds, and we saw above how we can a priori predict 
the existence of Na2SO4 (thenardite), the non-existence of Na4SiO4, 
and the existence of NaAlSiO4 (nepheline). For such simple structures, 
this approach is straightforward. However, for more complicated 
minerals, e.g., botryogen, Mg2(H2O)10[Fe2

3+(SO4)4(OH)2](H2O)2 
and metavoltine, K2Na6Fe2+(H2O)6[Fe3

3+O(SO4)6(H2O)3]2(H2O)6, 
the approach is less transparent. Yet these complex minerals 
raise some very fundamental questions pertaining to the details 
of their chemical composition. Again: (1) why does botryogen 
have Mg rather than Ca or Ba as its divalent interstitial cation; 
(2) why does it have divalent interstitial cations, Mg2, rather 
than monovalent interstitial cations, Na4 or K4; (3) why does it 
have 14 (H2O) groups in its formula; why does not it have (for 
example) 12 (H2O) groups; and (4) why does it have any (H2O) 
groups at all in its formula; what is the role of these (H2O) groups 
in the structure? How do the chemical formula and structural 
arrangement of botryogen relate to its stability as a function of 

Table 1.	 Lewis acid strengths (v.u.) for cations
Li	 0.21	 Sc	 0.49	 Cu2+	  0.45
Be	 0.50	 Ti3+	 0.50	 Zn	  0.35
B	 0.87	 Ti4+	 0.67	 Ga	  0.65
C	 1.35	 V3+	 0.50	 Ge	  0.89
N5+	 1.67	 V5+	 1.20	 As5+	  1.13
Na	 0.16	 Cr3+	 0.50	 Se6+	  1.50
Mg	 0.33	 Cr6+	 1.50	 Rb	  0.12
Al	 0.57	 Mn2+	 0.34	 Sr	  0.23
Si	 1.00	 Mn3+	 0.52	 Sn4+	  0.68
P	 1.25	 Mn4+	 0.67	 Sb5+	  0.83
S	 1.50	 Fe2+	 0.34	 Te6+	  1.00
Cl7+	 1.75	 Fe3+	 0.50	 Cs	  0.11
K	 0.13	 Co2+	 0.35	 Ba	  0.20
Ca	 0.27	 Ni2+	 0.34	 Pb2+	  0.20
Note: Values taken from Brown (2002), except V5+ (Schindler et al. 2000) and Pb2+, 
which was estimated from several oxysalt mineral structures.

Table 2.	 Lewis basicities (v.u.) for selected oxyanions
(BO3)3B	 0.33	 (CO3)2B	 0.22
(SiO4)4B	 0.33	 (NO3)3B	 0.11
(AlO4)3B	 0.42	 (VO4)3B	 0.25
(PO4)3B	 0.25	 (SO4)2B	 0.17
(AsO4)3B	 0.25	 (CrO4)2B	 0.17
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Eh and pH? We cannot say that we understand minerals until 
we understand what controls their chemical compositions at 
this level of detail.

To address this issue for complex structures, Hawthorne 
(1983, 1985) divided a structure into two components: the 
structural unit, the strongly bonded part of the structure, con-
sisting of oxyanions and low-coordination-number cations; and 
the interstitial complex, the weakly bonded part of a structure, 
usually consisting of monovalent cations, large divalent cations 
and (H2O) groups. To do this, we must define what we mean by 
“strongly bonded” and “weakly bonded.” Many minerals contain 
octahedrally coordinated divalent cations, and many of these 
minerals, e.g., forsterite, enstatite, are stable at high tempera-
ture. Many minerals contain monovalent and divalent cations 
in higher coordination numbers, e.g., thenardite, gypsum, and 
many minerals are held together by hydrogen bonds; these miner-
als commonly crystallize from aqueous solution at ambient (or 
close to ambient) conditions. An appropriate boundary between 
“strongly bonded” and “weakly bonded” will be between 0.33 
v.u. (for [6]Mg) and 0.20 v.u. (for common hydrogen bonds, Ba, 
Pb2+) or 0.23 v.u. (for Sr), and I will take it as 0.30 v.u., although 
the exact value will change depending on other bond valences 
in a structure.

If we can define Lewis acidities and Lewis basicities for the 
structural unit and the interstitial complex, we may examine 
their interaction using a mean-field version of the valence-
matching principle. This binary representation of a complex 
structure is illustrated in Figure 8 for botryogen, {Mg2(H2O)10}
[Fe2

3+(SO)4(OH)2](H2O)2. We have partitioned the structure into 
a structural unit: [Fe2

3+(SO)4(H2O)2], a cluster of Fe3+ octahedra 
and sulfate tetrahedra (shown by cation-centered polyhedra in 
Fig. 8), and an interstitial complex: {Mg2(H2O)12}, Mg cations 
together with their associated (H2O) groups. We may calculate a 
Lewis basicity for the structural unit and a Lewis acidity for the 
interstitial complex as aggregate properties of the constituents 
of these two units (see Hawthorne and Schindler 2008), and 
their interaction may be examined in a manner similar to the 
application of the valence-matching principle to simple chemical 

compositions using the principle of correspondence of Lewis 
acidity-basicity (Hawthorne and Schindler 2008):

Stable structures will form where the Lewis-acid strength of 
the interstitial complex closely matches the Lewis-base strength 
of the structural unit.

As noted above, the principle of correspondence of Lewis 
acidity-basicity is thus the mean-field equivalent of the valence-
matching principle. We may now use this principle in conjunction 
with the binary representation of complex structures to examine 
the reasons why minerals have the chemical compositions that 
they do, and to predict the possible chemical compositions of 
potential minerals.

The role of H2O in crystal structures
There are several different major roles for hydrogen (H) in 

crystal structures (Hawthorne 1992; Hawthorne and Baur 1994). 
The (OH) and (H2O) groups are very important because of their 
polar nature: on the O side, each group acts as an anion, whereas 
on the H side, the group acts as a cation. The hydrogen-bond 
interaction is extremely important; it moderates many biological 
interactions essential to life, and it imparts great diversity both 
to atomic arrangements in minerals and to atom interactions in 
minerals. An (H2O) group may: (1) moderate Lewis acidity and 
Lewis basicity, and (2) control the dimensional polymerization 
of structural units. First, I will consider how (H2O) can act as a 
moderator of bond valence.

(H2O) bonded to one cation. Consider the atomic arrange-
ments in Figures 9a and 9b: A cation, M, bonds to an anion S 
with a bond valence of v v.u., and a cation, M, bonds to an (H2O) 
group, and the (H2O) group bonds to an anion, S. In Figure 9a, 
the anion receives one bond of bond valence v v.u. from the 
cation M. In Figure 9b, the O atom of the (H2O) group receives 
a bond valence of v v.u. from the cation; the bond-valence re-
quirements of the central O atom are satisfied by two short O-H 
bonds of strength (1 – v/2) v.u. Each H forms a hydrogen bond 
with the S anion to satisfy its own bond-valence requirements, 
and the S anion thus receives a bond valence one half (Fig. 9b) 
of what it received where it was bonded directly to the M cation 
(Fig. 9a). The (H2O) group is functioning as a bond-strength 
transformer, dividing one bond (bond strength = v v.u.) into two 
bonds of half the strength (bond valence = v/2 v.u.); this type 
of (H2O) group is called a transformer (H2O) group (Hawthorne 
and Schindler 2008).

(H2O) bonded to two cations. Consider the atomic arrange-
ment in Figure 9c: two cations bond to an (H2O) group, which 
bonds to two anions. The O atom receives a bond valence of 2v 
v.u. from the cations, and the valence-sum rule at this O anion is 
satisfied by two short O-H bonds of strength (1 – v) v.u. Each H 
forms a hydrogen bond with a neighboring anion, which receives 
the same bond valence (v v.u., Fig. 9c) as where it is bonded 
directly to one M cation (Fig. 9a). The (H2O) group does not act 
as a bond-valence transformer, is a non-transformer (H2O) group.

(H2O) not bonded to any cation. Consider the atomic ar-
rangement in Figure 9d: (H2O) is involved only in a hydrogen-
bond network. In such an environment, the O atom is usually 
[4]-coordinated, and the (H2O) group participates in two O-H 
(donor-hydrogen) bonds and two H···O hydrogen bonds. Two 
hydrogen bonds of strength v v.u. are incident at the O atom of 

Figure 8. Partitioning of the crystal structure of botryogen, 
Mg2(H2O)12[Fe2

3+(SO4)4(OH)2](H2O)2, into two units, the strongly bonded 
structural unit (shown as colored polyhedra) and the weakly bonded 
interstitial complex (shown as individual atoms and chemical bonds). 
Pink tetrahedra = (SO4) groups; yellow octahedra = (Fe3+O6) octahedra; 
large orange circles = O atoms; small blue circles = Mg atoms; black 
lines = Mg-O bonds.
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the (H2O) group, the bond-valence requirements of the central O 
atom are satisfied by two O-H bonds of strength (1 – v) v.u., and 
each H atom forms a hydrogen bond of strength v v.u. to another 
anion (Fig. 9d). Hence an (H2O) group not bonded to any cation 
does not modify the strengths of its exident chemical bonds, it 
merely propagates them to more distant anions, as is the case 
where the (H2O) group is bonded to two cations (Fig. 9c); this 
type of (H2O) is designated non-transformer (H2O).

(H2O) as a component of the interstitial complex. As a 
component of an interstitial complex, (H2O) groups have two 
principal functions: (1) to satisfy the bond-valence requirements 
of an interstitial cation where there are not enough anions to do 
so from adjacent structural units, and (2) to function as a bond-
valence transformer between interstitial cations and the structural 
unit. The first case involves only propagating bond valence 
through space, and hence may involve non-transformer (H2O) 
groups. The second case involves transformer (H2O) groups, and 
these will moderate the Lewis acidity of the interstitial complex. 
Hence the transformer (H2O) groups of the interstitial complex 
affect the stability of a chemical composition through the opera-
tion of the principle of correspondence of Lewis acidity-basicity. 
Below I will show how this approach to understanding the role 
of (H2O) groups can give us a quantitative understanding of the 
chemical compositions of interstitial complexes.

Controls on the amount of (H2O) in minerals: 
The principle of correspondence of Lewis 

acidity-basicity

Calculation of Lewis basicity

The Lewis basicity of a structural unit is the average bond 
valence of bonds to that structural unit from adjacent interstitial 
complexes and structural units (Hawthorne and Schindler 2008). 
The bonds received by the structural unit must balance the charge 
of the structural unit, and hence we may define the Lewis basicity 
of the structural unit as the charge on the structural unit divided 
by the number of bonds to the structural unit. So we need to 
know: (1) the effective charge on the structural unit, and (2) the 
number of bonds (from the interstitial complex and adjacent 
structural units) needed by the structural unit.

What is the effective charge of the structural unit? The for-
mal charge is not necessarily appropriate to use in this context, 
particularly for structures with formally neutral structural units 
as then there is no mechanism for the structure to link together. 
Consider lizardite, Mg3Si2O5(OH)4 (Fig. 10). [Mg3Si2O5(OH)4]0 
sheets link to each other via hydrogen bonds from the (OH) 
groups in the layer of octahedra of one sheet to the bridging O 
atoms in the layer of tetrahedra of the adjacent sheet. The hydro-
gen bonds transfer charge from one sheet to the next, and impart 
a polar character to the sheet; the sheet has cation character on 
the (OH) side and anion character on the silicate side (shown by 
+ and – signs in Fig. 10). To correctly describe the interaction 
between adjacent structural units, we must factor this transfer of 
charge into our calculation of the charge of the structural unit. 
The effective charge of lizardite is 0 (the formal charge of the 
structural unit) + 4 × 0.20 (the charge transferred by hydrogen 
bonding, assuming a hydrogen bond valence of 0.20 v.u., Brown 
1981) = 0.80–. Note that such a transfer of charge can only involve 

cations with very asymmetric coordinations (commonly H+, less 
commonly stereoactive-lone-pair cations such as Pb2+ or Bi3+). 
Note that minerals with formally charged structural units may 
still be polar, and this transfer of charge must be built in to the 
calculation of Lewis basicity. For metavoltine, K2Na6Fe2+(H2O)6 

[Fe3
3+O(SO4)6(H2O)3]2(H2O)6, the effective charge of the structural 

unit (in square parentheses) is 10 (the formal charge) + 12 × 0.20 
(the charge transferred by 12 hydrogen bonds) = 12.4+. We define 

Figure 9. The bond-valence structure around (H2O) as a function 
of local bond-topology; (a) a cation, C (green) bonded to an anion, S 
(yellow) with bond valence v v.u.; (b) a cation bonded to an (H2O) 
group (O = orange; H = black) with bond valence v v.u.; the H atoms 
hydrogen-bond to the anions S with bond valence v/2 v.u. per bond; (c) 
two cations bonded to an (H2O) group with bond valence v v.u. per bond; 
the H atoms hydrogen-bond to the anions S with bond valence v v.u. per 
bond; (d) two H atoms hydrogen-bonded to an (H2O) group with bond 
valence v v.u. per bond; the H atoms of the (H2O) group hydrogen-bond 
to the anions S with bond valence v v.u. per bond.

Figure 10. Representation of the crystal structure of lizardite, 
showing the polar nature of the structural unit; yellow = Mg octahedra; 
lilac = Si tetrahedra; red circles = H atoms; thick black lines = Odonor-H 
bonds; broken lines = hydrogen bonds. The acidic (+) and basic (–) parts 
of the structural unit are indicated.



HAWTHORNE: TOWARD THEORETICAL MINERALOGY: A BOND-TOPOLOGICAL APPROACH704

the effective charge of the structural unit as the formal charge as 
modified by charge transferred by hydrogen bonding from donor 
anions within the structural unit.

What is the number of bonds needed by the structural unit?
First, I will show how we can calculate this quantity if every-

thing is known about the crystal structure. The total number of 
chemical bonds in a structure is the sum of the products of the 
cation-coordination numbers and the numbers of those cations 
in the formula unit. We may similarly calculate the number of 
bonds in the structural unit. The difference between these two 
values is the number of bonds needed by the structural unit. 
This calculation is trivial if the details of the crystal structure are 
known. However, we wish to predict information about crystal 
structures, and we do not know such stereochemical details. 
We must be able to predict this information if we want a priori 
analysis of crystal structures; how to do this is covered in the 
next few sections.

The charge deficiency per anion: CDA
Schindler et al. (2000b) defined average basicity as the aver-

age bond valence per O atom contributed by the interstitial spe-
cies and adjacent structural units. Average basicity correlates with 
the average O-coordination number of the structural unit, and this 
correlation plays a critical role in stereochemical prediction. As 
indicated by its definition, this quantity is the additional aver-
age incident bond valence required from the interstitial complex 
by each O atom of the structural unit to satisfy the principle of 
correspondence of Lewis acidity-basicity, and Schindler et al. 
(2006) renamed this quantity the charge deficiency per anion, 
or CDA. Below we will see that the CDA of a structural unit 
correlates strongly with the numbers of bonds to those structural 
units from the interstitial complex and neighboring structural 
units. It is these correlations that play a major role in a priori 
prediction of structural features.

The CDA of a structural unit is the effective charge of the 
structural unit divided by the number of O atoms in the structural 
unit. For bloedite, Na2[Mg(SO4)2(H2O)4], the effective charge of 
the structural unit is 2 + 0.2 × 8 = 3.6– and the number of O atoms 
in the structural unit is 12; thus the CDA = 3.6/12 = 0.30 v.u.

The number of bonds required by the structural unit
The CDA is a measure of the bond valence required by each 

O atom of the structural unit from the interstitial complex and 
adjacent structural units. Schindler et al. (2006) showed that there 
is a positive correlation between the CDA of the structural unit 
and the average number of bonds received by O atoms of the 
structural unit from the interstitial complex and adjacent struc-
tural units, <NB>in. This relation, shown for sulfate minerals in 
Figure 11, is very important as it allows us to predict a range for 
the number of bonds from the interstitial complex and adjacent 
structural units to a specific structural unit. In turn, we may then 
calculate the range in Lewis basicity for that structural unit.

For bloedite, Na2[Mg(SO4)2(H2O)4], the CDA = 0.30 v.u. 
(see above). Using Figure 11, we may read off the range for the 
number of bonds to anions of the structural unit: 1.55 to 2.44. The 
corresponding range in the total number of bonds to the structural 
unit is (1.55 to 2.44) × 12 = 18.6 to 29.3, and the resulting range 

in Lewis basicity of the [Mg(SO4)2(H2O)4]2– structural unit is the 
effective charge divided by the range in the number of bonds to 
the structural unit: 3.6/(18.6 to 29.3) = 0.12 to 0.19 v.u.

The parameter <NB>in is required to establish a relation 
between O-coordination number and CDA. To have predictive 
power, we need to be able to derive the number of bonds required 
by O atoms a priori, without reference to an atomic arrangement, 
and the type of relation in Figure 11 allows such a prediction. 
There is another important issue: the data in Figure 11 form a 
band rather than a linear trend, indicating that the structural 
units can accommodate a range in the number of bonds from 
the interstitial complex. It seems apparent that structural units 
maintain their stability as the pH of the environment changes 
by varying the number of bonds they accept from the interstitial 
complex and adjacent structural units. Thus the range in numbers 
of bonds from the interstitial complex and adjacent structural 
units to the structural unit reflects the range in pH over which 
the mineral is stable (Hawthorne and Schindler 2008). As shown 
above, Figure 11 allows calculation of the range of possible 
Lewis-base strength for a specific structural unit (see example 
for bloedite given above).

Factors affecting the composition of the interstitial complex
It is useful to represent the variation in Lewis-acid strength 

of an interstitial complex as a function of chemical composition 
and structure in a graphical fashion, as this facilitates use of the 
principle of correspondence of Lewis acidity-basicity to examine 
the interaction between the structural unit and interstitial complex 
as a function of varying chemical composition of each component 
of a structure. The chemical formula of a generalized interstitial 
complex may be written as

{[m]M +
a
[n]M b

2+[l]Mc
3+(H2O)d(H2O)e([q]H2O)f(H2O)g}2+

where M are interstitial cations of different coordination number 
[m], [n], and [l], and valence; d is the amount of transformer 
(H2O); e is the amount of non-transformer (H2O); and g is the 

Figure 11. Correlation between the CDA of structural units and 
the average number of bonds from the interstitial complex and adjacent 
structural units, <NB>in, to O atoms in the corresponding structural units 
of sulfate minerals. The upper and lower bounds of the distribution are 
used to define the characteristic range in the number of bonds accepted 
by a specific structural unit.
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amount of (H2O) not bonded to any interstitial cation (Schindler 
and Hawthorne 2001a). The Lewis acidity of the interstitial 
complex may be represented graphically as a function of the 
variables a to g, l to n, q and Z in the above expression (Fig. 12): 
the ordinate is the Lewis acidity of the interstitial complex, the 
abscissa is the number of transformer (H2O) groups per cation, 
and the curved lines show the variation in Lewis acidity as a 
function of the number of transformer (H2O) groups per cation for 
interstitial cations of different coordination number and formal 
charge (the corresponding cation charges and coordinations are 
shown to the left of the curves). Monovalent anions (OH, Cl) 
may also be incorporated into this procedure (see Hawthorne 
and Schindler 2008 for details).

Figure 13 shows the operation of the principle of correspon-
dence of Lewis acidity-basicity. The range in Lewis basicity of 
the structural unit is plotted on the graph of the Lewis-acidity 
function (Fig. 12). Where the functions representing the proper-
ties of the interstitial complexes and the structural unit do not 
intersect (i.e., outside the yellow band in Fig. 13a), structures of 
those compositions are not stable as the Lewis acidities of these 
interstitial complexes are not within the Lewis-basicity range of 
the interstitial complex represented on the graph; the principle 
of correspondence of Lewis acidity-basicity is not satisfied, and 
structures of these compositions will not form. Where the func-
tions representing the properties of the interstitial complexes and 
the structural unit do intersect (i.e., within the yellow band in 
Fig. 13a), structures of those compositions are potentially stable 
as the Lewis acidities of these interstitial complexes are within 
the Lewis-basicity range of the interstitial complex represented 
on the graph; the principle of correspondence of Lewis acidity-
basicity is satisfied, and structures of these compositions may 
form. Let us look at what we can do with this approach for a 
subset of the sulfate minerals.

Hydroxy-hydrated sulfate minerals
The structural hierarchy developed for sulfate minerals by 

Hawthorne et al. (2000a) forms a general framework for the ex-
amination of sulfate structures from a bond-topologic perspective. 

Schindler et al. (2006) examined sulfate structures in this way and 
showed that many crystal-chemical features of sulfate minerals 
may be understood in terms of the principle of correspondence 
of Lewis acidity-basicity, in parallel with similar work on borate 
minerals (Hawthorne et al. 1996a; Schindler and Hawthorne 
2001a, 2001b, 2001c), vanadate minerals (Schindler et al. 2000b), 
and uranyl minerals (Burns 2005; Schindler and Hawthorne 2004, 
2008). We will look at two structural units in this group and use 
the principle of correspondence of Lewis acidity-basicity to derive 
possible interstitial complexes and compare them with what is 
observed in minerals.

[M2+(SO4)2(H2O)4]2– (M = Mg, Ni, Zn, Fe2+). The struc-
tural unit [M2+(SO4)2(H2O)4]2– occurs in bloedite, {Na2}
[Mg(SO4)2(H2O)4], nickelbloedite, {Na2}[Ni(SO4)2(H2O)4], leo-
nite, {K2}[Mg(SO4)2(H2O)4], changoite, {Na2}[Zn(SO4)2(H2O)4], 
mereiterite, {K2}[Fe(SO4)2(H2O)4], and roemerite, {Fe2+(H2O)6}
[Fe2+(SO4)2(H2O)4] (Hawthorne et al. 2000a). Above, we calculated 
a range in Lewis basicity for this structural unit (in bloedite): 
0.12–0.19 v.u.

Values of Lewis acidity for interstitial monovalent cations 
with coordination numbers [6] to [8] intersect the range in Lewis 
basicity for 0–2, 0–1, and 0 transformer (H2O) groups per cation, 

Figure 12. Variation in Lewis acidity of a general interstitial 
complex as a function of the number of transformer (H2O) groups per 
cation. The lines shown are for interstitial cations with formal charges 
and coordination numbers shown to the left of the plot. After Hawthorne 
and Schindler (2008).

Figure 13. Variation in Lewis acidity with the number of transformer 
(H2O) groups per cation for different interstitial-cation charges and 
coordination numbers for a general interstitial complex; the range in Lewis 
basicity of the structural units for selected sulfate minerals are shown by 
the yellow fields: (a) [M2+(SO4)2(H2O)4]2–; (b) [Fe3+(OH)(SO4)2]2–.
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respectively. With regard to divalent interstitial cations, [6]M2+ 
can occur with 4–6 transformer (H2O) groups and [8]M2+ can oc-
cur with 2–8 transformer (H2O) groups. With regard to trivalent 
interstitial cations, [8]M3+ can occur only with 8 transformer (H2O) 
groups, [7]M3+ and [6]M3+ cannot occur at all. All minerals of this 
group conform to these predictions: bloedite, nickelbloedite and 
changoite have an interstitial complex {[6]Na2(H2O)0…}, leonite 
and mereiterite have an interstitial complex {[6]K2(H2O)0…}, and 
roemerite has an interstitial complex {[6]Fe2+(H2O)6….}.

[Fe3+(OH)(SO4)2]2–. The structural unit [Fe3+(OH)(SO4)2]2– 
occurs in sideronatrite, {Na2(H2O)3}[Fe3+(SO4)2(OH)], metasid-
eronatrite, {Na4(H2O)3}[Fe3+(SO4)2(OH)]2(H2O)3, chaidamuite, 
{[6]Zn(H2O)4}[Fe3+(SO4)2(OH)], and guildite, {[4+2]Cu2+(H2O)4}
[Fe3+(SO4)2(OH)]. The effective charge of this structural unit is 
(2 + 0.2 × 1)– = 2.2–, the number of O atoms in the structural unit 
is 9, and the CDA of the structural unit is 2.2/9 = 0.24 v.u. With 
this value, we may derive the lower and upper bounds for <NB>in 
using Figure 11: 1.10–1.75. The resultant range in the number of 
bonds required by the structural unit is 1.14–1.97 × 9 = 10.3–17.7. 
Dividing the effective charge by the number of bonds required, 
2.2/(10.3–17.7), gives the range in Lewis basicity: 0.12–0.22 v.u. 
As before, we plot this range in Lewis basicity on the graph of the 
Lewis-acidity function, Figure 13b, and can predict the range in 
chemical composition for possible interstitial complexes.

Values of Lewis acidity for interstitial monovalent cations 
with coordination numbers [5] to [7] intersect the range in Lewis 
basicity for 0–2, 0–1, and 0 transformer (H2O) groups per cation, 
respectively. With regard to divalent interstitial cations, [6]M2+ 
can occur with 3–6 transformer (H2O) groups, [7]M2+ can occur 
with 2–7 transformer (H2O) groups, [8]M2+ can occur with 1–8 
transformer (H2O) groups, and [8]M3+ can occur with 5–8 trans-
former (H2O) groups. All minerals of this group conform to these 
predictions: sideronatrite and metasideronatrite have an interstitial 
complex {[6]Na2(H2O)0…}, guildite has an interstitial complex 
{[6]Cu2+(H2O)4}, and chaidamuite has an interstitial complex 
{[6]Zn(H2O)4} (Schindler et al. 2006).

The approach described above provides significant understand-
ing of what factors affect the chemical compositions of minerals, 
and some prediction of the details of interstitial cations and anions 
in minerals. For some structural units, the predicted interstitial 
complexes vary over a wide range of cations or transformer (H2O) 
groups, which in terms of prediction, is not satisfactory. This 
indicates the need for further development along these lines. It 
seems likely that the compositions of interstitial complexes in these 
circumstances are also affected by the pH of their environment 
during crystallization. Some very interesting questions now emerge 
concerning the nature of the crystallization process. Does the pH of 
the environment have a strong effect on the form of the structural 
unit or the amount of (H2O) incorporated into the structure? Does 
the form of the structural unit dictate the identity of the interstitial 
cations, or does the availability of a particular interstitial cation 
dictate the form of the structural unit? Are there synergetic interac-
tions between these factors? We can begin to investigate some of 
these questions using this bond topology approach.

Other applications
This approach has also been used to examine the structure, 

chemical composition and stability of vanadate (Schindler et 

al. 2000a, 2000b), borate (Schindler and Hawthorne 2001a, 
2001b, 2001c), and uranyl-oxysalt minerals (Schindler and 
Hawthorne 2004, 2008), and has the potential to be applied to 
other low-temperature oxysalt minerals. It has also been used 
to consider crystal morphology and surface features (Schindler 
et al. 2004a, 2004b) and crystallization-dissolution of minerals 
in aqueous solutions (Hawthorne and Schindler 2014). An im-
portant aspect of this approach is that it relates bond topology 
and bond valence to processes involved in crystallization, and it 
may also be applicable to chemical reactions. The valence-sum 
rule is used for atoms in crystals, glasses, and aqueous fluids. It 
seems reasonable that atoms in transition between these various 
states of matter also tend to obey the valence-sum rule. This led 
Hawthorne (2012) to propose the “reaction principle”:

During a chemical reaction, atoms move relative to each 
other such that they continually minimize local deviations from 
the valence-sum rule. Thus as the atomic arrangements pass 
through their excited states, the atoms follow trajectories that are 
both consistent with those excited states and minimize the local 
deviations from the valence-sum rule at all stages of the reaction.

It also suggests that the arrangements of atoms in the reactants 
may significantly affect the arrangements of atoms in the prod-
ucts, as many mineral reactions will tend to occur by breaking the 
weaker chemical bonds in the reactants and maintaining the stronger 
chemical bonds, thus giving us a possible mechanism for explaining 
Ostwald’s Step Rule1 (see Morse and Casey 1988 for an excellent 
description of this rule in geochemical reactions). An example of this 
mechanism was given by Gaskell et al. (1991) who showed that a 
CaSiO3 glass has short- and medium-range structure very similar to 
that of wollastonite. This suggests that in a CaSiO3 melt close to the 
liquidus, the product in the crystallization of wollastonite is already 
templated in the reactant, and the atoms in the system obey the 
reaction principle, and crystallize as wollastonite. It is unfortunate 
that the structures of magmas are not well-characterized at medium 
range, but the possibility that such templating of minerals occurs 
in magmas provides additional incentive to learn more about the 
structures of magma and the details of crystallization processes at 
the atomic scale in magmatic systems.

Lewis basicity of the structural unit and the 
formation of rocks

A major constraint on the chemistry and atomic 
arrangements of structural units

Above, we defined the boundary between the bonds of the 
structural unit and the bonds of the interstitial complex as 0.30 
v.u. The strength of the bonds involving the interstitial complex 
is thus <0.30 v.u., and hence its Lewis acidity is less than 0.30 
v.u. As the principle of correspondence of Lewis acidity-basicity 
requires that the Lewis basicity of the structural unit match the 
Lewis acidity of the interstitial complex, the Lewis basicity of 
the structural unit must also be <0.30 v.u. This is an extremely 
important statement as it must exert stringent controls on the 
possible chemical compositions and atomic arrangements of 

1 There are many versions of Ostwald’s step rule. Perhaps the most general 
states that there is a tendency for the least-stable product of a chemical 
reaction to crystallize first, and this phase subsequently reacts over time 
to form a sequence of progressively more stable phases. 
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structural units in minerals.
Let us examine this issue for structural units consisting of 

octahedrally and tetrahedrally coordinated cations (e.g., Mg,Al 
and transition-metal phosphates, sulfates, silicates). The Lewis 
basicity of a structural unit is affected by its chemical composi-
tion, aggregate formal charge, and the coordination numbers 
of its cations and anions. We may approximately calculate the 
Lewis basicity of a structural unit by proposing an average anion-
coordination number [a more accurate but more complicated 
method is available, see Hawthorne and Schindler (2008)] and 
calculating the number of bonds required from the interstitial 
complex to produce this number; dividing the charge of the 
structural unit by this number gives the Lewis basicity of that 
structural unit. As will be apparent later, small inaccuracies in 
the calculated Lewis basicities do not affect the resulting argu-
ments and understanding.

First, let us consider divalent-metal phosphates with structural 
units of the form MN

2+(PO4)(OH)m. The variation in Lewis basicity 
as a function of N, the number of octahedrally coordinated M2+ 
cations, and m, the number of (OH) groups, is shown in Figure 
14a for N = 2 to 4 and m = 0 to 25 (the method of calculation 
is explained in the Appendix). For M2

2+(PO4)(OH)0–15, the Lewis 
basicity increases with increasing values of m, the amount of 
(OH), but levels off at m >7. For M3

2+(PO4)(OH)0–25, the Lewis 
basicity is constant at 0.50 v.u. for all values of m. For M4

2+(PO4)
(OH)0–25, the Lewis basicity is somewhat above 0.50 v.u. at high 
values of m, and increases dramatically with decreasing values of 
m. Above, we showed that the Lewis basicity of the structural unit 
must be less than 0.30 v.u. if it is to satisfy the principle of cor-
respondence of Lewis acidity-basicity. If we mark this boundary 
on Figure 14a, we see that most compositions of the general form 
MN

2+(PO4)(OH)m lie to the higher side of the 0.30 v.u. boundary, 
and hence cannot occur as structural units in minerals. Only for 
N = 2 and m ≤ 2 do we have Lewis basicities less that 0.30 v.u.: 
[M2

2+(PO4)(OH)2]– and [M2
2+(PO4)(OH)]0. If we look at minerals 

(Table 3), we see selected minerals of this form: farringtonite, 
sarcopside and zavalíaite (N = 1.5, m = 0), althausite (N = 2, 
m = 1), holtedahlite (N = 2, m = 1), and wagnerite (N = 2, m = 
1). Moreover, there are no minerals of the form MN

2+(PO4)(OH)m 
with Mg2+ or OH– greater than two ions per phosphate group.

Next, let us consider divalent-metal sulfates with structural 
units of the form MN

2+(SO4)(OH)m. The variation in Lewis basicity 
as a function of N and is shown in Figure 14b for N = 1 to 5 and 
m = 0 to 18. For M2+(SO4)(OH)0–4, the Lewis basicity increases 
rapidly from m = 4 to 6, but then levels off at higher values of 
m, the amount of (OH), and overlaps with the curve for N = 3 
for larger values of m. For M3

2+(SO4)(OH)4–18, the Lewis basicity 
increases rapidly from m = 4 to 6, but then gradually levels off 
with increasing values of m. For M4

2+(SO4)(OH)0–18, the Lewis 
basicity is constant at 0.50 v.u. for all values of m. For M5

2+(SO4)
(OH)0–18, the Lewis basicity increases with decreasing values of 
m at large values of m (>12). Only for N = 1, m ≤ 4 and N = 
3, m ≤ 6 are the Lewis basicity values below the cut-off value 
of 0.30 v.u. Selected minerals of this form are listed in Table 3: 
zincosite (N = 1, m = 0), linarite and chlorothionite (N = 1, m 
= 2), antlerite (N = 3, m = 4) and christelite [N = 2, m = 3 for 
(SO4)1], plus the synthetic Mg3(SO4)2(OH)2 [N = 1.5, m = 1 per 
(SO4) group].

The distribution of mineral stoichiometries and the 
existence of rocks

The above calculations and Figure 14 suggest that many 
stoichiometries cannot exist as structures as there are strong 
bond-topological controls on their possible compositions and 
structures. Indeed, Figure 14 suggests that stoichiometries of 
structural units cannot exceed a value of N ≈ 4 as the resulting 
Lewis basicity of the structural unit is too high to form a stable 
structure. Let us examine this point using the stoichiometries 
of oxysalt minerals. Figure 15 shows a frequency diagram for 
minerals whose formulas involve octahedrally coordinated (M) 
and tetrahedrally coordinated (T) cations. The number of miner-
als is a maximum at an M:T ratio of 1:1, and falls off to close to 
zero beyond the range 4:1 ≤ M:T ≤ 1:4 except for M:T = ∞:1 and 
M:T = 1:∞. All the oxysalt minerals occur in the central region; 

Table 3.	 Selected minerals with structural Units of the form MN
2+(TO4)

(OH)m, T = P,S
Farringtonite	 Mg3(PO4)2

Sarcopside	 Mn3(PO4)2

Zavalíaite	 Mn3(PO4)2

Althausite	 Mg2(PO4)(OH)
Holtedahlite	 Mg2(PO4)(OH)
Wagnerite	 Mn2(PO4)F
Zincosite	 Zn(SO4)
Linarite	 Pb[Cu(SO4)(OH)2]
Chlorothionite	 K2[Cu(SO4)Cl2]
Antlerite	 [Cu3(SO4)(OH)4]
Christelite	 Zn(H2O)4[Zn2Cu2(SO4)2(OH)6]

Figure 14. (a) Lewis basicity of structural units of the form 
MgN(T5+O4)(OH)n (T5+ = P, As, V) as a function of stoichiometry for N 
= 2, 3, 4; m = 1–24. (b) Lewis basicity of structural units of the form 
MgN(T6+O4)(OH)n (T6+ = S, Cr) as a function of stoichiometry for N = 
1, 3, 4, 5; m = 1–18.
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oxides occur at M:T = ∞:1 and tetrahedron-framework structures 
(e.g., quartz, feldspars) occur at M:T = 1:∞.

Thus the stoichiometry of minerals is extremely restricted. 
What “happens” to all those other chemical compositions that 
cannot occur as single minerals (the yellow regions in Fig. 15)? 
Let us consider a simple example. The composition [Mg5(SO4)
(OH)12]4– has a Lewis basicity of 0.67 v.u. (Fig. 14b) and hence 
cannot form a structural unit. So what will happen to such a 
composition?

Mg5(SO4)(OH)12 → Mg(SO4)(H2O)+4Mg(OH)2+H2O+O2

		   kieserite	  + 	brucite 

It will crystallize as two different minerals, which in this example 
have Lewis basicities of 0.0 v.u. as there are no available large 
low-valence cations to form interstitial complexes. In the pres-
ence of potential interstitial cations (e.g., Na, K), other minerals 
of appropriate stoichiometry will form. Thus such stoichiometries 
as M2+

N>2(PO4)(OH)m>2 will crystallize as mixtures of minerals, 
i.e., as rocks. For silicates, those compositions with M:T < 1:4 
will form rocks containing significant amounts of framework 
silicates (e.g., granite, syenite), those compositions with 4:1 ≤ 
M:T ≤ 1:4 will form rocks dominated by ferromagnesian silicates 
(e.g., peridotite), and those compositions with M:T > 4:1 will 
contain major amounts of oxides and ferromagnesian silicates 
(e.g., iron formations). This is the principal reason why most 
chemical compositions do not crystallize as single minerals, 
but form rocks.

Hydrogen, polymerization of the structural unit, and the 
distribution of structural complexity of minerals within 
the Earth

Above, we saw that both (H2O) and (OH) groups are ex-
tremely polar: on the O side, each functions as an anion, whereas 
on the H side, each functions as a cation. The metal(M)-O bonds 

are commonly relatively strong [~0.40 v.u. for (H2O); 0.80 v.u. 
for (OH)], whereas the H…O (hydrogen) bonds are much weaker 
[~0.20 v.u. for both (H2O) and (OH)]. Hence the M-O bonds are 
commonly part of the structural unit, whereas the hydrogen bonds 
are not part of the structural unit (Hawthorne 1985). The net result 
of this asymmetric arrangement of bond valences is commonly 
to terminate the structural unit at the (H2O) and (OH) groups.

Consider the structure of newberyite (Sutor 1967), 
Mg3(PO3OH)(H2O)3 (Fig. 16), in which (OH) and (H2O) play 
significant roles in limiting polymerization of polyhedra in 
the structure. Newberyite contains an acid-phosphate group, 
(PO3OH). Each tetrahedron links to three (Mgj6) octahedra, 
forming a sheet in the ac plane (Fig. 16), and the fourth vertex 
of the tetrahedron points in the ±b direction. In a (PO4) group, 
the fourth vertex of the tetrahedron would link to another poly-
hedron of the structural unit to satisfy the valence-sum rule 
at that anion. However, in newberyite, H is attached to the O 
anion at this vertex, and the valence-sum rule prevents linkage 
to another tetrahedron or octahedron, preventing polymerization 
of the structural unit in the b direction through the phosphate 
group. Newberyite also contains {MgO3(H2O)3} octahedra that 
are linked by the tetrahedra into a sheet (Fig. 16) by each tetrahe-
dron sharing three vertices with adjacent tetrahedra. This linkage 
leaves three vertices of the octahedron that can potentially link 
in the third dimension to form a framework structure. However, 
each of the O anions occupying these three vertices also link to 
two H atoms, forming (H2O) groups; the H atoms satisfy the 
bond-valence requirements of the anions at these three vertices, 
and prevent linkage in the b direction.

Although the presence of H prevents all intra-unit linkage at 
the (OH) and (H2O) groups in newberyite, this is not necessar-
ily the case in all H-bearing minerals: both (OH) and (H2O) can 
allow linkage of a structural unit in some directions and prevent 
such linkage in other directions. The structural unit in artinite, 
[Mg2(CO3)(OH)2(H2O)3] (Akao and Iwai 1977), consists of a 

Figure 15. The distribution of mineral stoichiometries with regard to the ratio of octahedrally coordinated cations (M) and tetrahedrally and 
triangularly coordinated cations (T). The bars in pink show the numbers of minerals with M:T ratios approximately equal to 4:1, 3:1…1:3, 1:4. 
The yellow areas denote compositions not corresponding to single minerals.
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ribbon of edge-sharing (MgO6) octahedra, flanked by (CO3) 
triangles (Fig. 17). In the center of the ribbon, the anions bond 
to three Mg cations, receiving 0.36 × 3 = 1.08 v.u. from Mg. The 
additional bond valence required by these anions is provided by 
their associated H atoms, which weakly hydrogen-bond (bond 
valence approximately 0.08 v.u.) to an adjacent ribbon. The (OH) 
group prevents linkage of the structural unit in the c-direction but 
allows linkage in the a- and b-directions. The anions along the 
edge of the ribbon bond to either one Mg, two Mg, or one Mg 
and one C, with incident bond-valence values of ~0.3, 0.6, and 
1.7 v.u. The first two anions must be (H2O) groups and cannot 
propagate linkage of the structural unit. The (H2O) group bonded 
to one Mg prevents further polymerization of the structural unit 
in all three directions, whereas the (H2O) group bonded to two 
Mg atoms allows polymerization of the structural unit in the b-
direction but prevents polymerization in the a- and c-directions. 
Thus in artinite, the (OH) groups allow polymerization of the 
structural unit in two directions, the two types of (H2O) group 
allow polymerization in one and no directions, respectively, and 
all linkage between structural units is through hydrogen bonding 
via the (OH) and (H2O) groups of the structural unit.

In summary, H as (OH) and (H2O) can control the dimensional 
polymerization of a structural unit, limiting it in one or more 
directions. This is the principal single chemical feature that leads 
to the amazing structural diversity in oxygen-based minerals. 
Moreover, the distribution of H throughout the Earth, together 
with the anharmonic nature of the hydrogen bond, is a major 
factor in accounting for the systematic distribution of mineral 
species from the core to the surface of the Earth.

The method of moments
There is little intuitive connection between the essential 

features of a crystal structure, the relative positions of the atoms 
and the disposition of the chemical bonds, and the usual methods 
for deriving the electronic energy density-of-states (Hawthorne 
2012). However, the electronic energy density-of-states may be 
derived from the bond-topological aspects of a structure using 
the method of moments (Burdett et al. 1984). I will give a brief 

outline of the method; the reader should consult their paper for 
mathematical details.

A simple way to consider the electronic structure of a molecule 
is to construct the molecular-orbital wavefunction as a linear com-
bination of atomic orbitals. These wavefunctions are eigenstates 
of an effective one-electron Hamiltonian, Heff that may be written 
as Heffy = Ey where E is the energy associated with y. The total 
electron energy of the state described by the wavefunction is

E = (∫y·Heffydt)/(∫y·ydt) = (<y·Heffydt>)/(<y·y>)	 (1)

where the integration is over all space, Heff is an effective one-
electron Hamiltonian that may be written as Heffy = Ey where E is 
the energy associated with y, and the molecular-orbital wavefunc-
tion is written as y = Siciji where {ji} are the valence orbitals of 
the atoms and ci is the contribution of a specific atomic orbital to 
a specific molecular orbital (e.g., Gibbs 1980). Substitution for 
y (= Sciji) gives

E = [SiSjcicj(<ji|Heff|jj>)]/(SiSjcicj<ji|jj>)	 (2)

Equation 2 may be simplified thus: (1) <ji|jj> is the overlap inte-
gral between atomic orbitals on different atoms, and is written as 
Sij, which is always ≤1; where i = j, <ji|jj> = 1 for a normalized 
(atomic) basis set of orbitals; (2) <ji|Heff|jj> = Hii; this represents 
the energy of an electron in orbital ji and can be approximated 
by the orbital ionization potential; and (3) <ji|Heff|jj> = Hij; this 
is the resonance integral. Minimizing the energy with respect to 
the coefficients ci, Equation 2 gives the molecular-orbital energies. 
The eigenvalues of the following secular determinant equation 
give the molecular-orbital energy levels:

|Hij–SijE| = O	 (3)

The Hückel approximation (Trinajstic 1983) best shows the topo-
logical content of this approach: For the pp orbitals, all Hii values 
are set equal to a, all Hij are set equal to b, and all Sjj (i ≠ j) are set 
equal to zero. The expanded secular determinant equation for the 
square molecule of Figure 1b is as follows:

α−E β 0 β

β α−E β 0
0 β α−E β

β 0 β α−E

= 0  	  (4)

Figure 16. The crystal structure of newberyite, Mg3(PO3OH)(H2O)3, 
projected onto (010); Mg octahedra are shown in yellow, P tetrahedra 
are shown in lilac, H atoms are shown as red circles, Odonor-H bonds are 
shown as thick black lines.

Figure 17. The crystal structure of artinite, [Mg2(CO3)(OH)2(H2O)3], 
projected onto (001); Mg octahedra are shown in yellow, C triangles 
are shown in lilac, H atoms are shown as red circles, Odonor-H bonds are 
shown as thick black lines.
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Compare the structure of Figure 1b with the matrix entries in 
Equation 4. Where atoms are bonded together (i.e., atoms 1 and 
2 in Fig. 1b), there is a nonzero value at the corresponding (1,2) 
entry in the secular determinant; where atoms are not bonded 
together (i.e., atoms 1 and 3 in Fig. 1b), the corresponding entry 
in the secular determinant (1,3) is zero. Note also the correspon-
dence of the zero off-diagonal matrix entries in the adjacency 
matrix of the graph of this molecule (Fig. 2) with the zero off-
diagonal matrix entries in Equation 4.

We cannot use this sort of calculation to deal with a crystal 
containing approximately Avogadro’s number of atoms. Instead, 
we use Bloch orbitals (Ziman 1965), which assume a unit cell and 
constrain the orbital content of the unit cell to the translational 
periodicity of the crystal. Using the special-points method, the 
secular determinant is solved at a representative set of points 
within the Brillouin zone, giving a representative sampling 
of the orbital energy levels that may be smoothed to give the 
electronic-energy density-of-states. The total orbital energy is 
obtained by integrating the electronic energy density-of-states 
up to the Fermi level.

To solve Equation 4, we diagonalize the Hamiltonian matrix. 
The trace of this matrix may be written as follows:

Tr H n( )= Hij H jk ...Hni
j ,k ...n
∑

i
∑  	 (5)

A topological interpretation of one term in this sum is shown in 
Figure 18. Hij is the interaction integral between orbitals i and j; 
we may simplify the situation without loss of topological content 
by adopting the Huckel approximation: Hij = b where the atoms 
are bonded, Hij = 0 where the atoms are not bonded, and a = 0 
where i = j. In Equation 5, as each single term {Hij Hik … Hni} is 
a product, the term is nonzero only if all individual Hij values in 
the term, e.g., {H12H23H34H41}, are nonzero. The last Hij in each 
product is Hni, the interaction between the nth orbital and the 
first orbital, and hence the product {Hij Hjk … Hni} represents 
a closed path in the graph of the orbitals (molecule). If one (or 
more) of the terms in the product is zero (e.g., H31 in Fig. 18) that 
product is zero, i.e., {H12H23H31} = 0, and does not contribute to 
the trace of the Hamiltonian matrix. Hence the double-summation 
in Equation 5 contains all closed paths through the graph of (the 
orbital structure of) the array of atoms.

The trace of a matrix remains invariant under diagonaliza-
tion, and thus

Tr(Hn) = Tr(En) = mn 	 (6)

where E is the diagonal matrix of eigenvalues (energy levels) 
and mn is the nth moment of E (Burdett et al. 1984), denoted by

µn = Ei
n

i
∑ .	 (7)

The density-of-states may be obtained by inverting the collec-
tion of moments {mn} (Burdett et al. 1984). The result is that we 
can evaluate Tr(H n) directly from the bond topology, and, in so 
doing, derive the electronic energy density-of-states.

This method generalizes to infinite systems (i.e., crystals) in a 
straightforward manner. We may define the nth moment of E as

mn = ∫Enr(E)dE	 (8)

where r(E) is the density-of-states of the crystal. In this case, the 
moments may be evaluated in principle as above and inverted to 
give the electronic energy density-of-states.

Burdett (1986) introduced an extremely important idea: The 
energy difference between two structures may be expressed in 
terms of the first few disparate moments of their electronic- 
energy density-of-states. This means that the most important 
energetic differences between two structures involve the most 
local bond-topological differences between those structures. 
Also, in structures with bonds of different strength, each edge 
is weighted according to the strength of the analogous bond. 
Thus, closed paths of strongly bonded atoms will contribute 
more to the electronic energy density-of-states than closed paths 
of weakly bonded atoms.

Low-order moments and crystal chemistry
The number of edges in a path through the bonded atoms in a 

structure is the moment of that path, and each path corresponds to 
a crystal-chemical feature of the structure. We will now consider 
the structural features corresponding to the lower-order moments 
that are the most energetically important. A zero-moment path 
has no steps and corresponds to remaining still (called a “walk 
in place”); as such, it specifies the identity of the atom at that 
vertex of the graph of the structure. Thus the complete set of zero-
moment paths defines the chemical composition of the structure. 
A second-moment path is a walk from one vertex to an adjacent 
vertex and back again, and the set of second-moment paths from 
a single vertex defines the coordination number of the atom cor-
responding to that vertex. A fourth-moment path is a walk from 
an atom (e.g., a cation) to an anion to another cation to another 
anion and back to the first cation, and specifies the linkage of 
two coordination polyhedra. Higher-moment paths describe more 
complicated linkages of polyhedra, but these are less important 
from an energetic perspective than the low-moment linkages. 
Here is our energetic rationale for traditional crystal chemistry: 
we focus on chemical composition (zero moment), coordination 
number (second moment), and local linkage between coordina-
tion polyhedra (fourth moment) as the most important differences 

Figure 18. Interpretation of paths through the molecule shown in 
Figure 1b; the path 1 → 2 → 3 → 4 contains only non-zero Hij terms and 
contributes to the trace of the matrix, whereas the path 1 → 2 → 4 contains 
a zero Hij term (H31) and does not contribute to the trace of the matrix.
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between structures, as differences in low-order moments are the 
most energetically important differences between structures.

Mineral reactions
The moments approach tells us that the important energetic 

differences between two structures are the most local topological 
differences between the structures. What does this mean in terms 
of mineral reactions?

Zero-moment changes. Zero-moment changes involve 
changes in the chemical composition of the system, i.e., a reac-
tion in which the constituents are not conserved. This can be a 
metasomatic reaction and involve open-system behavior.

Second-moment changes. Second-moment changes involve 
changes in coordination number in the constituent phases. A 
change in coordination number usually involves a discontinuous 
reaction. Consider

 	 forsterite 	 = 	 periclase 	 + 	 quartz
	[6]Mg2

[4]Si[4]O4 	 = 	 2[6]Mg[6]O	 +	 [4]Si[2]O2

in which I include the coordination numbers of all the constituent 
atoms. Whereas the coordination numbers of [6]Mg and [4]Si are 
conserved in the reaction, the coordination numbers of O are not 
conserved. The lowest-moment changes in this reaction involve 
the changes in coordination number of O, and these changes are 
the major driver of this reaction, as these are the lowest-moment 
differences involved in the reaction. We may also express the 
driving force of this reaction in terms of the enthalpy of reaction, 
DH, suggesting a correlation between the changes in coordination 
number and the enthalpy of reaction. Consider the general reaction

[6]Mgm
[4]SinO(m+2n) = mMgO + nSiO2

for m,n = 2,1; 3,2; 1,1; 1,2; 2,5; 1,3. DH of reaction may be calcu-
lated with the model of Aja et al. (1992), using fictive enthalpies 
of formation. However, (change in) coordination number is an 
intensive variable whereas enthalpy of formation is an extensive 
variable. We must transform the enthalpy of formation into an 
intensive variable, and I do this by dividing the enthalpy of 
formation by the molecular weight of the reactant to produce the 
intensive variable DH/MW, which I will call the reduced enthalpy 
of formation. There is a strong correlation between the reduced en-
thalpy of formation and the change in anion-coordination number 
(details of this calculation will be given in a later paper) through 
the reaction (Fig. 19) in accord with the influence of coordination 
number on the energetics of structures indicated by the moment 
arguments given above. A similar relation for the hydrated mag-
nesium sulfates Mg(SO4)(H2O)n (where n = 0–7, 11) was shown 
by Hawthorne and Sokolova (2012).

These second-moment changes throw considerable light on 
why the additive-fictive approach to predicting enthalpies of for-
mation from oxides works so well. The relation [6]Mgm

[4]SinO(m+2n) 
= mMgO + nSiO2 has no experimentally determined quantities; 
the coordination numbers are assumed (and hence have no 
experimental uncertainty attached to them) and the relation is 
exact. Consider the relation DH([6]Mgm

[4]SinO(m+2n)) = mDH(MgO) 
+ nDH(SiO2) where DH(MgO) and DH(SiO2) are the fictive 
enthalpies for MgO and SiO2, respectively. This relation is also 
exact; DH([6]Mgm

[4]SinO(m+2n)) is calculated from DH(MgO) and 
nDH(SiO2). Hence DH([6]Mgm

[4]SinO(m+2n)) must correlate with 

Figure 19. Variation in reduced enthalpy of formation (from the 
oxides) vs. change in anion-coordination number through the reaction [6]Mgm 
[4]SinO(m+2n) = m[6]MgO+n[4]SiO2. Units on the ordinate are kJ/mol/Dalton.

change in anion-coordination number; this is an algebraic require-
ment. However, there is no algebraic requirement that change 
in anion-coordination number must correlate with experimental 
enthalpies of formation from the oxides. We know that the enthal-
pies calculated from the fictive enthalpies of the oxides correlate 
with their experimental analogs; this is the whole point of using 
fictive enthalpies. Therefore we may conclude that changes in 
anion-coordination number correlate with experimental enthalpies 
of formation from the oxides, in accord with our prediction from 
the moments approach to the electronic-energy density-of-states. 
In this regard, I should also emphasize that using enthalpies of 
formation calculated from fictive enthalpies does not replace 
the measurement of enthalpies of formation. One expects subtle 
differences in energetics with higher-moment changes in bond 
topology, and this will not be reflected in enthalpies of formation 
calculated using the fictive approach; they will only be apparent 
in measured enthalpies of formation.

Fourth-moment changes. Fourth-moment changes involve 
maintaining chemical composition and both cation- and anion-
coordination numbers while changing the identities of next-
nearest-neighbor atoms. Such changes hence involve the nature 
of local (short-range) clusters of ions. Such changes are common 
in amphiboles (e.g., Hawthorne et al. 1996b, 1996c, 1997, 2000b; 
Della Ventura et al. 1999; Hawthorne and Della Ventura 2007), 
and the short-range version of the valence-sum rule (Hawthorne 
1997, see above) suggests that such short-range order should be 
common in all solid solutions involving polyvalent substitutions.

Major chemical variations in amphiboles in metabasic rocks 
involve the change from tremolite, oCa2Mg5Si8O22(OH)2, to 
sadanagaite, NaCa2(Mg3Al2)(Si5Al3)O22(OH)2, with increasing 
grade of metamorphism. In this reaction, the bond topology of 
the amphibole is conserved, and any energetic differences with 
regard to the amphiboles involve atom identities and their relative 
locations, i.e., short-range order-disorder. End-member tremolite 
is completely ordered whereas end-member sadanagaite must 
show extensive short-range order/disorder. Such short-range order/
disorder must have a major effect on the energetics of the resulting 
minerals and their reactions with other phases.
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Summary

The theoretical approach outlined above examines the struc-
ture and chemical composition of minerals based on their bond 
topology, aspects of graph theory and bond-valence theory, and 
the moments approach to the electronic-energy density of states. 
Below, I identify the principal features of this approach, and some 
of its uses:

(1) An arrangement of atoms and chemical bonds may be 
represented by a weighted polychromatic digraph, and the hand-
shaking principle may be used to examine many aspects of atom 
coordination and the linkage of coordination polyhedra.

(2) The moments approach to the electronic-energy density-of-
states provides a bond-topological interpretation of the energetics 
of a structure.

(3) When comparing structures, the most important struc-
tural differences involve the first few disparate moments of the 
electronic-energy density-of-states.

(4) We may classify chemical reactions according to the lowest-
order moment of the electronic-energy density-of-states that is 
conserved, which allows us to identify the principal structural 
changes that drive chemical change: (a) coordination number for 
discontinuous reactions, and (b) short-range order for continuous 
reactions.

(5) It may be shown that the quantitative aspects of bond-
valence theory arise from the topological (or graphical) character-
istics of structures as arrangements of atoms and chemical bonds.

(6) The principle of correspondence of Lewis acidity-basicity 
states that stable structures will form when the Lewis-acid strength 
of the interstitial complex closely matches the Lewis-base strength 
of the structural unit, and allows us to examine the factors that 
control the chemical composition and aspects of the structural 
arrangement of minerals.

(7) (H2O) groups in the structural unit limit the polymerization 
of the structural unit in one or more directions, controlling the po-
lymerization of the structural unit. This is a major factor affecting 
structural diversity in oxygen-based minerals and the systematic 
distribution and relative complexity of mineral species from the 
core to the surface of the Earth.

(8) Interstitial (H2O) groups may (a) satisfy the bond-valence 
requirements around an interstitial cation where there are insuf-
ficient adjacent anions to do so from neighboring structural units, 
or (b) moderate the Lewis acidity of the interstitial complex and 
affect the stability of a chemical composition through the opera-
tion of the principle of correspondence of Lewis acidity-basicity.
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Appendix

Consider the structural unit [MgN(PO4)(OH)m]
The charge on the structural unit is 2N – 3 – m.
The number of bonds involving the structural unit is 6N (for 

[6]MgN) + 4 [for the (PO4) group] + 2m (for H, assuming a coor-
dination number of [2]) = 6N + 4 + 2m.

If we assume an ideal coordination number of [4] for oxygen, 
the number of bonds needed to produce such a coordination = 
4(4 + m).

The number of bonds needed from the interstitial complex is 
the difference of these two values: 4(4 + m) – (6N + 4 + 2m) = 
12 + 2m – 6N.

The Lewis basicity of the structural unit is the charge divided 
by the number of bonds needed from the interstitial complex: 
(2N – 3 – m)/(12 + 2m – 6N).

For N = 2, this expression reduces to (1 – m)/2m, and for 
m = 1, 2, 4, 8, the Lewis basicities = 0.00, 0.25, 0.38, 0.44 v.u., 
respectively.

For N = 3, this expression reduces to (3 – m)/(2m – 6) = 0.50 
v.u. independent of the value of m.

For N = 4, this expression reduces to (5 – m)/(2m – 12), and 
for m = 8, 12, 16, 20, the Lewis basicities = 0.75, 0.58, 0.55, 0.53 
v.u., respectively.

The calculations for the structural unit [MgN(SO4)(OH)m] are 
similar, except that we assume an ideal coordination number of [3] 
for oxygen because of the higher bond valence of the S-O bond.


