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ABSTRACT 

A large amount of information concerning interatomic distances in the solid state is 

available, but little has been done in recent times to comprehensively filter, summarize 

and analyze this information. Here, I examine the distribution of bond lengths for 135 

ions bonded to oxygen, using 180,331 bond lengths extracted from 9367 refined crystal 

structures collected from the Inorganic Crystal Structure Database (ICSD).  

The data are used to evaluate the parameterization of the bond-length—bond-valence 

relation of the bond-valence model. Published bond-valence parameters for 135 cations 

bonded to oxygen, and the various methods used in their derivation, are evaluated. New 

equations to model the relation are tested and the common form of the equation is 

found to be satisfactory. A new method (the Generalized Reduced Gradient Method, 

GRG method) is used to derive new bond-valence parameters for 135 cations bonded 

to oxygen, leading to significant improvements in fit for many of the ions. 

The improved parameterization is used to gain crystal-chemical insight into the milarite 

structure. A literature review of 350+ published compositions is done to review the end-

members of the milarite group and to identify compositions that should have been 

described as distinct minerals species. The a priori bond-valences are calculated for 

minerals of this structure, and are used to examine the controls of bond topology on site 

occupancy, notably by localizing the major source of strain of the structure (the B site). 

Examination of the compositions of all known milarite-group minerals shows that 

compositions with a fully occupied B site are less common than those with a vacant B 

site, in accord with the idea that the B site is a local region of high strain in the structure. 



iii 
 

The bond-length distributions for the ions of the alkali and alkaline-earth metal families 

are examined. Variations in mean bond-lengths are only partly explained by the 

distortion theorem of the bond-valence model. I have found that bond length also 

correlates with the amount of vibrational displacement of the constituent ions. The 

validity of some uncommon coordination numbers, e.g., [3]-coordinated Li+, [3]-

coordinated Be2+, is confirmed.  
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Chapter 1 

 

Introduction 

 

  



2 

 

1.1 General introduction 

One hundred years have passed since the first crystal-structure solutions (Bragg, 1913; 

Bragg and Bragg, 1913), and since then we have amassed an enormous amount of 

information concerning crystal structures and their atomic arrangements. Yet, our 

understanding of the factors that control the stability of these crystal structures is still 

limited, as if more focus has been put toward the collection of new data than on 

understanding these data. This problem was epitomized by Maddox in an editorial in the 

journal Nature where he identified the general failure to make reliable crystal-structure 

predictions from chemical composition as a “scandal” in Crystallography (Maddox, 

1988; DiSalvo, 1990; Hawthorne, 1990; Pannetier et al, 1990; Woodley & Catlow 2008; 

Oganov et al 2010). Today, attempts at crystal-structure prediction often combine 

combinatorial analysis and computational simulation with the second law of 

thermodynamics, the principle of minimum energy, to obtain and classify possible 

atomic arrangements on energy grounds (Parker et al, 1984; Pannetier et al, 1990; 

Lufaso & Woodward, 2001; Karamertzanis & Pantelides, 2005; Oganov & Glass 2006; 

Podeszwa et al, 2008; Woodley and Catlow 2008; Wang et al, 2010; Wang et al. 2012). 

Despite the variety of these computational techniques, they have had limited success 

and applicability, and the lack of understanding of the factors affecting crystal stability is 

not addressed, which is made evident by simulations that are stochastic in nature. 

What factors affect the connectivity of the atoms of a structure, the symmetry of the 

structure, polymorphism, order/disorder, etc.? Pauling (1929) pointed out that TiO2 has 

the atomic arrangements of rutile, brookite and anatase under different conditions, but 

more importantly, he asked “why is this the case?”. While the answer to this question is 
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obvious, because it leads to the structure of minimum free energy, this is largely 

unsatisfying because this provides no mechanism as to why that is. Pauling (1929) 

emphasized that we should be looking at observables (e.g., bond lengths) to try and get 

a mechanistic sense of what controls structure stability. The idea was pursued by Dent-

Glasser (1979) who looked at silicates and asked “why do some compounds exist, 

whereas others do not?”. These are important questions that remain unsolved today. 

While it would be an understatement to say these questions are hard to answer, it is 

apparent that answers to these questions will come from crystal-chemical argument 

rather than “black-box” methods. 

In this thesis, I will systematize and attempt to understand what affects the variation of 

bond lengths in oxide and oxysalt crystals based on crystal-chemical arguments and 

using the results of a large-scale bond-length dispersion analysis of the Inorganic 

Crystal Structure Database (ICSD).   

 

1.1.1 Concepts of crystal chemistry  

Crystal chemistry is concerned with the relation between the atomic arrangement of a 

crystal and its corresponding physical and chemical properties, and is at the intersection 

of the fields of Mineralogy, Solid-State Chemistry, Solid-State Physics, and Materials 

Science (Vainshtein et al., 2000). Crystal chemistry was developed shortly after the first 

crystal-structure solutions by Bragg (1913) and Bragg and Bragg (1913), and the 

subsequent interpretation of these results by the same authors and others (e.g., 

Goldschmidt, 1926a, 1927; Pauling, 1929). They developed an understanding of crystal 
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structures based on interatomic distance and the idea of coordination number. Below, I 

discuss various concepts of crystal chemistry that are relevant to this thesis and to a 

basic understanding of atomic arrangements in crystals.  

 

1.1.1.1 The internal structure of crystals 

Crystals are regular arrangements of atoms that repeat in three dimensions (Vainshtein 

et al., 2000). The unit that is repeated solely by the translational symmetry of the crystal 

is called the unit cell. The internal structure of a crystal is concerned with two types of 

symmetry, the point symmetry and the translational symmetry, by the application of 

which the full crystal is obtained from the unit cell. Point symmetry describes the 

invariance of a structural feature around a point, while translational symmetry describes 

the periodic repetition of that structural feature through space. Crystals are 

characterized by long-range order, or periodicity, in contrast to amorphous materials 

such as glasses and gels.  

Many crystals (e.g., elements, alloys, oxide and oxysalt structures) can be described as 

close-packed arrangements of spheres. In oxide and oxysalt structures, the spheres 

commonly represent anions, which are commonly larger than cations, and the cations 

occupy interstices within the close-packed arrangement of anions. There are two basic 

types of close packing: hexagonal and cubic close-packing. The type of close packing is 

defined by the stacking of adjacent layers, with regard to the voids between these 

layers. When sequentially stacking three layers of spheres (A, B, and C), layer C may 

either be placed directly above layer A (separated by layer B), or it can be placed in 
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voids that are not directly above A. This leads to the possible stacking sequences ABAB 

(hexagonal), and ABCABC (cubic). This is shown in Figs. 1.1 and 1.2. Note that the 

packing coefficient is the same for each arrangement (74.05% fill of space). Close 

packing plays a major role in affecting the coordination numbers of cations in oxide (and 

halogen) structures.  
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Figure 1.1 Layer arrangement in hexagonal close packing (HCP) of spheres 

(chemwiki.ucdavis.edu/Closest Pack Structures CC BY-NC-SA 3.0 US) 
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Figure 1.2 Layer arrangement in cubic close packing (CCP) of spheres 

(chemwiki.ucdavis.edu/Closest Pack Structures CC BY-NC-SA 3.0 US) 
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1.1.1.2 Interatomic distances and ionic radii 

A crystal consists of a collection of atoms, some of which are in direct contact with each 

other. From this results the very important concept of interatomic distance, from which 

follows the concept of ionic radius. Interatomic distances are a key component to this 

thesis, and are discussed at greater length below (section 1.1.2).  

The derivation of interatomic distances naturally leads to the idea of the sizes of ions. 

The sizes of ions were first determined by Landé (1920) by considering simple 

structures with large differences in size between the cations and anions, such as LiI. In 

LiI, the Li+ ions are so small in relation to the I- ions that I- ions can be approximated to 

be in contact in the close-packed structure, allowing the determination of its radius (i.e., 

half the I-I interatomic distance). Once the radius of I- had been determined by Landé, 

the determination of other ionic radii followed by subtracting the radius of I- from the 

interatomic distance of cations bonded to I-. Wasastjerna (1923) used the relative 

volume of ions, derived from their electrical polarizability, to derive the radius of certain 

ions and to correct Landé’s value for the radius of I- from 2.14 to 2.19 Å. This work was 

soon expanded by Goldschmidt (1926b). Pauling (1927) used an atomic model derived 

from the wave mechanics of Schrödinger to develop a set of ionic radii based on 

quantum mechanics, and found that his model gave an ionic radius of 2.16 Å for I-. 

Pauling (1960) later used the effective nuclear charge to better determine the proportion 

of anion/cation sizes. A major review of crystallographic data in the solid state was done 

by Shannon & Prewitt (1969) which led to the derivation of an empirical set of effective 

ionic radii (i.e., using the value of 1.40 Å given by Pauling for the radius of O2-) using a 

technique similar to that of Goldschmidt (1926b). This was subsequently revised and 
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expanded by Shannon (1976) to include more unusual oxidation states and 

coordinations based on new structural data. Shannon gives the ionic radii of atoms on 

the basis of oxidation state, coordination number, electronic coordination and spin state.  

The concept of a fixed ionic radius is sometimes criticized (e.g., Gibbs et al., 2013), 

whereby ions are argued to (1) vary in size according to their environment, and (2) have 

a non-spherical electron density distribution. Shortcomings of the concept of ionic radius 

can be summarized by a quote from Pauling’s seminal work on the nature of the 

chemical bond (1960), where he states: “Since the electron distribution function for an 

ion extends indefinitely, it is evident that no single characteristic size can be assigned to 

it. Instead, the apparent ionic radius will depend upon the property under discussion and 

will differ for different properties”. Despite this, the concept of ionic radius has proven 

extremely useful (Shannon 1976 currently has ~35,000 citations) and simple radii 

remain a concept central to Crystallography and the Solid-State Sciences. 

 

1.1.1.3 The chemical bond and chemical bonding 

While atoms in crystal structures can sometimes be represented as close-packing of 

spheres (Smart and Moore, 2005), atoms are not to be interpreted as inert bodies that 

obey the laws of classical physics. Atoms commonly react with one another to form 

ions, with a charge defined by the number of electrons lost (i.e., a cation) or gained (i.e., 

an anion). The charge of the ion is its oxidation state. Atoms may be observed in a 

single oxidation state (e.g., +1 for the alkali metals) or as a series of oxidation states 

(e.g., most transition metals); this depends on the ionization energy of each charge-
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state, where the ionization energy is defined as the amount of energy required for the 

removal of the outermost (most loosely bound) electron of the atom (or ion).  

The concept of losing, gaining, or even sharing electrons between atoms leads to the 

notions of chemical bonding and of the chemical bond. There are numerous ways in 

which the formation of a chemical bond may be described. Certain models draw from 

classical mechanics, others from quantum mechanics, and together they cover a wide 

spectrum in terms of complexity and applicability. Despite the number of ways in which 

chemical bonding between atoms may be rationalized, the chemical bond itself eludes 

rigorous definition (Cortés-Guzmán & Bader, 2005), and the interpretation of what is a 

chemical bond is dependent on the method used in explaining its formation. The 

concepts of the chemical bond and of chemical bonding are discussed at greater length 

below (sections 1.1.3 and 1.1.4, respectively). 

Another important concept of crystal chemistry is that of coordination number. The 

coordination number of an atom (or ion) was initially defined by Werner (1893) in the 

study of coordination compounds as the total number of ligands bound to the metal ion. 

Today, the terminology has evolved to be more inclusive (descriptive of any atom in a 

chemical species) and coordination number is defined as the number of atoms that are 

directly linked to a specific atom (i.e., the number of atoms with which an atom partakes 

in chemical bonding). However, the problem with defining coordination number is that it 

relies heavily upon the definition and recognition of a chemical bond, which as 

discussed above, lacks rigorous definition. While the determination of which atoms are 

bonded to which in molecules can be straightforward, it is much less so in crystals, 

where the interaction between ions can be weaker and more numerous. However, it is 
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fortunate that in many crystal structures, there is a general consensus as to the 

coordination numbers observed. Thus rutile has Ti4+ in [6]-coordination and O2- in [3]-

coordination, and quartz has Si4+ in [4]-coordination and O2- in [2]-coordination. The 

determination of the coordination polyhedron is usually straightforward for cations 

making a small number of bonds to their counterions, and this information may be used 

to extrapolate trends to higher coordination numbers. The issue of the determination of 

the coordination number will be discussed at greater length in Chapter 4.  

 

1.1.2 Interatomic distances in the solid state  

Following the discovery of X-rays by Röntgen (1895) and the successful experiment of 

Friedrich and Knipping of diffracting X-rays using crystals (as proposed by Max Laue; 

1912), X-rays were confirmed to be electromagnetic waves, with a wavelength 

estimated to be of the order of magnitude of the size of atoms  (~10-10 m). The 

experiment quickly led to a new branch of research that consisted of the application of 

X-ray diffraction to crystallography, and to the pioneering work of William H. Bragg and 

William L. Bragg who used X-rays to solve the structure of crystals (1913). Since then, 

we have amassed an enormous amount of information concerning crystal structures 

and their atomic arrangements, and the distance that separate atoms in crystal 

structures. Yet, little has been done in recent times to summarize and comprehensively 

analyze these data, and the efforts expended on understanding these data are far less 

than those expended on their collection. Only a handful of ion configurations have been 

systematically examined, and these generally involve highly-charged cations bonded to 

O2- in low coordination numbers (e.g., [4]Si4+-O, Baur, 1971;  [4]P5+-O, Baur, 1974, 
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Huminicki & Hawthorne, 2002; [4]S6+-O, Hawthorne et al., 2000). There are several 

hundred ion configurations that have not yet been examined (for cations bonded to O2- 

alone), and those that have been examined have used much smaller data sets than are 

now available, and can now be further examined. In an attempt to address this problem, 

I have done a bond-length dispersion analysis of cations bonded to oxygen that has 

resulted in the collection of 180,331 bond lengths from 31,514 coordination polyhedra 

for 135 ions bonded to oxygen in 462 ion configurations, using 9367 refined crystal 

structures. I will discuss some of these results in Chapters 2 and 4 of my thesis. First, I 

look at some of the work that has been done with regard to the analysis of bond lengths 

for cations bonded to O2-. 

 

1.1.2.1 Bond lengths for cations bonded to O2- 

Baur (1971) used 148 tetrahedra from 26 crystal structures to study bond-length 

variations of the silicate group ([4]Si4+-O) and to derive an expression to predict Si-O 

bond distances. Baur (1974) later focused on polyhedral distortion in the study of the 

phosphate group configuration ([4]P5+-O) by looking at 211 phosphate tetrahedra. Baur 

focused on the shape of the tetrahedra, and analyzed individual and mean P-O 

distances, O-P-O angles and O-O distances in phosphate groups. Although Baur 

(1971,1974) lists the data he used, he does not explicitly plot the bond-length 

distributions for his data. 

Following the work of Baur, a series of papers describing the crystal chemistry of other 

important ion configurations were written for the book series Review in Mineralogy and 
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Geochemistry. These include [3]B3+-O and [4]B3+-O (Hawthorne et al., 1996), [4]S6+-O 

(Hawthorne et al., 2000), [4]Be2+-O (Hawthorne & Huminicki, 2002),[4]P5+-O (Huminicki & 

Hawthorne, 2002), [3]As3+-O and [4]As3+-O (Majzlan et al., 2014). These contributions 

include the bond-length distributions and their statistics as well as relevant discussions 

on the crystal chemistry of these ion configurations that are primarily based on this 

bond-length information. 

Other notable contributions have been made for [6]U6+-O, [7]U6+-O, [8]U6+-O (Burns et al., 

1997) and  [6]V3+-O, [5]V4+-O, [6]V4+-O, [5]V5+-O, [6]V5+-O (Schindler et al., 2000) who had 

an in-depth look at the bonding behaviour of these ions in order to rationalize the multi-

modal bond-length distributions obtained for these ion configurations. Burns et al. 

(1997) also used their data to derive new bond-valence parameters for U6+-O bonds. 

Mills & Christy (2013) recently analyzed bond-length dispersions for Te4+-O, Te6+-O, 

although their approach was primarily focused on the derivation of bond-valence 

parameters.  

 

1.1.3 The types of chemical bonds 

Crystals are rich in terms of their chemical composition, atomic arrangement and bond 

type. Chemical bonds range from ionic to covalent to metallic, plus van der Waals and 

hydrogen bonds. All chemical bonds are intermediate between these ideal types, and 

different types of bonds commonly occur in the same structure (e.g., ionic [Na-O] and 

covalent [P-O] in Na3PO4, ionic, covalent and van der Waals in CdI2). Here, I review the 
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more common types of bonds observed in crystals, and put special emphasis on ionic 

and covalent bonding due to their prevalence in oxide and oxysalt structures. 

 

1.1.3.1 Ionic bonding 

Ionic bonding describes the transfer of valence electron(s) from one atom to another 

that results in a positive electrostatic attraction between oppositely charged ions (West, 

2014). This positive interaction results from the interplay between the Coulomb 

attraction and Born repulsion. The Coulomb attraction results from the interaction 

between ions of opposite charge. The Born repulsion is a result of the finite size of 

atoms, where repulsion forces are strongest at short interatomic distances.  

Fig. 1.3 gives a typical plot of the potential energy of a chemical bond V(r) as a function 

of the distance r between the ions. The Coulomb attraction is shown by the dashed line 

in Fig. 1.3, and the Born repulsion by the dotted line. The overall shape is given by the 

solid line (Fig. 1.3) where req is the equilibrium bond distance corresponding to the 

minimum in the potential energy. 
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Figure 1.3 Potential energy diagram of the chemical bond 
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Figure 1.4 Electron-density map for a slice of the NaCl structure 

(chemwiki.ucdavis.edu/Sizes of Atoms and Ions CC BY-NC-SA 3.0 US)   
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Thus ionic structures are held together by electrostatic forces where cations are 

arranged so that they are surrounded by anions and vice versa.  

No structure (or bond) is truly ionic, and always has partial covalent character (West, 

2014). Ideally, the single-electron transfer from the valence shell of Na to Cl results in 

Na+ and Cl- ions. However, the structure of NaCl has some covalent character, i.e., the 

valence electron is not entirely transferred (Fig. 1.4); there is electron density that is not 

centered on the ions themselves, i.e., there are chemical bonds between Na and Cl. 

Thus, the term “ionic bonding” has now evolved to describe a bond that has more ionic 

than covalent character. The concept of ionic bonding is extremely useful and widely 

applicable, and is a good starting point in describing structures that may contain other 

types of bonding (e.g., covalent, hydrogen). 

 

1.1.3.2 Covalent bonding 

Covalent bonding involves the sharing of valence-electron pairs between atoms, in 

contrast to the transfer of one or more electrons from one atom to the other (as in ionic 

bonding; Smart & Moore, 2005). This sharing of electrons allows the atoms to effectively 

attain a stable electronic configuration (i.e., octet rule) and is typical for atoms of similar 

electronegativity.  

In a covalent bond, electron sharing is biased toward the atom of higher 

electronegativity, leaving partial charges on the atoms. Because of this, covalent bonds 

may be interpreted as forming a continuum with ionic bonds. Parallel to the discussion 
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of ionic bonding above, a chemical bond is described as covalent where the character 

of the bond is more covalent than ionic. 

The lack of need to distinguish between covalent and ionic bonds has been suggested 

(see bond-valence theory, below). The coexistence of the two bond types is exemplified 

in minerals, where oxyanion groups (e.g., SiO4
4-, SO4

2-), which are generally covalent in 

character, commonly bond to lower-charge cations via electrostatic interactions (i.e., 

ionic bonding).  

The simplest case of pure covalent bonding is that of H2, i.e., two atoms of identical 

electronegativity. The individual H atoms have a partially filled s orbital (occupied by one 

electron), and may combine by sharing their valence electron with each other to form H2 

in which the (sigma-bonding) orbital is filled by 2 electrons. 

The mechanisms of covalent bonding are rooted in quantum-mechanical arguments. 

The two main approaches to covalent bonding are the valence-bond (VB) theory (not to 

be confused with the bond-valence theory, which is unfortunately named) and molecular 

orbital (MO) theory (West, 2014). In VB theory, the atomic orbitals of the participating 

atoms overlap to form a chemical bond, where the electron of one atomic orbital is 

attracted by the nucleus of another atom until there is a repulsion of the electron density 

caused by the overlap of the atomic orbitals (Shaik & Hiberty, 2008). In molecular-orbital 

(MO) theory, molecules are instead treated as a collection of (unreactive) nuclei, under 

the influence of which electrons are considered as mobile entities from the point of view 

of the whole molecule (West, 2014). In MO theory, the electrons are delocalized 

throughout the molecule, whereas for ionic bonding, there is transfer of the electron 

from one atom to another.  
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1.1.3.3 Metallic bonding  

Metallic bonding arises from the electrostatic interaction between conduction electrons 

and positively-charged metal ions, where the electrons move freely about the crystal 

and act as a glue that binds metal-ion cores into a periodic structure (Vainshtein et al., 

2000). In MO theory (covalent bonding), bonds are formed via delocalization of 

electrons into molecular orbitals that bind the atoms together. In metallic bonding, the 

valence-shell electrons occupy levels that are delocalized over the entire metal crystal 

(which can be viewed as a giant MO) and cause the structure to be a metallic 

conductor. These levels (atomic orbitals) are very numerous over a macroscopic metal 

crystal, and they are also very close in energy. This has led to the development of “band 

theory”, which deals with the continuous range of energies that an electron within a solid 

may have, and is crucial in explaining the properties of conductors, semi-conductors 

and insulators.  

 

1.1.3.4 Van der Waals bonding 

Van der Waals bonding originates from residual forces between neutral atoms, 

molecules or atomic groups that result from a momentary electrical polarization caused 

by the movement of electrons (Rao & Gopalakrishnan, 1997). These forces are 

relatively weak and only operate at a short distance. They include 

permanent/permanent, permanent/induced and induced/induced dipole interactions. 

Examples of van der Waals bonding in minerals include the weak interaction between 
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the sheets of carbon in graphite and between uranium-carbonate sheets in 

rutherfordine: UO2(CO3) (Finch et al., 1999).    

 

1.1.3.5 Hydrogen bonding 

Hydrogen bonding results from the polar interaction between the hydrogen atom Hδ+ 

and other atoms or molecules Xδ- (δ = partial charge, X = commonly N, O, F). Hydrogen 

bonding is caused by a significant difference in electronegativity between bonded atoms 

H and X, resulting in an uneven distribution of the electron density toward X, leaving the 

hydrogen atom with a partial positive charge that is strong enough to attract the 

negative part of other ions or molecules (West, 2014). Hydrogen bonding is very 

common in minerals. It plays a significant role in defining the stability and properties of 

minerals, and is also a driving factor of mineral diversity (Hawthorne, 1992).  

 

1.1.4 Theories of chemical bonding 

There are various theories of chemical bonding with different degrees of sophistication 

and applicability. The most sophisticated and widely used result from quantum 

mechanical arguments and are the valence-bond (VB) theory and molecular orbital 

(MO) theory. However, many theories of chemical bonding are available and the 

selection of a theory is dependent on its intended use, as each theory has its own 

strengths and drawbacks.  
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1.1.4.1 Valence-bond theory 

In valence-bond theory, bonds are viewed as weakly coupled orbitals where electron 

pairs between two bonded atoms reside in a region of overlap of the atomic orbitals. In 

order to rationalize the directionality of the covalent bond, atomic orbitals are sometimes 

mixed into hybrid orbitals of different shapes and energies in a process called 

hybridization (West, 2014). For example, for boron, with 3 valence electrons, the 

oxyanion BO3
3- is formed by hybridization of the s and p orbitals of B to form a planar 

triangular hybrid-orbital (sp2) which then overlaps with the half-filled valence atomic 

orbitals of three oxygen atoms (containing one unpaired electron) to form the oxyanion 

group.  

 

1.1.4.2 Molecular-orbital (MO) theory 

In molecular-orbital (MO) theory, the electrons are not assigned to individual atoms (as 

in valence-bond theory) but to molecular orbitals that span the entire molecule or (finite) 

structure. The most common way of deriving molecular orbitals is by linear combination 

of atomic orbitals (LCAO), where the atomic orbitals, represented by basis functions 

(one-electron functions), are centered on the nuclei of the constituent atoms (Vainshtein 

et al., 2000). The combinations of the atomic orbitals may result in bonding interaction, 

where the lobes of the wavefunction describing the atomic orbitals are in phase (i.e., 

same sign), resulting in maximum positive interaction, antibonding, where the 

wavefunctions are out of phase, resulting in a negative interaction, and non-bonding, 
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where there is no net overlap of the lobes described by the wavefunctions (e.g., an 

equal amount of positive and negative overlap).  

Valence-bond theory and molecular-orbital theory were developed around the same 

time (~1920s), and have historically been observed to be in direct competition with each 

other; valence-bond theory was favoured up to the 1950-1960’s, notably due to 

Pauling’s endorsement (and his large influence in the field), while the use of molecular 

orbital theory increased thereafter following many successes at the expense of a 

“stalling” valence-bond theory (Shaik & Hiberty, 2008).  

Today, the use of MO theory over VB theory is dependent on the kind of information 

sought. While VB theory generally does well at qualitatively describing the shapes of 

covalent compounds, it has certain drawbacks and limitations, and a popular illustration 

of the failure of the VB model is that it wrongfully predicts O2 to be diamagnetic via spin 

pairing arguments (O2 is paramagnetic). However, “failures” encountered in either 

valence-bond or molecular-orbital theory are usually due to the cut-off used in the 

expansion terms rather than problems with the theories themselves (Shaik & Hiberty, 

2008); the two theories describe the same reality, starting from different elementary 

components, and converge towards exactly the same and complete description of a 

molecule. Because of this, the two approaches are now often viewed as 

complementary, and depending on what kind of information is sought, one is usually 

favourable over the other. 

 

1.1.4.3 Bond-valence theory 



23 

 

There are several other theories of bonding that are wide ranging in terms of their 

complexity and applicability (e.g., crystal-field theory, ligand-field theory, Lewis theory), 

and as mentioned earlier, the selection of an appropriate model is largely dependent on 

the materials investigated and the kind of interpretation or understanding required. I am 

interested in developing a general understanding of the factors affecting the variation of 

bond lengths in crystals, and as will be discussed in the next chapter, I have done a 

bond-length dispersion analysis of cations bonded to oxygen that has resulted in the 

collection of 180,331 bond lengths from 31,514 coordination polyhedra for 135 ions 

bonded to oxygen from 9367 refined crystal structures. This is a large amount of data, 

and the interpretation of these crystal structures and their chemical bonding on the 

basis of VB or MO theory is not possible. Bond-valence (BV) theory is most suitable for 

the interpretation of these data, and is the most useful with regard to gaining insight into 

the crystal-chemical behaviour of these structures.  

 

1.1.4.3.1 Theoretical basis of bond-valence theory 

The bond-valence method was proposed by Brown and Shannon (1973) following the 

development and increasing use of equations that related the length of a bond to its 

strength (called bond valence) for a pair of ions (Pauling, 1947; Byström and Wilhelmi, 

1951; Smith, 1953; Zachariasen, 1954; Zachariasen and Plettinger, 1959; Zachariasen, 

1963; Evans and Mrose, 1960; Evans 1960; Pant and Cruikshank, 1967; Clark et al. 

1969; Perloff, 1970; Donnay and Allmann, 1970). The bond-valence method rapidly 

gained popularity as a simple way of verifying the validity of crystal structures, and the 

success of the method was due entirely to the successful parameterization of the 
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relation between bond length and bond strength for ions pairs based on the valence-

sum rule.  

A theoretical basis for bond-valence method was developed by Preiser et al. (1999) and 

was largely based on the ionic model. They showed that by using the electric field rather 

than the electric potential, the bond valence can be identified with the electrostatic flux 

linking the cations to the anions, due to a natural partition of the Coulomb field into 

localized regions (the chemical bonds) between neighbouring ions of opposite charge. 

The idea dates back to Bragg (1930) who suggested electrostatic lines of force 

emanating from cations and ending on anions, in proportion to the cation charge. 

Preiser et al. (1999) argued that the energy (W) of an inorganic solid consists of two 

terms, one that deals with the classical electrostatic energy (Welectrostatic) determined by 

the distribution of electric charge, and the other one a quantum mechanical term (Wqm) 

that describes the Fermi repulsion between overlapping electron cores: 

𝑊 = 𝑊electrostratic + 𝑊qm    (eq. 1.1) 

Preiser et al. go on to say that Wqm depends on the details of the electron density 

distribution, and so includes the influence of covalent bonding; in fact, they state that the 

ionic and covalent models of chemical bonding are not mutually exclusive, and that 

either the ionic or covalent model may describe bonds with partial ionic/covalent 

character.  

There are two important theorems in bond-valence theory (Brown, 2002), and they are 

analogous to Kirchhoff’s rules for electrical circuits: (1) the valence-sum rule, which 

states that the sum of the bond-valences around an ion is equal to its formal valence, 
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and (2) the equal-valence rule (or loop rule), which states that in a closed circuit, the 

sum of the directed bond valences is equal to 0. Preiser et al. (1999) showed that the 

valence-sum rule is rooted in Gauss’s law, where the sum of the exident electrostatic 

fluxes φij from a cation i to an anion j is equal to the formal valence Qi of the ion  

∑ φ𝑖𝑗𝑗 =  ∮ 𝐄𝑀𝑜𝑛𝑜𝑝𝑜𝑙𝑒 ∙ d𝐀 =  𝑄𝑖    (eq. 1.2) 

where the electrostatic field EMonopole is estimated as a monopole for a spherical atom, 

and where the integration is taken over any closed surface surrounding Qi. The equal-

valence rule is then explained by analogy with capacitance, where each “link” between 

the ions is modeled as a capacitor Cij supporting a potential difference Pij. The 

electrostatic fluxes φij is equal to the charge qij on the ions (i.e., the capacitor plates), 

and the potential Pij across the capacitor is given by the capacitor equation 

𝑃𝑖𝑗 =  
𝑞𝑖𝑗

𝐶𝑖𝑗
=  

φ𝑖𝑗

𝐶𝑖𝑗
   (eq. 1.3) 

From the law of conservation of energy, the sum of the potentials Pij around any closed 

loop is zero, and 

0 =  ∑ 𝑃𝑖𝑗loop =  ∑
𝜑𝑖𝑗

𝐶𝑖𝑗
loop    (eq. 1.4) 

where the electrostatic flux is taken as positive or negative according to the direction in 

which it is traversed (from cation to anion and vice versa). From this result, Brown 

(2002) derived the network equations (discussed below) of a crystal structure by 

modeling the bond network as a capacitive electric circuit and assuming that when a 

structure is in equilibrium, all the bonds have the same capacitance Cij. This allows 

simplification of eq. 1.4 by multiplying each side of the equation by Cij, and the loop rule 
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is then only concerned with the summation (and cancellation) of the electrostatic fluxes 

φij. Thus, bond-valence theory results from simple classical electrostatic arguments, and 

quantum effects are introduced as needed on an ad hoc basis. Burdett and Hawthorne 

(1993) have also shown that the valence-sum rule can be derived using a perturbation 

theory and a molecular-orbital approach. 

Bond-valence theory, which is widely concerned with the connectivity of the atoms 

(topology), also finds roots in Graph Theory. The topology of an atomic arrangement 

may be described as a graph, by defining a set of vertices (ions) and edges (bonds) that 

connect the vertices. These vertices may be labelled to make them distinguishable (ion 

identity), and coloured to form different collections of vertices (cations and anions). 

Furthermore, the graph may be directed (a digraph), giving directions to the paths 

between adjacent vertices, and weighted, giving values to the vertices (corresponding to 

the charges of the ions) and to the edges (corresponding to the strengths, or bond 

valences, of the bonds). Any crystal structure may be described as a graph, and treated 

using the mathematics of Graph Theory.  

The network equations of a crystal structure are derived from the valence-sum rule and 

from the loop rule, and any linearly-independent set of these equations can be solved to 

obtain the a priori bond-valences, with no knowledge other than the connectivity of the 

ions and their formal charges. Thus, a priori bond-valences are intrinsic to a crystal 

structure, those that site occupants must be able to satisfy in order for a crystal 

structure to be stable and observed. As a result, with only the knowledge of the 

connectivity of a crystal structure and the formal charges of the constituent ions, the 

bond valences for that structure may be predicted a priori and the associated bond 
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lengths may be calculated if the bond-valence—bond-length curves are known for those 

ions. This is a very important result of bond-valence theory, and one that has been 

largely ignored in the literature.   

A problem that bond-valence theory currently faces is that the relation between (a priori) 

bond valences and bond length for pairs of ions, does not emerge from the theory; it is 

instead derived from experiment to form the basis of the bond-valence model (next).  

 

1.1.4.3.2 The bond-valence model  

A key aspect of the bond-valence model involves the relation between bond length and 

bond valence, which is derived from experiment and from the valence-sum rule. The 

valence-sum rule (Brown and Shannon, 1973) originates with Pauling’s second rule, the 

electrostatic valence rule (1929), where following the investigation of a series of crystal 

structures, Pauling suggested that “the electric charge of each anion+ tends to 

compensate the strength of the electrostatic valence bonds reaching it from the 

cations”. In other words, Pauling suggested that the sum of the bond strengths incident 

at an anion is approximately equal to the valence of that anion. This relation was very 

useful in deriving the formal valence of ions in a crystal structure (especially 

distinguishing between O2-, OH- and H2O). In the 1950s and 1960s, people began to 

recognize that there was a relation between the deviation from Pauling’s (second) rule 

and the bond lengths to that ion, and relations began to appear that related bond 

strengths to bond lengths for specific ion pairs. The first relation given for a relatively 
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wide variety of ions was that of Brown & Shannon (1973) where the relation between 

bond length and bond valence was written as  

𝑠 =  𝑠o (
𝑅

𝑅o
)

−𝑁

   (eq. 1.5) 

where 𝑠 is the bond valence, 𝑅 is the bond length, 𝑠𝑜 is a parameter usually set to have 

𝑅/𝑅o~1, and 𝑅o and 𝑁 are the bond-valence parameters that are fitted empirically for 

each pair of ions. Brown & Altermatt (1985) later proposed a new equation to model the 

relation: 

𝑆𝑖𝑗 = 𝑒𝑥𝑝 (
𝑅o−𝑅𝑖𝑗

𝐵
)   (eq. 1.6) 

where 𝑅𝑖𝑗 is the bond length between ions i and j, 𝑆𝑖𝑗 is the bond valence, and Ro and B 

are the bond-valence parameters. This equation is the one in use today, and the issue 

of parameterization will be discussed at much greater length in Chapter 2. 

The bond-valence model has been used primarily to validate crystal structures via 

experimental verification of the valence-sum rule. However, Brown (2009) lists other 

uses of the model, notably involving [1] distorted ion environments, [2] valence maps 

and ionic conduction, [3] the valence-matching principle and structure stability, [4] the 

assignment of charge distributions, [5] incommensurate structures, [6] the structural 

effects of pressure, [7] the structural effects of temperature.  

The bond-valence model is of specific interest in this thesis for three reasons: [1] it is a 

simple method in which the physical details are not obscured by complexities of 

computation; [2] it is not concerned with bond type i.e., it models the three most 

common types of bonds in inorganic crystals, ionic, covalent, and hydrogen bonding, 
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with equal success, (this is especially true for oxide crystals, wherein lays the focus of 

this thesis); [3] it is suitable to the description of network solids.  

 

1.2 Objectives and Significance of Research 

A large amount of information concerning interatomic distances in the solid state is 

available. A comprehensive examination of the factors affecting the lengths of chemical 

bonds in (inorganic) crystals requires first the extraction of the data and subsequent 

assessment of its accuracy and validity. This task for cations bonded to oxygen was a 

major part of my thesis work in terms of time expended, and was done by way of a 

bond-length dispersion analysis of the Inorganic Crystal Structure Database (ICSD). 

This resulted in 180,331 individual bond-lengths for 135 cations with coordination 

numbers from [2] to [20], a total of 462 configurations (a single configuration is one ion 

in one coordination number (e.g., [4]Si4+, [10]Na+) taken from 31,514 coordination 

polyhedra in 9367 crystal structures. With this amount of data available, the scope of 

this project goes way beyond that of a Ph.D. thesis, and I intend to make the resulting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

bond-length information available as a citable database that others may use to examine 

the origin of bond-length variations in crystals for the 462 configurations, only a few of 

which have been examined in the literature as yet.  

Some of the specific objectives of my thesis include: 

(1) to evaluate the published parameterizations of the bond-length—bond-valence 

relation for cations bonded to oxygen. This will be done using the data of the bond-

length dispersion analysis of the ICSD and by comparing deviations between mean 
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bond-valence and oxidation state over the set of all coordination polyhedra for each 

cation bonded to oxygen; 

(2) to develop a better method for the derivation of bond-valence parameters. This will 

be done by comparing results of the various methods of derivation used so far in the 

literature, examining other ways in which the parameters may be derived and deciding 

on the optimal method for the derivation of bond-valance parameters;  

(3) to examine a wide variety of algebraic expressions in order to test for the optimal 

form of the bond-valence equation (i.e., the one giving results most in accord with the 

valence-sum rule of bond-valence theory); 

(4) to accumulate all published structural and chemical data on milarite-group minerals, 

and examine all reported compositions for the group in order to determine if any / how 

many compositions warrant description as new mineral species;  

(5) to use a priori bond-valence calculations to gain insight into the control bond 

topology has on site occupancy, using the milarite structure. This will be done via 

comparison of a priori and experimental bond-valences for refined crystal structures 

observed in this group; 

(6) to show that a priori bond-valence calculations can be used to locate areas of strain 

in crystal structures, using the milarite structure as an example. This will be done via a 

measure of the deviations from ideality for both individual bond-valences and the sum of 

the bond valences at each site of the structure, and by relating the frequency of 

observed chemical compositions to aspects of strain in the structure;  
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(7) examine the bond-length distributions of alkali-metal and alkaline-earth-metal ions 

bonded to oxygen for general trends such as variations in skewness, kurtosis and mean 

bond-length; 

(8) to examine the validity of less-common configurations of the alkali-metal and 

alkaline-earth metal ions. Due to the scale of the bond-length dispersion analysis, I will 

be able to examine whether trends for common ion configurations extend to less-

common configurations of these ions; 

(9) to examine the possible factors that affect variations in mean bond-length; 

 

1.3 Structure of the thesis  

The individual chapters of this thesis were written independently as published or 

publishable work and have the common theme of bond distances between cations and 

oxygen in inorganic crystals, and their interpretation and use in the explanation of 

crystal-chemical phenomena. The chapters are ordered by date of acceptance and are 

connected by linking sections at the beginning of chapters.  

In Chapter 2, I give the results of a reassessment of the parameterization of the bond-

valence model. I use the data I gathered from my bond-length dispersion analysis of the 

Inorganic Crystal Structure Database (ICSD) to evaluate the various published 

parameterizations of the physical relation between bond length and bond valence and to 

derive a new parameterization for the model. This work was crucial to the next two 

chapters, which use different aspects of the bond-valence model to (1) address crystal-

chemical problems, and (2) aid in the determination and interpretation of coordination 
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polyhedra in crystal structures. It is my intention to use the bond-valence model beyond 

structure verification (its most common use), and for this reason, optimal 

parameterization of the model is crucial.  

Chapter 3 begins with a literature review of the milarite-group minerals and a 

clarification of its end-member compositions. The milarite structure was selected in this 

work because of the wide compositional variation of its constituent minerals and 

synthetic phases; this is of interest because (1) factors constraining the possible 

chemical compositions for a crystal structure, and (2) the primary controls on the 

stability of the structure, in general, are not well understood. I have expanded on work 

of Brown (1977) and Rutherford (1990), that has received little notice, by providing an 

easy method for the calculation of a priori bond-valences (the bond valences intrinsic to 

a crystal structure and charge arrangement) to gain insight into the control that bond 

topology has on site occupancy in the milarite structure. The Global Instability Index, GII 

(Salinas-Sanchez et al., 1992), and the Bond Strain Index, BSI (Preiser et al., 1999), 

are measures of the agreement between the experimental bond-valences and their 

ideal values. These indices are used to gain insight into strain in the milarite structure. 

The calculation of the a priori bond-valences implicit to the calculation of the BSI in 

principle allows one to locate strain at specific sites in the structure. This will be tested 

using the milarite structure. The new parameterization derived in Chapter 2 is key in this 

regard as deviations from the valence-sum rule need to reflect strain rather than 

inaccuracies in the bond-valence – bond-length parameterization. 

Chapter 4 gives the bond-length distributions of the 55 observed configurations of the 

alkali-metal ions and the 29 observed configurations of the alkaline-earth-metal ions. 
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While the amount of data gathered and treated here is very large, 4859 coordination 

polyhedra and 38,594 bond distances for the alkali metals, and 3038 coordination 

polyhedra and 24,487 bond distances for the alkaline-earth metals, this chapter only 

scratches the surface of the question “what affects the variation of bond lengths and 

mean bond-lengths for alkali-metal ions and alkaline-earth-metal ions bonded to 

oxygen?”. In this chapter, I focus on general trends observed for the families and their 

constituent ions in their various coordinations, and examine factors that affect the 

distributions of bond lengths observed. The bond-valence model is partly used here to 

validate certain uncommon ion configurations (e.g., [3]-coordinated Li+, [3]-coordinated 

Be2+), and an optimal parameterization of the relevant bond-valence curves was crucial 

in this analysis. Numerous detailed studies for specific ions and ion configurations may 

result from this work for the alkali and alkaline-earth metals alone, which may take many 

investigators years to examine. Similar analysis of other families of the periodic table of 

elements for which I have bond-length data for ions bonded to oxygen are planned.  
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Chapter 2 

 

Comprehensive derivation of bond-valence parameters  

for ion pairs involving oxygen 
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2.1 Synopsis  

Published bond-valence parameters for cation-oxygen bonds are evaluated with regard 

to their agreement with the valence-sum rule, and new bond-valence parameters are 

derived for 135 cations bonded to oxygen.  

 

2.2 Abstract 

Published two-body bond-valence parameters for cation-oxygen bonds have been 

evaluated via the Root Mean-Square Deviation (RMSD) from the valence-sum rule for 

128 cations, using 180,194 filtered bond-lengths from 31,489 coordination polyhedra. 

Values of the RMSD range from 0.033-2.451 v.u. (1.1%-40.9% per unit of charge) with 

a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published 

parameters has been determined for 128 ions and used as a benchmark for the 

determination of new bond-valence parameters in this paper. Two common methods for 

the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving 

for Ro; (2) the graphical method. On a subset of 90 ions observed in more than one 

coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per 

unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). 

The advantages and disadvantages of these (and other) methods of derivation have 

been considered, leading to the conclusion that current methods of derivation of bond-

valence parameters are not satisfactory. A new method of derivation is introduced, the 

GRG (Generalized Reduced-Gradient) method, which leads to a mean weighted-RMSD 

of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination 
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ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to 

model the bond-valence—bond-length relation indicates that (1) many equations can 

adequately describe the relation; (2) a plateau has been reached in the fit for two-

parameter equations; (3) the equation of Brown and Altermatt (1985) is sufficiently good 

that use of any of the other equations tested is not warranted. Improved bond-valence 

parameters have been derived for 135 ions for the equation of Brown and Altermatt 

(1985) in terms of both the cation and anion bond-valence sums using the GRG method 

and our complete data set. 

Keywords: bond-valence parameters, bond-valence equations, the valence-sum rule 

 

2.3 Introduction 

Many people have investigated correlations between deviations from Pauling’s second 

rule (Pauling, 1929) and bond-length variations in crystals (e.g., Baur, 1970, 1974; 

Donnay & Allman, 1970; Pyatenko, 1972; Brown & Shannon, 1973; Ferguson, 1974), 

generally developing quantitative relations between bond length and the strength of a 

bond. During the 1960s and early 1970s, the term ‘bond strength’ was used, but was 

later changed to ‘bond valence’ to distinguish these values from Pauling bond strengths. 

In the early 1970s, several different forms of the (inverse) relation between bond 

valence and bond length were used, but the equation of Brown and Altermatt (1985) 

was eventually accepted as the general form of the bond-valence—bond-length curve: 

S = exp[(Ro-R)/B] where S is the bond valence (in valence units), R is the observed 

bond length, and Ro and B are fitted constants called bond-valence parameters. Brown 
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& Altermatt (1985) gave values of Ro and B for 141 pairs of ions, and Brese & O’Keeffe 

(1991) gave analogous values for 969 pairs of ions. Many smaller-scale studies have 

produced bond-valence parameters for a wide range of ion pairs that have been 

compiled by Brown (2002, 2009, 2013). Brown’s latest list of published bond-valence 

parameters (2013) contains 1749 sets of bond-valence parameters for the equation of 

Brown & Altermatt (1985), for 1350 unique ion pairs, and counts 340 sets of bond-

valence parameters for 194 cations bonded to oxygen. Several sets of bond-valence 

parameters are often available for unique ion pairs, and there has been little comparison 

between different sets of parameters available to determine which is the most suitable 

for a given ion pair. Here, we consider bond-valence parameters for cations bonded to 

oxygen. Notably, with regard to the bond-valence parameters currently available: 

[1] There is no consistency between parameters from different sources; in particular, the 

criteria used to select the bond lengths used in the derivation of the bond-valence 

curves vary widely;  

[2] Different fitting methods have been used by different authors to derive the bond-

valence parameters (i.e., there is no consensus on the best way to derive the bond-

valence parameters); 

[3] Very few alternative forms of the bond-valence—bond-length relation have been 

tested.  

Here, we (1) evaluate published bond-valence parameters for 128 cations bonded to 

oxygen, using a very large set of bond lengths that have undergone rigorous filtering; 

(2) investigate many alternative algebraic forms of the bond-valence—bond-length 
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relation; (3) evaluate different fitting methods used in the derivation of bond-valence 

parameters; (4) determine new bond-valence parameters for 135 cations bonded to 

oxygen. 

 

2.4 Experimental bond-lengths used in this work  

As part of other work examining the dispersion of bond lengths in inorganic crystals, we 

have used the Inorganic Crystal Structure Database (ICSD) to extract bond lengths for 

all atoms of the periodic table of elements bonded to oxygen, as a function of oxidation 

state and coordination number. The following selection criteria were used during 

collection of the bond-length data: (1) Publication date ≥ 1975; (2) R1 ≤ 6%; (3) the site 

of interest is fully occupied by the cation; (4) all bonds involve ions at fully occupied 

sites; (5) the cation and anion sites of interest show no positional disorder; (6) 

crystallographic data were measured at ambient conditions; (7) no data from powder, 

electron or synchrotron diffraction were included; (8) where there was severe ambiguity 

as to the correct coordination number, the data were not included to avoid error; (9) for 

H, only neutron-diffraction data were collected.  

Following collection of the bond distances, the bond-length distributions were examined 

for outliers. Where outliers were identified, the original publications were examined to 

validate the distances or identify errors. The most common source of error involved 

sites which, in the ICSD, were erroneously identified as containing only one cation 

whereas inspection of the original paper showed that cation disorder was present (e.g., 

for Si, large mean distances commonly involved the presence of Al3+ at the Si4+ site, 
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and small distances involved the presence of B3+ at the Si4+ site). We note here that 

verified outliers that showed no apparent error were retained in our analysis. Where 

such analysis had been done for specific ions, we checked our results with those given 

previously to ensure compatibility (or confirm the validity of any differences). For 

example, Sidey (2013) gives the shortest [3]-coordinated B3+-O distance as 1.20 Å, in 

close accord with our value of 1.22 Å, and Mills et al. (2009) and Mills & Christy (2013) 

use maximum Sb3+ and As3+ distances of 3.5 Å, in reasonable accord with our values of 

~3.4 Å (determined by examination of each individual structure rather than using a pre-

determined cutoff). Use of the above criteria resulted in 180,369 bond lengths from 

31,521 coordination polyhedra, for 135 ions bonded to oxygen from 9367 refined crystal 

structures. 

 

2.5 Method of evaluation of bond-valence parameters 

To evaluate the bond-valence parameters for an ion pair, we calculated the root-mean-

square deviation (RMSD) between the bond-valence sum (using the bond-valence 

parameters and the experimental bond-lengths) and the valence of the constituent 

cation for each polyhedron, over the entire dataset of coordination polyhedra for that 

cation:  

𝑅𝑀𝑆𝐷 = √
∑ (∑ 𝑆𝑖𝑗𝑗  −𝑉𝑖)2

𝑛

𝑛
    (eq. 2.1) 

where 𝑆𝑖𝑗 is the bond valence between ions i and j, 𝑉𝑖 is the valence of the ith cation, and 

the sum is over the 𝑗 bonds that cation i makes to O for the n coordination polyhedra 
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available from the dataset of that particular ion pair. This method evaluates deviations 

from the valence-sum rule (Brown 2002), and is applicable to any parameterization. 

From here on, any mention of RMSD in the text will imply the deviation to be from the 

valence-sum rule, in valence units (v.u.). 

Brown & Shannon (1973) reported the relative RMSD (𝐷𝑖), on the basis of a unit of 

charge: 

𝐷𝑖 =
√(∑

(𝑧𝑖−𝑝𝑖)
2

𝑧𝑖
2

𝑚
𝑖=1 )

𝑚
 𝑥 100%    (eq. 2.2) 

where 𝑧𝑖 is the valence of ion 𝑖, 𝑝𝑖 is the bond-valence sum, and 𝑚 is the number of ions 

of type 𝑖. This expression has been used by many people reporting new bond-valence 

parameters. However, the basis of bond-valence curves is the valence-sum rule 

(Brown, 1980, 2002), and minimization of deviations from the valence-sum rule involves 

bond valences, not bond valences divided by valence, and hence a more appropriate 

measure of agreement with the valence-sum rule involves eq. 2.1 rather than eq. 2.2. 

Though eq. 2.1 is the recommended way of reporting the RMSD in the future, our 

results will be reported using both eq. 2.1 and 2.2 for the most part throughout this work, 

so that they can easily be compared with other published work. 

 

2.6 Evaluation of published oxide bond-valence parameters 

We evaluated 244 pairs of bond-valence parameters (Ro, B) for 128 ion pairs involving 

cations bonded to O2-. By and large, bond-valence parameters have been, and continue 

to be, derived based on the first coordination shell of ions. However, Adams (2001, 
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2014) used the concept of bond softness to argue for the consideration of higher 

coordination shells in the determination of bond-valence parameters (which he calls 

softBV parameters) for use in dynamic situations where the use of discrete coordination 

number is not continuously applicable (e.g., ionic conduction, Adams & Prasada Rao, 

2014). Due to the coordination-based nature of our dataset, we did not evaluate softBV 

parameters.  

Table 2.S1 gives the bond-valence parameters of the constituent ions and their 

associated RMSD obtained from eq. 2.1, listed in the same order as in Brown (2013), 

using the same reference codes. The RMSD values range from 0.033 to 2.451 v.u. 

However, the extremely large values are caused by inappropriate parameters; for 

example, Cm3+ has two published sets of parameters, with RMSD values of 1.500 and 

0.161 v.u., and U6+ has three sets of parameters with RMSD values of 0.894, 0.699 and 

0.193 v.u., respectively. The mean value of the RMSD for all published parameters 

using our dataset is 0.219 v.u. with a standard deviation of 0.232 v.u. and a median 

value of 0.241 v.u.  

We note here that it is critical for bond-valence parameters to be evaluated in the same 

way they were derived; while this may seem intuitive, we often observed poor 

agreements for ions showing large gaps in their bond-length distributions (i.e., ions that 

form “secondary bonds”), as different sets of bond-valence parameters available for the 

same ions were presumably derived both with and without the inclusion of secondary 

bonds (e.g., for I5+, Te4+). Following experimentation with this practice, we conclude that 

the inclusion of the long bonds in the first coordination shell leads to better bond-

valence sums, and have therefore retained them in our dataset for this evaluation. As a 
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corollary, as we derive our bond-valence parameters (below) using the longer bonds 

where appropriate (e.g., elements of periods 4-6, typically not transition metals), the 

longer bonds should be included when using the parameters derived in this work.  

From the results of Table 2.S1, we may identify a set of best published parameters that 

provides a useful benchmark for comparison in the derivation of new bond-valence 

parameters. 

 

2.7 The hydrogen atom 

It is necessary to treat the hydrogen atom somewhat differently from the other atoms of 

the periodic table for two reasons: (1) for hydrogen atoms, positional parameters 

derived from X-ray data show significant systematic error, as the electron density 

notionally associated with the hydrogen atom is partly delocalized into the O-H bond, 

leading to O-H distances that are systematically shorter than the O-H internuclear 

distances. In turn, this will lead to H…O (hydrogen-bond) distances that are 

systematically longer than the H…O internuclear distances; (2) some authors suggest 

the use of more than one pair of bond-valence parameters to model the relation for this 

atom. These conditions are specified in Table 2.S1 for each reference.  

Grabowski (2000) used neutron-diffraction data to derive a single pair of parameters, Ro 

= 0.93 Å and B = 0.40 Å, resulting in a RMSD of 0.035 v.u. for our dataset. Also using 

neutron-diffraction data, Brown (2002) proposed the use of 3 pairs of parameters to 

model the relation over specific ranges of bond lengths (the resulting RMSD for our 

dataset is 0.059 v.u.) and argued that the use of different parameters over different 
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bond-length ranges gives better sums around the O2- ions than the parameters of Alig et 

al. (1994).  

Yu et al. (2006) argued that hydrogen requires two sets of parameters, one set for s > 

0.5 vu (the donor-hydrogen bond), and another set for s < 0.5 vu (the hydrogen-

acceptor bond); they also give 1.30 Å as the cut-off between stronger and weaker 

bonds. Although they do not specify if they used X-ray data, neutron data, or a 

combination of both, the reported bond lengths strongly suggest the sole use of X-ray 

data. As a result, their parameters are not directly compatible with our dataset, which 

consists of neutron-diffraction data for hydrogen. However, we decided to test their 

parameters on our dataset of 224 coordination polyhedra for hydrogen, to evaluate the 

effect of using X-ray versus neutron data for H+; we used their first set of parameters (Ro 

= 0.79 Å and B = 0.37 Å) with the shorter of the O-H distances and their second set of 

parameters (Ro = 1.409 Å and B = 0.37 Å) with the longer of the H…O distances, which 

resulted in an overall RMSD of 0.181 v.u.  

The lowest RMSD for bonds involving hydrogen and oxygen (0.035 v.u.) is thus 

obtained for the single pair of parameters of Grabowski (2000), and suggests that a 

single pair of parameters is sufficient to deal with bonds involving hydrogen and oxygen.  

 

2.8 Use of bond-valence parameters for hydrogen-oxygen bonds 

Bond-valence parameters derived from neutron-diffraction data (such as those we give 

later) are obviously not relevant to hydrogen positions from unconstrained refinement of 

X-ray diffraction data (for the reasons outlined above). However, most information on 
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hydrogen in crystal structures comes from X-ray diffraction data. The best way around 

this situation is to use constrained refinement in the derivation of hydrogen positions. 

The Odonor-H distance may be softly constrained to an appropriate value (~0.96-0.98 Å) 

for OH and H2O groups involved in asymmetric hydrogen-bonds, and the H-H distance 

in H2O groups may be constrained to ~1.55 Å (which gives an H-O-H angle of ~ 105o). 

Of course, the result is only approximate, but the ensuing H…Oacceptor distances are 

likely to be far closer to the analogous nucleus-nucleus distances than those derived by 

unconstrained X-ray refinement. This method of refinement allows the use of bond-

valence parameters derived from neutron-diffraction data with bond lengths derived 

from X-ray diffraction data, and usually leads to good bond-valence sums. 

 

2.9 Comments on fixing the B parameter 

The results of the evaluation (Table 2.S1) give us some insight into the practice of fixing 

the B parameter (to 0.37 Å), an issue that has received some comment in recent years 

(Adams, 2001; Krivovichev & Brown, 2001; Locock & Burns, 2004, Sidey, 2008; Brown, 

2009; Mills et al., 2009; Sidey, 2010; Krivovichev, 2012; Brown, 2014). Many ions have 

bond-valence parameters to oxygen available for both fixed and refined values of B, and 

we may use these ions to evaluate the effectiveness of fixing B to 0.37 Å. Out of 37 

instances, 12 ions have lower RMSD values for B = 0.37 Å whereas 25 ions have lower 

RMSD values for B ≠ 0.37 Å. This comes as a surprise, as fitting with two variable 

parameters should give at least as good a fit as fitting with only one variable parameter. 

This result is probably due to the choice of method for the derivation of the bond-

valence parameters, as this can greatly influence the quality of the fit; the use of a poor 
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method of derivation that allows refinement of both Ro and B can easily lead to a poorer 

fit than the method of fixing B, as will be shown later. Nonetheless, significant 

improvements in fit with two variable parameters are common. A persuasive example is 

that of Burns et al. (1997). Their parameters for U6+ have B = 0.519 Å and result in a 

RMSD value of 0.158 v.u. for our dataset (585 polyhedra), whereas the other 

parameters (with B = 0.37 Å) give a RMSD of 0.690 and 0.889 v.u. (Table 2.S1). Even 

where bond-valence parameters with B = 0.37 Å give low RMSD values, the fit can be 

improved significantly by allowing B to vary. For example, Mills & Christy (2013) derive 

new parameters for Te6+ with B = 0.56 Å, resulting in a RMSD value of 0.146 v.u. 

compared to 0.229 v.u. for the available parameters with B = 0.37 Å). These examples 

suggest that both Ro and B should be varied in the derivation of bond-valence 

parameters; of the 244 pairs of bond-valence parameters examined here, 191 have B 

fixed at 0.37 Å.  

 

2.10 Comments on the level of fit 

The mean RMSD for the 244 pairs of bond-valence parameters evaluated here, 

weighted by the number of coordination polyhedra of the ions, is 0.174 v.u. (7.34% per 

unit of charge using the equation of Brown & Shannon (1973; eq. 2.2)). The set of best 

parameters available for each ion (the 128 best pairs) has a mean weighted RMSD of 

0.136 v.u. (5.68% per unit of charge). These values are slightly higher than those 

commonly reported in the literature, and to the generally accepted “5% error margin” 

observed by Brown and Shannon (1973). This difference may be due to the fact that 

authors typically select a small subset of “high-quality” structures from the available data 
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to derive bond-valence parameters, the size of which strongly influences the reported 

RMSD value, which in turn does not necessarily reflect the fit for all data. Although the 

data we use here has been thoroughly filtered for errors, our derivation of the bond-

valence parameters (below) foregoes this practice to reduce the possibility of such bias.  

From the evaluation of the published bond-valence parameters, we conclude that the fit 

of the currently available parameters to the valence-sum rule is variable and can be 

significantly improved.  

 

2.11 Parameterization 

2.11.1 Methods of derivation of the bond-valence parameters 

Bond-valence parameters have been derived using a variety of methods based on 

different optimization criteria for both experimental and interpolated data. Here, we 

discuss the most common methods used in the derivation of bond-valence parameters 

based on experimental data.  

 

2.11.1.1 Least-squares fitting 

The initial form of the bond-valence equation proposed by Brown and Shannon (1973) 

is 

𝑠 =  𝑠o (
𝑅

𝑅o
)

−𝑁

   (eq. 2.3) 
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where 𝑠 is the bond valence (called bond strength by them), 𝑅 is the bond length, 𝑠𝑜 is a 

parameter usually set to have 𝑅/𝑅o~1, and 𝑅o and 𝑁 are the bond-valence parameters. 

Brown and Shannon (1973) derived their bond-valence parameters in three different 

ways using least-squares fitting to minimize deviations from the valence-sum rule: (1) 

vary 𝑅o and 𝑁 for the incident bond-valence sums around the cations; (2) fix 𝑁 and vary 

𝑅o for the incident bond-valence sums around the cations; (3) vary 𝑅𝑜 and 𝑁 for the 

incident bond-valence sums around the cations and the anions. In principle, method (3) 

is best as the valence-sum rule holds around both cations and anions. However, the 

inclusion of the anion bond-valence sums in the optimization is quite difficult on a large 

scale (this issue will be discussed later). Brown & Shannon (1973) generally used 

methods (1) and (2) to derive their parameters. The least-squares optimization was 

done using the following equation:  

𝑄 = ∑ 𝑤𝑖(𝑧𝑖 − 𝑝𝑖)
2𝑚

𝑖=1     (eq. 2.4) 

where 𝑄 is the sum of the residuals, 𝑚 is the number of ions of type 𝑖, 𝑧𝑖 is the valence, 

𝑝𝑖 is the bond-valence sum, and 𝑤𝑖 is a weight set to 1/σ2(𝑝𝑖), where σ(𝑝𝑖) is the 

standard error on 𝑝𝑖. Following the optimization, Brown & Shannon (1973) evaluated the 

quality of their parameters by calculating root-mean-square relative deviations between 

the sums of the bond-valences of an ion, and its valence (eq. 2.2). 

 

2.11.1.2 Fixing the B parameter 

Brown & Altermatt (1985) proposed a new equation to model the bond-length to bond-

valence relation: 



55 

 

𝑆𝑖𝑗 = 𝑒𝑥𝑝 (
𝑅o−𝑅𝑖𝑗

𝐵
)   (eq. 2.5) 

where 𝑅𝑖𝑗 is the bond length between ions i and j, 𝑆𝑖𝑗 is the bond valence, and Ro and B 

are the bond-valence parameters. The valence-sum rule requires that  

∑ 𝑆𝑖𝑗 =  ∑ exp (
𝑅o−𝑅𝑖𝑗

𝐵
)𝑗 =  𝑉𝑖    (eq. 2.6) 

Eq. 2.6 may be rearranged to give eq. 2.7: 

𝑅o = 𝐵 ln
𝑉𝑖

∑ 𝑒𝑥𝑝(
−𝑅𝑖𝑗

𝐵
)𝑗

     (eq. 2.7) 

Other than an improved fit, an advantage of this equation is that the B parameter adopts 

a narrow range of values that has a relatively low influence on the resulting bond-

valence sums. This led Brown & Altermatt (1985) to give B a fixed value of 0.37 Å for all 

ion pairs, which allows exact solution of Ro for individual cation coordination polyhedra. 

The value of Ro for a given ion pair given by Brown & Altermatt (1985) is the geometric 

mean value for all cation-coordination polyhedra used in the calculation. 

 

2.11.1.3 Graphical method: cation and anion sums  

Krivovichev (1999) pointed out that oxygen ions encapsulated as OPb4 clusters 

consistently show higher-than-expected bond-valence sums at the central anion, and 

Krivovichev & Brown (2001) attributed this problem to the choice of bond-valence 

parameters. They suggested a new method of derivation that refines both Ro and B 

using the following equation, obtained by rearrangement of the equation of Brown & 

Altermatt (1985): 
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𝑅o = 𝑐 + 𝑘𝐵    (eq. 2.8) 

where 𝑐 and 𝑘 are fitted constants. Eq. 2.8 is refined for both the cations and the anions, 

and the bond-valence parameters are extracted at the intersection of these curves. 

Krivovichev (2012) derived 8 pairs of bond-valence parameters using this method, but 

pointed out that the introduction of anion-centered coordination polyhedra into the 

refinement greatly limits the applicability of the method; for structures to be usable, not 

only must the cation make all bonds to the same anion, but the anion must also make 

all bonds to that same cation. This constraint is of significant importance in data 

collection and precludes this method being used for most cation-anion pairs. 

Furthermore, eq. 2.8 only holds for B ≈ 0.30-0.60 Å. 

 

2.11.1.4 Graphical method: cation sums 

Sidey (2009) proposed a variation of the method of Krivovichev and Brown (2001) that 

also allows simultaneous determination of Ro and B where only the bond-valence sums 

of the cations are optimized. This enhances the applicability of the approach, and the 

anion bond-valences are checked a posteriori to see if they are of acceptable quality. 

The valence-sum rule,  

𝑉𝑖 =  ∑ 𝑆𝑖𝑗𝑗 =  ∑ exp (
𝑅o−𝑅𝑖𝑗

𝐵
)𝑗     (eq. 2.9) 

may be rearranged to 

∑ 𝑅𝑖𝑗𝑗 = 𝑅o − 𝐵 ∑ ln 𝑆𝑖𝑗𝑗    (eq. 2.10) 
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For coordination environments in which all bonds are of the same length, this equation 

simplifies to 

𝑅̅𝑖𝑗 = 𝑅o − 𝐵 ln 𝑆𝑖̅𝑗    (eq. 2.11) 

where 𝑅̅𝑖𝑗 is the mean bond-length and 𝑆𝑖̅𝑗 is the mean bond-valence.  

Graphical representation of ln 𝑆𝑖̅𝑗 as a function of 𝑅̅𝑖𝑗 gives B as the slope and Ro as the 

y-intercept from a linear least-squares fit for many coordination polyhedra. However, the 

constraint of equal bond-lengths on the coordination environment greatly restricts the 

amount of data that can be used with this method. Moreover, the sole use of 

coordination environments of equal bond-length is generally not recommended in the 

determination of bond-valence parameters, as they cannot appropriately model the 

relation over the full range of bond lengths of the ion pairs.  

Brown (2009) used an approximation proposed by Urusov (2003) (in dealing with the 

distortion theorem) in order to circumvent the constraint on the bonding environment. A 

Taylor expansion is applied to the mean bond-length, 𝑅̅𝑖𝑗, to obtain the adjusted mean-

bond-length, 𝑅𝑠:  

𝑅𝑠 = 𝑅̅𝑖𝑗 −  
𝛿2

2𝐵
+

𝛿3

3𝐵2     (eq. 2.12) 

where 𝛿2 is the mean-square deviation and 𝛿3 the mean-cube deviation of the bond 

lengths from the mean bond-length 𝑅̅𝑖𝑗. Substituting 𝑅𝑠 for 𝑅̅𝑖𝑗 in eq. 2.11 and changing 

the mean bond-valence 𝑆𝑖̅𝑗 to its ideal value of 𝑉𝑖/𝑛, where 𝑉𝑖 is the valence of the 

cation and 𝑛 its coordination number: 
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𝑅𝑠 = 𝑅o − 𝐵 ∑ ln (
𝑉𝑖

𝑛
)𝑗     (eq. 2.13) 

Solution for the bond-valence parameters then follows the same procedure as for eq. 

2.11. Although the graphical method is attractive for providing a solution for both Ro and 

B, and having wide applicability, it suffers a major drawback in addition to the 

approximation introduced in eq. 2.12: rather than minimizing deviations between the 

sum of the bond-valences and the valence of the ion, the parameters derived by this 

method are based on minimization of bond-length deviations from the mean, and hence 

do not relate directly to the valence-sum rule. Moreover, this method assumes that 

variations in mean bond-lengths are solely the result of distortion, whereas variation in 

coordination number of the anions can also contribute in a major way to variations in 

mean bond-length (e.g., Shannon, 1976). The method also fails for certain ions showing 

very large gaps in their bond-length distributions (e.g., H+, Se4+, I5+, discussed below). 

 

2.11.1.5 RMSD minimization  

Brown (2002) proposed minimizing the squared difference between the sum of the bond 

valences and the valence (oxidation state) of the ion:  

∑ (𝑉𝑖 − ∑ 𝑆𝑖𝑗𝑗 )
2

𝑖  → 0    (eq. 2.14) 

Mills et al. (2009) reformulated this optimization into a minimization of the root-mean-

square deviation, 

RMSD = √
∑ (∑ 𝑆𝑖𝑗𝑗  −𝑉𝑖)2𝑛

𝑖=1

𝑛
    → 0   (eq. 2.15) 
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where the minimization is done over n cation coordination-polyhedra. They generally 

report their results in v.u. but also sometimes in % deviation per unit of charge (eq. 2.2). 

Whereas eq. 2.14 and 2.15 lead to the same result, eq. 2.15 is more appropriate for 

reporting these results, as the squared deviation from eq. 2.14 is extensive, i.e., the 

resultant value is dependent on the number of coordination polyhedra used in the 

minimization, whereas the RMSD from eq. 2.15 is intensive, i.e., it is independent of the 

number of coordination polyhedra used. 

A significant drawback of the RMSD minimization (although not exclusive to it) is found 

in its weighting scheme. In this minimization, every coordination polyhedron is weighted 

equally, meaning that the dominant coordination number of a cation can easily dominate 

the optimization at the expense of others. A classic example of this failure is for Si4+, 

with ~100 times more data for coordination 4 than for coordination 6. When deriving 

bond-valence parameters for Si4+ by minimizing the RMSD, we obtain stellar agreement 

for coordination number 4, with a mean bond-valence sum (BVS) of 3.99 v.u., and 

overall (mean BVS 4.00 v.u., RMSD = 0.097 v.u.), but the refined parameters yield a 

mean bond-valence sum of 4.54 v.u. for coordination 6. We observe this result to 

various degrees for all ions with multiple coordination numbers, and hence minimizing 

the RMSD is often not reliable. However, the minimization can be modified to become 

an integral part of the method of derivation of choice (next).  

 

2.11.2 Generalized Reduced Gradient (GRG) method of RMSD minimization 
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To address the problem described above, we (1) use a weighting scheme that finds a 

balance between overall fit, and fit on the basis of coordination number, and (2) 

introduce the use of a new search algorithm. 

 

2.11.2.1 The Generalized Reduced Gradient method  

The search for the global minimum involving eq. 2.15 has so far been done iteratively, 

by varying the bond-valence parameters until a minimum, presumably the global 

minimum, was found (Mills et al., 2009; Mills & Christy, 2013). However, this method is 

not practicable where dealing with more than a handful of ions.  

We propose using the Generalized Reduced Gradient (GRG) search algorithm (Abadie 

& Carpentier, 1969) in combination with the RMSD minimization. We chose this 

algorithm because (1) it can deal with the optimization of non-linear equations, (2) it is 

very efficient (convergence occurs in a matter of seconds), (3) it is very consistent, and 

(4) it consistently gives a better fit to the data than other search algorithms used. 

While the GRG optimization has proved to be much more effective than an iterative 

search method, the use of a search algorithm generally raises concern as to whether 

the minimization obtained is a local minimum as opposed to the global minimum. Mills & 

Christy (2013) show that contour plots of RMSD as a function of Ro and B for Te are 

smooth and concave in shape, but the plots only cover a narrow range of values around 

the extracted parameters. In Fig. 2.1, we show (for Fe3+) that the shape remains 

concave over a much larger range of values, and no maxima, saddle points or other 

minima are observed. As a result, convergence can only lead to the global minimum. 
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Note that both Fig. 2.1 and the plot of Mills & Christy (2013) show that the contour lines 

can have a pronounced oval shape; thus different combinations of values for Ro and B 

can lead to the same level of fit over a non-negligible range of values for the cations 

(although different parameters from one contour line may give different anion BVS), 

which may be deceptive in an iterative search for the global minimum.  
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Figure 2.1 RMSD (v.u.) from the valence-sum rule as a function of the bond-valence 

parameters for Fe3+.

 

  



63 

 

2.11.2.2 Weighting scheme 

To deal with (1), we introduced a second optimization criterion where we additionally 

minimize the RMSD between the mean bond-valence sum of the observed coordination 

numbers of an ion, and the oxidation state of that ion (i.e., coordination-based RMSD 

minimization). Following experimentation with weighting schemes, we concluded that a 

2:1 ratio between overall RMSD and coordination-based RMSD gave the best results, in 

keeping the overall RMSD low while supressing the dominant effect of certain 

coordination numbers. 

Hence, the GRG method of RMSD minimization proposed here implicitly entails 

optimization on both the overall and coordination-based RMSD (denoted hereon as the 

GRG method), and addresses many shortcomings of the other methods of derivation in 

that it (1) refines both bond-valence parameters, (2) optimizes the appropriate quantity, 

(3) does not require approximations, and (4) is universally applicable. The main 

drawback of this new method (although it is a drawback of most methods) is that it does 

not optimize the anion bond-valence sums. However, as will be discussed later, 

optimizing the anion bond-valence sums may not be necessary, and is not practical on 

the scale of this study. Where using this method, the anions bond-valence sums are 

tested a posteriori. 

In this work, the GRG method used a multi-start approach of 1000 random starting pairs 

of variables until convergence to the 4th decimal place using forward derivative.  

 

2.11.3 Comparison of the most common methods of derivation 
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First, we will focus on ions that occur in more than one coordination by O2-; of the 135 

ions examined here, 45 have only one coordination number and 90 have more than one 

coordination number. Table 2.1 compares two common methods of derivation to the 

GRG method for the 90 ions. The first column gives the RMSD of the set of best 

published parameters, taken from Table 2.S1. The second column gives the RMSD 

obtained using the graphical method (eq. 2.13). The third column gives the RMSD by 

setting B = 0.370 Å and refining Ro in the same way as the GRG method, and the last 

column gives the RMSD values for the GRG method, refining both Ro and B. 
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Table 2.1 Comparison between the RMSD values (v.u.) of the set of best published 

bond-valence parameters and the values obtained for bond-valence parameters derived 

using common methods of derivation for the 90 multiple-coordination-number ions 

Ion 

No. of 

coordination 

polyhedra 

Best 

published 

parameters 

Fixing B 

at 0.370 

Å 

Graphical 

Method 

GRG 

method  

(this work) 

H+ 224 0.035 0.532 0.040 0.033 

Li+ 690 0.092 0.091 0.115 0.077 

Be2+ 169 0.080 0.092 0.082 0.092 

B3+ 1572 0.069 0.069 0.068 0.069 

N5+ 497 0.162 0.118 0.164 0.118 

Na+ 1683 0.132 0.172 0.157 0.143 

Mg2+ 469 0.120 0.119 0.121 0.110 

Al3+ 856 0.121 0.109 0.115 0.108 

Si4+ 2530 0.126 0.119 0.128 0.119 

Cl3+ 5 0.151 0.374 0.087 0.086 

K+ 1479 0.155 0.212 0.171 0.164 

Ca2+ 1168 0.171 0.174 0.176 0.163 

Sc3+ 88 0.152 0.112 0.140 0.108 

Ti3+ 24 0.183 0.099 0.161 0.094 

Ti4+ 324 0.139 0.155 0.139 0.143 

V3+ 70 0.130 0.113 0.129 0.115 

V4+ 226 0.121 0.109 0.103 0.105 

V5+ 714 0.117 0.105 0.114 0.105 

Cr2+ 17 0.090 0.064 0.060 0.060 

Cr4+ 7 0.242 0.156 0.185 0.156 

Mn2+ 392 0.124 0.124 0.126 0.116 

Mn3+ 94 0.128 0.173 0.130 0.166 
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Mn4+ 21 0.122 0.120 0.122 0.120 

Fe2+ 192 0.135 0.115 0.133 0.114 

Fe3+ 466 0.137 0.140 0.138 0.139 

Co2+ 304 0.102 0.099 0.099 0.100 

Ni2+ 255 0.105 0.110 0.107 0.107 

Cu+ 57 0.133 0.081 0.079 0.078 

Cu2+ 716 0.084 0.103 0.085 0.085 

Zn2+ 461 0.085 0.086 0.087 0.085 

Ga3+ 228 0.139 0.139 0.138 0.136 

Ge4+ 350 0.148 0.152 0.148 0.149 

As3+ 28 0.127 0.485 0.086 0.065 

As5+ 526 0.108 0.111 0.109 0.111 

Se4+ 202 0.147 47.223 0.090 0.083 

Br5+ 9 0.147 3.771 0.104 0.064 

Rb+ 464 0.186 0.233 0.171 0.150 

Sr2+ 377 0.222 0.225 0.221 0.189 

Y3+ 178 0.157 0.140 0.157 0.140 

Zr4+ 117 0.135 0.106 0.135 0.106 

Nb5+ 251 0.161 0.162 0.157 0.157 

Mo5+ 76 0.136 0.252 0.116 0.131 

Mo6+ 970 0.147 0.145 0.140 0.143 

Ag+ 200 0.088 0.085 0.080 0.081 

Cd2+ 164 0.122 0.092 0.102 0.088 

In3+ 125 0.200 0.113 0.143 0.111 

Sn2+ 50 0.135 0.125 0.147 0.082 

Sn4+ 38 0.195 0.158 0.196 0.158 

Sb3+ 54 0.085 0.178 0.130 0.084 
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Te4+ 212 0.107 4x104 0.108 0.104 

I5+ 134 0.113 108.803 0.130 0.107 

I7+ 36 0.327 0.199 0.212 0.196 

Cs+ 544 0.138 0.176 0.143 0.135 

Ba2+ 857 0.237 0.248 0.231 0.217 

La3+ 182 0.162 0.159 0.153 0.155 

Ce3+ 76 0.162 0.132 0.137 0.131 

Ce4+ 28 0.176 0.124 0.154 0.122 

Pr3+ 99 0.185 0.135 0.146 0.134 

Nd3+ 203 0.160 0.163 0.159 0.159 

Sm3+ 97 0.171 0.149 0.150 0.145 

Eu2+ 3 0.071 0.028 0.047 0.024 

Eu3+ 49 0.196 0.142 0.132 0.134 

Gd3+ 107 0.188 0.141 0.138 0.129 

Tb3+ 48 0.122 0.116 0.117 0.115 

Dy3+ 70 0.174 0.134 0.134 0.129 

Ho3+ 81 0.188 0.129 0.133 0.128 

Er3+ 102 0.141 0.138 0.134 0.133 

Tm3+ 44 0.184 0.146 0.143 0.140 

Yb3+ 82 0.169 0.260 0.172 0.174 

Lu3+ 53 0.175 0.171 0.170 0.162 

Hf4+ 22 0.095 0.087 0.087 0.087 

Ta5+ 162 0.214 0.183 0.185 0.195 

W6+ 436 0.181 0.207 0.182 0.188 

Re7+ 59 0.923 0.192 0.237 0.191 

Os7+ 7 - 0.230 0.197 0.209 

Os8+ 8 0.608 0.264 0.266 0.233 
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Ir4+ 17 0.243 0.136 0.239 0.136 

Hg2+ 52 0.129 0.143 0.120 0.120 

Tl+ 74 0.113 0.101 0.113 0.098 

Tl3+ 9 0.294 0.080 0.145 0.079 

Pb2+ 276 0.125 0.118 0.177 0.111 

Pb4+ 12 0.286 0.184 0.219 0.181 

Bi3+ 231 0.190 0.149 0.152 0.138 

Bi5+ 11 0.316 0.202 0.195 0.203 

Th4+ 27 0.221 0.167 0.182 0.163 

U4+ 18 0.166 0.123 0.116 0.116 

U5+ 4 0.239 0.089 0.214 0.030 

U6+ 585 0.158 0.786 0.226 0.161 

Np5+ 33 0.820 0.126 0.073 0.061 

Np6+ 7 1.209 0.745 0.169 0.083 

Weighted mean 0.140 *0.161 0.139 0.128 

# Improvements 59 62 76 

*Without the values for Se4+, Br5+,Te4+ and I5+ where the method fails   
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We use the set of best published parameters (Table 2.S1) as a benchmark to evaluate 

the other methods. Table 2.1 shows that the graphical method gives better parameters 

for 59 of the 90 ions with more than one coordination number, 62 for the method of 

fixing B at 0.37 Å , and 76 for the GRG method . One of the major problems of the 

graphical method is observed for ions showing large gaps in their bond-length 

distributions, such as Se4+ (RMSD = 47.223 v.u.), Te4+ (4x104 v.u.), I5+ (108.803 v.u.), 

where the approximation of the “adjusted mean bond-length (Rs)” fails, and unusual 

values of the bond-valence parameters are obtained (e.g., Ro = 2.119 and B = -0.052 

for Te4+). 

In terms of the mean weighted-RMSD (weighted by the number of coordination 

polyhedra), a higher value is obtained for the graphical method than for the set of best 

published parameters with values of 0.161 v.u. (7.96% per unit of charge) and 0.140 

v.u. (6.5% per unit of charge), respectively, despite omitting the ions with RMSD > 1 v.u. 

in the calculation for the graphical method. The method of fixing B gives an overall fit 

similar to the set of best published parameters, with a mean weighted-RMSD of 0.139 

v.u. (6.7% per unit of charge). In contrast, the GRG method shows significant lowering 

of the mean weighted-RMSD with 0.128 v.u (6.1% per unit of charge).  

These results for the GRG method are welcome improvements, and confirm our choice 

of a 2:1 weighting scheme between overall RMSD and coordination-based RMSD. This 

weighting scheme thus allows a significant improvement in overall fit for cations, without 

sacrificing the fit of the different coordination numbers of the cations (i.e., allowing a 

very small increase in the RMSD leads to overwhelmingly better agreements over the 

entire range of coordination numbers of an ion). Moreover, we found the GRG method 
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to give much better bond-valence sums for the anions than a regular RMSD 

minimization (see below). 

 

2.11.4 General considerations  

2.11.4.1 Optimizing both cation and anion bond-valence sums 

The valence-sum rule states that the sum of the bond valences for an ion is equal to the 

valence of that ion (Brown, 2002), and does not discriminate between cations and 

anions. The tendency to focus on the bond-valence sums of the cations more than 

those of the anions arises from the fact that cation-centered coordination polyhedra 

commonly involve a single type of anion, whereas anion-centered coordination 

polyhedra commonly do not, although exceptions such as MgO and NaCl do occur.  

Modifying eq. 2.15 to include the 𝑚 anions in the summation leads to: 

RMSD = √
∑ (∑ 𝑆𝑖𝑗𝑗  −𝑉𝑖)

2𝑛+𝑚
𝑖=1

𝑛+𝑚
    → 0    (eq. 2.16) 

Eq. 2.16 can be solved in two ways to extract the bond-valence parameters. First, the 

optimization can be done on the basis of individual crystal structures, and the resulting 

parameters are averaged over all crystal structures used. However, the requirement of 

having at least two unique and linearly-independent coordination environments (e.g., 

two cation environments in different coordination numbers, or 1 cation environment and 

1 anion environment for the same ion pair) for every bonded pair of ions in every crystal 

structure renders this method practically inoperable.  
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The second (and more conventional) way of solving eq. 2.16 consists of optimizing the 

bond-valence sums on the basis of single coordination polyhedra. In this case, bonding 

environments are recorded for both cations and anions. A single optimization is then run 

for the coordination polyhedra of all crystal structures combined, to simultaneously solve 

for the bond-valence parameters of all pairs of ions. Whereas this removes the 

constraint on the bonding environments that makes the solution on the basis of 

individual crystal structures impractical, this method introduces a new drawback: the 

ensuing optimization results in a large system of (non-linear) equations, of dimension 𝐷 

where 

𝐷 =  2(𝑛𝑚)   (eq. 2.17) 

where 𝑛 and 𝑚 are the numbers of cations and anions, respectively, and 𝐷 is the 

minimum number of linearly-independent equations required to solve eq. 2.16 for all 

bond-valence parameters. Furthermore, any sensible attempt at solving eq. 2.16 using 

this approach necessarily entails a highly over-determined system of equations for the 

results to be significant. In this study, we have 135 cations bonded to a single anion (O2-

), and thus 𝐷 =  270. Whereas we need a minimum of 270 equations to solve eq. 2.16 

for the 135 pairs of bond-valence parameters, we derived 31,521 non-linear equations 

from the valence-sum rule, for the cation coordination polyhedra alone. We did not 

collect the bond-length data of anion-centered coordination polyhedra, but the number 

of resulting equations would be somewhat similar. While the simultaneous optimization 

of ~60,000 270-dimensional non-linear equations may not be impossible, this kind of 

calculation is very impractical.  
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A number of approximations can be made to circumvent this problem: (1) limit the 

number of ion environments in the refinement to only a couple of ions (e.g., Krivovichev, 

2012), (2) increase the “universality” of the parameterization to lower the number of 

bond-valence parameters (e.g., one pair per isoelectronic series; Brown & Shannon, 

1973), or (3) optimize the cation bond-valence sums only, and verify that the anion 

sums work a posteriori. 

 

2.11.4.2 On the universality of the bond-valence equation 

The universality of the bond-length to bond-valence relation is generally understood to 

mean the transferability of the relation between pairs of ions from structure to structure. 

However, it is important to realize that selection of the level of universality on the basis 

of pairs of ions is arbitrary, and depends on the quality of fit desired.  

Bond-valence parameters can be derived with different levels of universality. Coulomb’s 

law, which is arguably at the core of the relation (Preiser et al., 1999), offers an extreme 

case where only eight pairs of bond-valence parameters are required to model all ions 

bonding to oxygen (i.e., a pair of bond-valence parameters for each cation oxidation 

state, 1+ to 8+). However, this parameterization would yield a very poor fit due to effects 

that are not transferable between ions of the same charge. Conversely, reducing the 

universality from ion pairs to (for example) specific coordination environments would 

increase the fit of the relation, though at the cost of becoming very cumbersome. Two 

levels of universality are compared by Brown and Shannon (1973) in their initial 

description of the relation. They derive parameters based on isoelectronic series, 
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reporting a root-mean-square relative deviation (eq. 2.2) of 5.4% per unit of charge for a 

total of 27 ion pairs, compared to 4.0% per unit of charge for parameters derived for 

individual ion pairs. This result led to a widespread use and derivation of parameters 

based on ion pairs, which today still seems like the best compromise between 

universality and fit. 

 

2.11.4.3 Minimization using a priori bond-valences  

A priori bond-valences (called theoretical by Brown, 1987; and ideal by Brown, 2013) 

are obtained by solution of the network equations of a crystal structure (see Brown, 

2002).  Brown (2002) suggests optimizing the bond-valence parameters on the basis of 

minimization of the squared difference between observed and a priori bond-valences. 

This approach has not yet been examined, and we note that it is not equivalent to the 

methods examined above (section 2.11.1). Aside from the method of Krivovichev (2001, 

2012), the methods examined above rely on minimizing the RMSD of the bond-valence 

sums around the cations and omit consideration of the anions. As a priori bond-

valences are derived from all the valence-sum-rule equations in a structure (usually 

augmented by loop equations), it follows that optimizing bond-valence parameters with 

reference to observed and a priori bond-valences is equivalent to optimizing the 

valence-sum rule for all ions (cations and anions) in a structure. However, this method 

faces a similar constraint as for the solution of eq. 2.16: a very large number of high-

dimensional non-linear equations to solve.  
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2.11.5 The bond-length—bond-valence equation 

We now have an effective method for the derivation of bond-valence parameters (the 

GRG method), and have determined that (1) the minimization should be done on the 

cation bond-valence sums, while the anion bond-valence sums are verified a posteriori, 

and (2) the most useful level of universality remains on the basis of ion pairs. In this 

section, we use these criteria to examine new potential equations to describe the bond-

length—bond-valence relation.  

 

2.11.5.1 Evolution of the bond-length—bond-valence equation 

Generalization of eq. 2.15 shows that the desired optimization entails minimization of 

the difference between the valence of the cation Vi and some function of the 

independent parameter 𝑥𝑖,  𝑓(𝑥𝑖): 

𝑉𝑖 −  ∑ 𝑓(𝑥𝑖) → 0    (eq. 2.18) 

Pauling (1929) first used coordination number as the independent parameter: 

𝑓(𝑥𝑖) = 
𝑉𝑖

𝑛𝑖
    (eq. 2.19) 

where 𝑛𝑖 is the coordination number of cation 𝑖. Taking the sum on each side of eq. 

2.19, 

∑ 𝑓(𝑥𝑖) = ∑
𝑉𝑖

𝑛𝑖
 = 𝑛𝑖 (

𝑉𝑖

𝑛𝑖
) = 𝑉𝑖    (eq. 2.20) 

Eq. 2.18 (and by extension eq. 2.15) has an exact solution:  

𝑉𝑖 −  ∑ 𝑓(𝑥𝑖) = 𝑉𝑖 − 𝑉𝑖 = 0   (eq. 2.21) 
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In short, Pauling suggested an exact solution to eq. 2.15. However, with this 

parameterization, there is the lack of correspondence between the resulting anion bond-

strength sums and the oxidation states of the anion(s). 

Pauling (1947) proposed using bond length as a parameter in describing electron-

sharing in metallic bonds:  

𝑅(1) − 𝑅(𝑛) = 0.300 log 𝑛    (eq. 2.22) 

where R(1) is the length of the shortest bond in the coordination polyhedron, R(n) is the 

length of the bond considered, and 𝑛 is the bond number (the number of bonding 

electrons). This equation was used by Byström & Wilhelmi (1951) to show (from bond-

length considerations) that the sum of the bond numbers around V in V2O5 is 4.96, fairly 

close to the vanadium oxidation state of 5. Subsequent contributions to the relation 

(Smith, 1953; Zachariasen, 1954; Zachariasen & Plettinger, 1959; Zachariasen, 1963; 

Evans & Mrose, 1960; Evans, 1960; Pant & Cruikshank, 1967; Clark et al., 1969; 

Perloff, 1970, Donnay & Allmann, 1970) led to a major advance in the parameterization 

of 𝑓(𝑥𝑖) by Brown & Shannon (1973) who proposed a universal correlation between 

bond length and bond strength (transferrable from structure to structure) using eq. 2.2. 

This equation was later updated by Brown & Altermatt (1985) to eq. 2.5, which is still in 

use today. Other equations have been proposed (Ziółkowski, 1985; Naskar et al., 1997; 

Valach, 1999; Mohri, 2000) that commonly attempt to give a physical justification to the 

bond-length—bond-valence relation, but they are of more complicated form and have 

not seen wide application.  
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Note that the choice of bond length as parameter, although well-ingrained in the bond-

valence method, is not required by bond-valence theory, as none of the three axioms of 

the theory (see Brown, 2002) mention bond lengths, and it is feasible in principle that 

other parameters could be found in the future. 

 

2.11.5.2 Derivation of new equations 

In deriving new equations to model the relation, we must keep in mind that the number 

of coordination environments required to solve for the bond-valence parameters of a 

pair of ions is at least equal to the number of parameters of the equation used in 

describing the relation. In other words, the addition of parameters to increase the 

degree of fit is not without consequences, as many ions have few different coordination 

numbers. The conventional choice of a two-parameter equation to represent the bond-

valence relation means that at least two distinct coordination environments are 

necessary to solve for the parameters of the equation. As noted above, of the 135 ions 

examined in this work, 45 ions occur in only one coordination, making this a common 

and significant problem in the derivation of bond-valence parameters.  

To derive new equations for the description of the bond-length to bond-valence relation, 

we focused on a specific ion assumed to be representative of the relation. We used Al3+ 

for this purpose as (1) it covers a wide range of bond-valences, (2) a large amount of 

structural data on crystals containing Al is available.  

Fifty-one crystal structures containing Al3+ were selected from the Inorganic Crystal 

Structure Database (ICSD), following a strict set of filtering criteria: (1) the site of 



77 

 

interest is fully occupied by Al3+; (2) R1 < 3%; (3) the structure contains no H; (4) all 

sites in the structure are fully occupied and show no positional disorder; (5) the structure 

is not extensively strained; (6) the structure contains no ions showing known 

stereochemical electronic effects (e.g., [6]Cu2+, [6]Mn3+); (7) crystallographic data were 

measured at ambient conditions; (8) there is no heterovalent solid solution at any site; 

(9) there is no more than 10% homovalent solid-solution at any site other than that 

occupied by Al3+. The coordination polyhedra must also be clearly defined; any doubt 

resulted in a discarded entry. Table 2.S2 gives the ICSD code of the resulting 51 crystal 

structures, their R-value (average = 1.9%), and the number of Al-centered coordination 

polyhedra used for each structure (for a total of 90). Note that duplicate structure types 

are used, as long as there is a significant change in site occupancy.  

The network equations were derived for each of the 51 crystal structures to determine 

their a priori bond-valences using the method of Rutherford (1990). The a priori bond-

valences were then compared with their respective experimental bond-lengths, for a 

total of 481 pairs. The resulting plot is shown in Fig. 2.2. A series of simple equations 

were then fitted to the data points by least-squares minimization. These equations are 

considered next. 
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Figure 2.2 Determination of the curvature of the bond-valence relation by a match of 

the a priori bond-valences to their observed bond-lengths.

 

 

  



79 

 

2.11.5.3 Two-parameter equations: sample evaluation 

The top seventeen two-parameter equations obtained in the above fitting procedure 

were selected for further analysis. These equations are given in Table 2.2 and are 

identified by the numbers in square brackets. They include the exponential equation of 

Brown & Altermatt (1985) as equation [1]. We group the three equations containing an 

external parameter (a parameter that is not a multiplier of x) as equations [15]-[17], and 

add two more equations: the original equation of Brown & Shannon (1973), equation 

[18], and an expression related to the Born-Landé equation, equation [19].  

To evaluate these equations, we considered eight relatively common ions that cover 

different types of bonding behaviour: Na+, Al3+, Si4+, Ca2+, Mn2+, Mo6+, La3+ and Pb2+. 

We used the GRG method to derive bond-valence parameters for each of these eight 

ions bonded to O2- for the nineteen equations of Table 2.2.  
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Table 2.2 RMSD values (v.u.) for a sample of ions for 19 different two-parameter equations fitted with the GRG method 

 
Equation Na+ Al3+ Si4+ Ca2+ Mn2+ Mo6+ La3+ Pb2+ Mean 

[1] y = exp((a-x)/b) 0.143 0.108 0.119 0.163 0.116 0.143 0.155 0.111 0.132 

[2] y = (a+bx)2 0.127 0.114 0.109 0.164 0.129 0.129 0.180 0.117 0.134 

[3] y = (a+bln(x))2 0.129 0.111 0.113 0.163 0.114 0.131 0.172 0.110 0.130 

[4] y = (a+bx0.5)2 0.129 0.112 0.111 0.163 0.119 0.129 0.176 0.113 0.132 

[5] y = 1/(a+bx) 0.136 0.109 0.147 0.174 0.109 0.316 0.158 0.178 0.166 

[6] y = 1/(a+bx0.5) 0.155 0.110 0.151 0.175 0.109 0.339 0.162 0.186 0.173 

[7] y = 1/(a+bx1.5) 0.166 0.109 0.144 0.173 0.109 0.292 0.155 0.170 0.165 

[8] y = 1/(a+bx0.5ln(x)) 0.159 0.109 0.148 0.174 0.096 0.322 0.159 0.180 0.168 

[9] y = 1/(a+bexp(-x)) 0.147 0.112 0.160 0.178 0.110 0.410 0.178 0.219 0.189 

[10] y = 1/(a+bexp(x)) 0.136 0.108 0.136 0.168 0.111 0.233 0.147 0.140 0.147 

[11] y = exp(a+bx0.5) 0.133 0.108 0.122 0.163 0.115 0.150 0.153 0.114 0.132 

[12] y = exp(a+bln(x)) 0.135 0.107 0.125 0.164 0.114 0.159 0.151 0.118 0.134 

[13] y = exp(a+bexp(-x)) 0.139 0.107 0.129 0.168 0.112 0.178 0.147 0.136 0.139 

[14] y = (a+bexp(-x))2 0.132 0.109 0.117 0.162 0.115 0.136 0.160 0.110 0.130 

[15]* y = a+bexp(-x) 0.128 0.117 0.107 0.165 0.118 0.143 0.188 0.126 0.136 

[16]* y = a+bx0.5 0.127 0.123 0.101 0.173 0.123 0.178 0.211 0.168 0.151 

[17]* y = a+bln(x) 0.127 0.120 0.104 0.170 0.121 0.165 0.206 0.157 0.146 
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[18]** y = s0(a/x)-b 0.135 0.107 0.125 0.164 0.114 0.159 0.151 0.118 0.134 

[19]** y = a/x2+b/r3 0.132 0.109 0.121 0.162 0.114 0.140 0.167 0.109 0.132 

*Has external parameter 

**Added manually 
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Table 2.2 gives the RMSD obtained by the GRG method for each equation, for each 

ion. Thus, the current form of the relation, equation [1], gives a mean RMSD of 0.132 

v.u for the ions considered. Many equations give a RMSD similar to that of equation [1], 

and five of the nineteen equations [3, 4, 11,14, 19] give a slightly lower mean RMSD 

(including the expression related to the Born-Landé equation). The original equation of 

Brown & Shannon (1973), equation [18], also gives reasonable results with a mean 

RMSD of 0.134 v.u. for the sample of ions considered. The mean RMSD of the fourteen 

best-fit equations with no external parameters [1-14] is 0.148 v.u. The top 3 equations 

with one external parameter (equations [15-17]) have a mean RMSD of 0.144 v.u., 

which indicates that although the presence of an external parameter removes some 

flexibility in the shape of the curve, it does not necessarily reduce the fit.  

 

2.11.5.4 Two-parameter equations: full evaluation of best equations 

Next, we selected six two-parameter equations that gave a similar or better fit to that of 

the equation of Brown and Altermatt (1985; equation [1]) on the sample of eight ions 

(equations [2,3,4,14,15,19]) and compared them to that equation for the 90 multiple-

coordination-number ions of our bond-length dispersion analysis. Bond-valence 

parameters were derived for the seven equations, for each of the 90 ions, using the 

GRG method of derivation. The resulting RMSD for the six equations obtained for the 

90 ions are given in Table 2.S3. Using the number of coordination polyhedra for each 

ion as a weighting factor, equations [3, 4 and 14] give a mean weighted-RMSD of 0.128 

v.u., equations [2 and 19] 0.129 v.u., and equation [15] 0.130 v.u., compared to 0.128 

v.u. (Table 2.1) for equation [1]. 



83 

 

In addition to the similarity of the overall values, there is little spread in the RMSD 

values of the different equations of Table 2.S3 (mean standard deviation of 0.005 v.u. 

on the basis of ions). This leads to two conclusions: (1) many equations (and in various 

forms) can describe the relation, and (2) we have likely reached a plateau in the fit for 

two-parameter equations. It is notable that the equation of Brown & Altermatt (1985) 

leads to the best fit (tied here with equations [3, 4 and 14]), even though we derive the 

equation and its bond-valence parameters in a different way than Brown & Altermatt, 

and on a very different dataset. This is a welcome result, as it does not warrant update 

of the well-established “exponential equation”; only an improved set of bond-valence 

parameters is needed.  

 

2.11.5.5 Three-parameter equations: sample evaluation 

Next, we examined three-parameter equations using the same procedure as above. Six 

three-parameter equations were selected for evaluation over the sample of ions (above) 

and are given in Table 2.3 (equations [20-25]). We also add a third (external) parameter 

to the best two-parameter equation of Table 2.2 (equation [26]), bringing the total to 

seven three-parameter equations. 
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Table 2.3 RMSD values (v.u.) for a sample of ions for 7 different three-parameter equations fitted with the GRG method 

 
Equation Na+ Al3+ Si4+ Ca2+ Mn2+ Mo6+ La3+ Pb2+ Mean 

[20] y = exp(a+bx+cx2) 0.127 0.105 0.075 0.159 0.114 0.120 0.146 0.107 0.119 

[21] y = (a+bx+cx2)2 0.127 0.104 0.075 0.159 0.110 0.125 0.147 0.108 0.119 

[22] y = 1/(a+bx+cx2) 0.126 0.108 0.078 0.159 0.110 0.115 0.146 0.107 0.119 

[23] y = (a+cx)/(1+bx) 0.127 0.117 0.117 0.165 0.117 0.129 0.152 0.114 0.130 

[24] y = (a+cx2)/(1+bx2) 0.127 0.114 0.117 0.162 0.115 0.130 0.150 0.110 0.128 

[25] y = (a+cx0.5)/(1+bx0.5) 0.127 0.118 0.117 0.166 0.119 0.129 0.153 0.117 0.131 

[26]* y = (a+bln(x))2+c 0.127 0.103 0.161 0.159 0.110 0.129 0.147 0.108 0.130 

*Added manually 
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The lowest mean weighted-RMSD for the sample was obtained for equations [20-22] 

with a value of 0.119 v.u., compared to 0.130 v.u. for the best two-parameter equation 

(Table 2.2, equation [3]). Despite the decrease in RMSD, there are three drawbacks 

that make the three-parameter equations less attractive: (1) the derivation of the bond-

valence parameters requires at least three coordination-environments per ion; (2) the 

search for the global minimum of the RMSD (for evaluation of the bond-valence 

parameters) becomes much less reliable as the RSMD landscape becomes more 

complicated; (3) the bond-valence parameters cannot be extrapolated to ions with less 

than three coordination numbers because of high variability, and, of the 135 ions used 

here, 64 ions have less than three coordination numbers. Thus three-parameter fits do 

not seem desirable, at least at the present time. 

 

2.11.5.6 The bond-valence equation: conclusions 

From our search for a new equation, we conclude that (1) many equations can model 

the bond-length—bond-valence relation adequately; (2) the loss of trends in the bond-

valence parameters for three-parameter equations discourages their use; (3) the current 

form of the relation given by Brown & Altermatt (1985) shows the best compromise 

between applicability and fit.   

 

2.11.6 New bond-valence parameters  
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New bond-valence parameters were derived in the same way as for the trial equations 

(above), that is by minimization of the difference between the sum of the bond valences 

of an ion and its valence using the GRG method. The bond-valence parameters of the 

90 ions with more than one coordination number are given in Table 2.4 for the equation 

of Brown & Altermatt (1985). Table 2.4 also includes 45 additional pairs of parameters 

for those ions with only one coordination number, to bring the total to 135 pairs of bond-

valence parameters. The parameters for the 45 additional ions are identified by a 

number (from 1 to 3), depending on how these parameters were derived (see below). 
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Table 2.4 New bond-valence parameters derived with the GRG method 

Ion 

No. of 

coordination 

polyhedra 

Ro (Å) B (Å) 
RMSD 

(v.u.) 

Method of 

derivation 

(1-CN ions) 

H+ 224 0.918 0.427 0.033  

Li+ 690 1.062 0.642 0.077 
 

Be2+ 169 1.429 0.297 0.092 
 

B3+ 1572 1.372 0.357 0.069 
 

C4+ 433 1.398 0.399 0.086 3 

N5+ 497 1.492 0.482 0.118 
 

Na+ 1683 1.695 0.420 0.143 
 

Mg2+ 469 1.608 0.443 0.110 
 

Al3+ 856 1.634 0.390 0.108 
 

Si4+ 2530 1.624 0.389 0.119 
 

P3+ 7 1.655 0.399 0.079 3 

P5+ 3691 1.624 0.399 0.099 3 

S4+ 30 1.643 0.399 0.087 3 

S6+ 906 1.634 0.399 0.111 3 

Cl3+ 5 1.722 0.370 0.086 
 

Cl5+ 9 1.703 0.428 0.068 2 

Cl7+ 65 1.669 0.428 0.138 2 

K+ 1479 2.047 0.398 0.164 
 

Ca2+ 1168 1.907 0.409 0.163 
 

Sc3+ 88 1.780 0.452 0.108 
 

Ti3+ 24 1.654 0.545 0.094 
 

Ti4+ 324 1.819 0.342 0.143 
 

V3+ 70 1.718 0.412 0.115 
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V4+ 226 1.776 0.364 0.105 
 

V5+ 714 1.799 0.388 0.105 
 

Cr2+ 17 1.761 0.350 0.060 
 

Cr3+ 104 1.725 0.361 0.114 1 

Cr4+ 7 1.783 0.410 0.156 
 

Cr5+ 1 1.777 0.375 - 2 

Cr6+ 169 1.799 0.375 0.146 2 

Mn2+ 392 1.740 0.417 0.116 
 

Mn3+ 94 1.823 0.247 0.166 
 

Mn4+ 21 1.750 0.374 0.120 
 

Mn5+ 8 1.781 0.375 0.091 2 

Mn6+ 2 1.814 0.375 0.118 2 

Mn7+ 7 1.819 0.375 0.121 2 

Fe2+ 192 1.658 0.447 0.114 
 

Fe3+ 466 1.766 0.360 0.139 
 

Co2+ 304 1.698 0.376 0.100 
 

Co3+ 15 1.655 0.364 0.100 1 

Co4+ 1 1.729 0.358 - 1 

Ni2+ 255 1.689 0.347 0.107 
 

Ni4+ 5 1.734 0.335 0.040 1 

Cu+ 57 1.601 0.335 0.078 
 

Cu2+ 716 1.687 0.355 0.085 
 

Cu3+ 11 1.737 0.375 0.137 2 

Zn2+ 461 1.684 0.383 0.085 
 

Ga3+ 228 1.736 0.345 0.136 
 

Ge4+ 350 1.750 0.363 0.149 
 

As3+ 28 1.775 0.423 0.065 
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As5+ 526 1.765 0.352 0.111 
 

Se4+ 202 1.805 0.401 0.083 
 

Se6+ 191 1.797 0.399 0.104 3 

Br5+ 9 1.890 0.571 0.064 
 

Br7+ 2 1.850 0.428 0.052 2 

Rb+ 464 1.993 0.478 0.150 
 

Sr2+ 377 1.958 0.479 0.189 
 

Y3+ 178 1.978 0.407 0.140 
 

Zr4+ 117 1.913 0.406 0.106 
 

Nb4+ 3 1.853 0.479 0.048 1 

Nb5+ 251 1.909 0.369 0.157 
 

Mo3+ 5 1.792 0.436 0.053 1 

Mo4+ 9 1.834 0.404 0.053 1 

Mo5+ 76 1.888 0.314 0.131 
 

Mo6+ 970 1.903 0.349 0.143 
 

Tc7+ 6 1.915 0.375 0.070 2 

Ru3+ 3 1.745 0.401 0.004 1 

Ru4+ 8 1.833 0.366 0.121 1 

Ru5+ 23 1.894 0.346 0.156 1 

Rh3+ 11 1.769 0.369 0.162 1 

Rh4+ 3 1.836 0.422 0.088 1 

Pd2+ 29 1.749 0.375 0.104 2 

Pd4+ 2 1.856 0.352 0.038 1 

Ag+ 200 1.875 0.359 0.081 
 

Cd2+ 164 1.827 0.430 0.088 
 

In3+ 125 1.823 0.459 0.111 
 

Sn2+ 50 1.910 0.451 0.082 
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Sn4+ 38 1.946 0.274 0.158 
 

Sb3+ 54 1.932 0.435 0.084 
 

Sb5+ 183 1.892 0.475 0.167 1 

Te4+ 212 1.960 0.389 0.104 
 

Te6+ 155 1.922 0.387 0.208 2 

I5+ 134 1.992 0.474 0.107 
 

I7+ 36 1.930 0.299 0.196 
 

Cs+ 544 2.296 0.411 0.135 
 

Ba2+ 857 2.223 0.406 0.217 
 

La3+ 182 2.179 0.359 0.155 
 

Ce3+ 76 2.114 0.389 0.131 
 

Ce4+ 28 2.046 0.416 0.122 
 

Pr3+ 99 2.071 0.411 0.134 
 

Nd3+ 203 2.103 0.371 0.159 
 

Sm3+ 97 2.049 0.404 0.145 
 

Eu2+ 3 1.943 0.490 0.024 
 

Eu3+ 49 2.068 0.359 0.134 
 

Gd3+ 107 1.988 0.433 0.129 
 

Tb3+ 48 2.020 0.379 0.115 
 

Tb4+ 7 2.018 0.395 0.069 2 

Dy3+ 70 2.002 0.389 0.129 
 

Ho3+ 81 1.993 0.387 0.128 
 

Er3+ 102 1.991 0.373 0.133 
 

Tm3+ 44 1.977 0.381 0.140 
 

Yb3+ 82 1.969 0.373 0.174 
 

Lu3+ 53 1.939 0.403 0.162 
 

Hf4+ 22 1.923 0.375 0.087 
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Ta5+ 162 1.916 0.343 0.195 
 

W5+ 4 1.848 0.553 0.128 1 

W6+ 436 1.909 0.339 0.188 
 

Re5+ 3 1.834 0.557 0.033 1 

Re7+ 59 1.943 0.406 0.191 
 

Os5+ 4 1.870 0.485 0.045 1 

Os6+ 1 1.904 0.375 - 2 

Os7+ 7 1.937 0.349 0.209 
 

Os8+ 8 1.966 0.405 0.233 
 

Ir3+ 1 1.755 0.414 - 1 

Ir4+ 17 1.909 0.258 0.136 
 

Ir5+ 6 1.909 0.449 0.138 1 

Pt2+ 3 1.742 0.375 0.040 2 

Pt4+ 33 1.856 0.407 0.136 1 

Au3+ 24 1.890 0.375 0.095 2 

Hg2+ 52 1.947 0.370 0.120 
 

Tl+ 74 2.063 0.422 0.098 
 

Tl3+ 9 1.874 0.504 0.079 
 

Pb2+ 276 2.032 0.442 0.111 
 

Pb4+ 12 2.056 0.280 0.181 
 

Bi3+ 231 2.068 0.389 0.138 
 

Bi5+ 11 2.050 0.318 0.203 
 

Th4+ 27 2.117 0.420 0.163 
 

U4+ 18 2.100 0.373 0.116 
 

U5+ 4 2.009 0.660 0.030 
 

U6+ 585 2.046 0.473 0.161 
 

Np5+ 33 2.036 0.411 0.061 
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Np6+ 7 2.022 0.523 0.083 
 

Np7+ 2 2.076 0.477 0.132 2 

Am3+ 1 2.068 0.392 - 1 

Cm3+ 1 2.034 0.412 - 1 

1: Ro fixed to predicted value 

2: B fixed to family average 

3: B fixed to 0.399 Å  
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2.11.6.1 Trends in the bond-valence parameters for ions with two or more 

coordination numbers 

Here, we will examine trends in the bond-valence parameters derived with the GRG 

method for the 90 ions with two or more coordination numbers. We begin with the 

relation between the bond-valence parameter Ro and the mean bond-length of a pair of 

ions. Fig. 2.3 shows our new values for Ro as a function of mean bond-length. The 

correlation is not strong (R2 = 0.457) although it changes slightly by removing the two 

lower outliers (H+, Li+; R2 = 0.516). Certain groups of ions of similar crystal-chemical 

behaviour also show significant correlation (e.g., alkali metals, R2 = 0.937; alkaline-earth 

metals,   R2 = 0.962). Attempts to relate the individual parameters Ro and B directly to 

other physical properties of the ions were not successful. 
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Figure 2.3 Bond-valence parameter Ro as a function of mean bond-length for the 90 

multiple-coordination-number ions.
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On the other hand, the ratio Ro /<Rij> shows significant correlation with various cation 

properties: (1) oxidation state, Vi; (2) ionization energy, IE; and to a much lesser extent 

(3) Pauling electronegativity, 𝜒𝑖:  

𝑅𝑜

〈𝑅𝑖𝑗〉
 = 0.677 𝑥 𝑉𝑖

0.210   R2 = 0.673   (eq. 2.23) 

𝑅𝑜

〈𝑅𝑖𝑗〉
 = 0.254 𝑥 (𝐼𝐸)0.154  R2 = 0.751   (eq. 2.24) 

𝑅𝑜

〈𝑅𝑖𝑗〉
 = 0.775 + 0.183 ln 𝜒𝑖 R2 = 0.276   (eq. 2.25) 

These relations are shown in Fig. 2.4. We use the Pauling electronegativity scale 

(Pauling, 1960) as it gives a slightly better value for R2 (0.276) compared to the scales 

of Allen (Allen, 1989; 0.272) and Allred-Rochow (Allred & Rochow, 1958; 0.262). 

Similarly, O’Keeffe & Brese (1991) derived a correlation between Ro and a combination 

of (Allred-Rochow) electronegativity and an empirically-derived “size parameter”. To 

evaluate the reliability of eqs. 2.23 to 2.25, we calculate the mean absolute deviation 

between the values of Ro predicted by these equations, and those derived by the GRG 

method for all usable ions. Eqs. 2.23 to 2.25 give mean deviations of 4.89%, 4.21% and 

9.00%, respectively. Even though the deviations calculated from eqs. 2.23 and 2.24 

seem reasonable, one must be careful when using these equations to extrapolate 

values for Ro. Thus for eq. 2.24, the experimental value of Ro falls within the range of its 

predicted value with error for only 61 of the 90 ions. Moreover, deviations on Ro have a 

much larger effect on the bond-valence sums than deviations on B. As a result, it is 

much safer to fix B to a reasonable value (such as the mean value of 0.399 Å) rather 

than fixing Ro, when dealing with unfamiliar cations observed in only one coordination. 
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Figure 2.4 Relation between bond-valence parameter Ro and (a) oxidation state, (b) 

ionization energy, and (c) Pauling electronegativity. 

 

  



97 

 

2.11.6.2 The one-coordination-number problem 

As noted above, the choice of a two-parameter equation to represent the bond-valence 

relation (eq. 2.5) means that at least two distinct coordination environments are required 

to solve for the parameters of the equation. Of the 135 ions examined here, 45 ions 

occur in only one coordination, resulting in a significant problem with regard to the 

calculation of their bond-valence parameters. Several ways around this “one-

coordination-number problem” have been proposed. For example, Brown & Shannon 

(1973) used the bond-length information for the same cation in different coordination 

and bonded to other anions, and adjusted the bond lengths in proportion to the 

difference in ionic radius of the anions, while Brown & Altermatt (1985) fixed the B 

parameter to 0.37 Å, which effectively removes the factor of 2 in eq. 2.22. Other ways of 

dealing with this problem (e.g., Krivovichev, 2001) are applicable only to a small set of 

data. 

 

2.11.6.3 Extrapolation to ions with only one coordination number 

Here, we explore different options for fixing one of the bond-valence parameters for the 

45 ions with only one coordination number, using the trends in the bond-valence 

parameters described above. We use three different methods that involve fixing either 

Ro or B, and letting the other parameter refine by the GRG method.  

Although the system is underdetermined, any useful solution must be physically realistic 

and consistent with the results obtained for the ions observed in multiple coordination 

numbers. Thus we have an idea of the range that calculated values of Ro, B and of the 
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RMSD should occur within, based on ions showing similar crystal-chemical behaviour 

as well as for all ions considered. We experimented with fixing both Ro and B, and 

found that ions should be treated on a case by case basis. The following three methods 

of derivation were used to derive the bond-valence parameters of ions observed in only 

one coordination: 

(1) Fix Ro to the value predicted by eq. 2.23 (ionization energy), or to the mean of the 

values predicted by eqs. 2.23 and 2.24). Let B refine, and see if the values for both B 

and the RMSD fall within a reasonable range for that family or group of ions with similar 

crystal-chemical behaviour. If this is not the case, move to method (2). 

(2) Fix B to a reasonable value based on family (e.g., for the transition metals, the mean 

value of B is 0.375 Å) or group of ions with similar crystal-chemical behaviour. Let Ro 

refine, and see if both Ro and the RMSD fall within a reasonable range for that family. If 

this is not the case, move to method (3). 

(3) Fix B to the mean value of all multiple-coordination-number ions combined (0.399) Å 

and let Ro refine. This is done where (1) and (2) fail, or where there is insufficient data 

available to make a reasonable estimate of B (e.g., for the non-metals). 

For the 45 ions considered, we fixed Ro for 22 ions and B for 23 ions. Parameters 

derived by fixing a parameter are identified by their method of derivation (1, 2 or 3) in 

Table 2.4. 

 

2.11.7 Precision 
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Several factors affect the precision of the RMSD and bond-valence parameters 

calculated in this work: (1) uncertainty in the experimental bond-lengths, (2) uncertainty 

in the parameterization of the model, and (3) the presence of structural strain in the 

bond-length data. We estimated the effect of (1) by taking an average standard 

deviation for a bond length (~0.005 Å) and, using a sample of nine ions (H+, Na+, Mg2+, 

Al3+, S6+, Zn2+, La3+, Pb2+, Th4+), determined the effect of varying bond lengths by 

±0.005 Å on the RMSD. The uncertainty on the bond length resulted in variations in the 

third decimal of the RMSD (first decimal for the relative RMSD). The error on Ro and B 

was then determined by incrementally varying the value of these parameters until the 

same variation in the RMSD was observed. The uncertainty on both Ro and B caused 

by (1) is thus determined to be in the third decimal place. On the other hand, while we 

strived to minimize the effect of uncertainty in the parameterization of the model in this 

work (2), simple factors such as the largely variable sample sizes of the ions affect the 

accuracy and precision of the results in ways that are arguably more important than the 

uncertainty on the experimental bond-lengths. As for the presence of structural strain 

(3), this phenomenon is structure dependent and cannot (currently) be evaluated by any 

method not dependent on the valence-sum rule. We thus give the values to be precise 

to the third decimal as a best-case scenario. 

 

2.12 Anion-sum verification  

Bond-valence parameters are usually derived on the basis of the cation bond-valence 

sums. However, as discussed earlier, parameters are expected to work equally well for 

both cations and anions according to the valence-sum rule. If a method of derivation is 
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selected that optimizes the bond-valence sums for cations only, it is critical that these 

parameters be evaluated a posteriori to check that they also work well for anions. As 

this is seldom done, here we will evaluate the anion bond-valence sums for four sets of 

parameters: (1) those of Brown & Altermatt (1985), (2) those of Brese & O’Keeffe 

(1991), (3) the set of best published parameters from Table 2.S1, and (4) the new 

parameters given in this paper.  

We assembled a set of structures covering all pairs of bond-valence parameters derived 

in this paper (with at least one unique structure per cation), unless no structure could be 

evaluated solely with the parameters of our dataset. This resulted in a set of 128 

structures (Table 2.S4). The structures were then evaluated with the 3 (smaller) sets of 

parameters given above, where applicable, which resulted in 4 overlapping sets of 

evaluated structures shown in Table 2.5 (note that the way the structure sets are 

assembled, less common cations become part of the evaluation as the sets get larger.). 

We used the program KDist (part of the Kalvados software suite; 

http://www.fzu.cz/~knizek/kalvados) to calculate the overall RMSD of the anion bond-

valence sums for the different sets of parameters over the structure sets.  
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Table 2.5 Overall RMSD (v.u.) for the anion bond-valence sums of 4 large sets of bond-

valence parameters 

No. of 

structures 

(coordination 

polyhedra) 

Brown & 

Altermatt 

(1985) 

Brese & 

O'Keeffe 

(1991) 

Best  

published 

parameters 

This 

paper 

72 (296) 0.130 0.119 0.100 0.100 

100 (398) - 0.121 0.106 0.099 

122 (490) - - 0.120 0.103 

128 (511) - - - 0.104 
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The results are summarized in Table 2.5 together with the number of structures and the 

number of anion-centered coordination polyhedra used for each set. For the set of 72 

structures, the set of best published parameters as well as the parameters given in this 

work give the best anion bond-valence sums, with an overall RMSD of 0.100 v.u. (5.0% 

per unit of charge), compared with 0.119 v.u. and 0.130 v.u. for the sets of Brese & 

O’Keeffe (1991) and Brown & Altermatt (1985), respectively. Over the set of 100 

structures, the parameters of this work give the best anion bond-valence sums, with a 

RMSD of 0.099 (4.9% per unit of charge), compared with 0.106 v.u. and 0.121 for the 

set of best published parameters and the parameters of Brese and O’Keeffe, 

respectively. The structure set covering 122 unique ions shows even greater distinction 

between the parameters of this work and what we identified to be the set of best 

published parameters, with an overall RMSD of 0.103 v.u. (5.1% per unit of charge) 

compared to 0.120 v.u. Finally, the set of structures covering 128 unique ions yields an 

overall RMSD of 0.104 v.u. (5.2% per unit of charge) with the parameters derived here. 

Fig. 2.5 shows the bond-valence sums for O2- for the parameters of Brown & Altermatt 

(1985) and the parameters given in this paper. Although the parameters given in this 

paper account for more coordination polyhedra (511 vs. 296), the range of bond-

valence sums is smaller (1.63-2.30) compared to that obtained from the parameters of 

Brown & Altermatt (1.67-2.52). The mean bond-valence sum for the parameters of this 

paper is 2.02 v.u., compared to 2.04 v.u. for the parameters of Brown & Altermatt, with 

standard deviations of 0.10 and 0.12 v.u. respectively.  
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Figure 2.5 Anion bond-valence sums for the parameters of Brown & Altermatt (1985; 

dark red) and the parameters given in this paper (yellow), with sample sizes of 296 and 

511 anion coordination polyhedra, respectively.
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We conclude that the parameters given in this paper give the best anion bond-valence 

sums of the large sets of parameters, in addition to giving the best bond-valence sums 

for the cations (above). Moreover, the results show that the approximation of deriving 

bond-valence parameters on the basis of cation coordination polyhedra is justified. 

 

2.13 Improvement in fit: Cations 

It is more difficult to compare different sets of bond-valence parameters in terms of 

cation bond-valence sums, as the sets of parameters often cover a wide array of cations 

that have different expected levels of fit. However, we can safely compare the two 

largest sets of parameters discussed above, which are those given in this paper and the 

set of best published parameters from Table 2.S1. 

The parameters given in this paper yield a mean weighted-RMSD of 0.128 v.u. (6.1% 

per unit of charge) over 31,515 coordination polyhedra for 129 of the 135 ions (9 cations 

are only found in only one coordination polyhedron, for which the RMSD calculation is 

irrelevant). On the other hand, the set of best published parameters gives a mean 

weighted-RMSD of 0.136 v.u. (5.7% per unit of charge) over 31,489 coordination 

polyhedra for 128 ions. To put things in perspective, the mean weighted-RMSD for the 

anion bond-valence sums using the parameters of this paper (0.104 v.u.) is 5.2% per 

unit of charge, slightly lower than for the cation bond-valence sums, although this may 

be the result of a much smaller sample size. 

In terms of specific families, we usually observe small but consistent improvements in 

the overall RMSD for most ions in comparison to the set of best published parameters. 
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Where the overall RMSD is not improved (e.g., Be2+), this is usually because the GRG 

method gave parameters with a slightly higher overall RMSD in order to compensate for 

the coordination-based RMSD. The bond-valence sums for coordination numbers 3 and 

4 for the best published parameters for Be2+ are thus 1.901 and 2.010 v.u., whereas 

they are 2.000 and 2.000 v.u for the parameters of this work. Major improvements are 

generally associated with less common ions and are presumably the result of higher 

quality and/or of more data now being available. For example: for some less-common 

transition metals, Os8+changes from 0.608 to 0.233 v.u., and Re7+ from 0.923 to 0.191 

v.u.; for some actinide ions, Np5+ changes from 0.820 to 0.061 v.u., and Np6+ changes 

from 1.209 to 0.083 v.u.   

The RMSD for the hydrogen ion improved slightly from 0.035 v.u. (for the parameters of 

Grabowski, 2000) to 0.033 v.u., which reaffirms that one pair of bond-valence 

parameters is sufficient to model the ion. 

 

2.14 Deviations from the valence-sum rule 

Of the 462 configurations of ions and coordination numbers examined here, 55 have 

overall mean bond-valence sums that deviate from the valence-sum rule by more than 

0.1 v.u., 11 by more than 0.2 v.u. and 2 by more than 0.3 v.u. In terms of relative 

deviation from the valence-sum rule, 57 configurations have overall mean bond-valence 

sums that deviate by more than 2% per unit of charge, 12 by more than 5%, and 2 by 

more than 10%. The larger deviations are usually unavoidable by using any set of 

parameters, and are usually for (1) the low/high coordinations of ions observed in many 
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different coordination numbers (e.g., Tl+, alkali metal ions), (2) structure refinements of 

dubious quality, and (3) configurations with very little data. The deviations are 

significantly higher when using other sets of parameters, and show that the addition of 

the coordination-based RMSD minimization of the GRG method of derivation is 

valuable. 

 

2.15 Summary 

[1] Evaluation of 244 pairs of bond-valence parameters for 128 cations bonded to 

oxygen shows a wide variation in the quality of fit to the valence-sum rule, based on 

180,194 (filtered) bond lengths from 31,489 coordination polyhedra from 9367 crystal-

structure refinements. 

[2] We have evaluated two common methods for the derivation of bond-valence 

parameters: (1) the graphical method, and (2) fixing B and solving for Ro; We conclude 

that both (1) fixing B at 0.37Å, and (2) derivation of Ro and B by the graphical method, 

are not ideal, and we introduce a new method of derivation, the GRG (Generalized 

Reduced Gradient) method, that leads to better agreement with the valence-sum rule 

for both cation and anion bond-valence sums. 

[3] We have evaluated 19 two-parameter equations and 7 three-parameter equations to 

model the bond-valence—bond-length relation. We conclude that (1) several equations 

can describe the relation to a similar degree of accuracy; (2) we have likely reached a 

plateau in the degree of fit for two-parameter equations; and (3) the equation of Brown 

& Altermatt (1985) is best on the basis of fit and practicality.  
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[4] We have derived new bond-valence parameters for 135 cations bonded to O2- using 

the GRG method. These parameters give better bond-valence sums for the cations, 

with a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) for 129 ions and 

31,515 cation coordination polyhedra, compared to 0.136 v.u. (5.7% per unit of charge) 

for what we have determined to be the set of best published parameters over 128 ions 

and 31,489 coordination polyhedra.  

[5] The parameter Ro /<Rij> is correlated with ion valence (R2 = 0.673) and ionization 

energy (R2 = 0.751), indicating that the potential correlation between Ro and B does not 

adversely affect the derivation of bond-valence parameters provided an effective 

method of derivation is used. 

[6] There are small but consistent improvements in the overall RMSD for most ions in 

comparison to the set of best published parameters, and excellent improvements in the 

coordination-based agreement between bond-valence sum and oxidation state. 

Moreover, some ions show a striking improvement in fit compared with published 

parameters, likely due to the availability of higher quality data: for example, 

Os8+changes from 0.608 to 0.233 v.u., Re7+ from 1.000 to 0.276 v.u. and Np6+ from 

1.209 to 0.078 v.u. 
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Appendix A: Supplementary material 

Supplementary material for 

Comprehensive derivation of bond-valence parameters for ion pairs involving 

oxygen 

 

Table 2.S1 Evaluation of published bond-valence parameters 

Ion 

No. of 

coordination 

polyhedra 

Ref. code Ro (Å) B (Å) 
RMSD 

(v.u.) 

Special 

condition 

Hydrogen 

H+ 224 bc* 0.569 0.94  
1.05 Å < O-

H < 1.70 Å 

   0.907 0.28  
O-H < 1.05 

Å 

   0.99 0.59 0.059 
1.70 Å < O-

H 

  az* 0.93 0.40 0.035  

  ba† 0.79 0.37  
Sij > 0.5 vu; 

Rij < 1.30 Å 

Alkali metals 

Li+ 690 a 1.466 0.37 0.121 

  
o 1.29 0.48 0.092 

Na+ 1682 a 1.803 0.37 0.178 

  
v 1.756 0.37 0.158 

  
o 1.661 0.44 0.140 

K+ 1478 a 2.132 0.37 0.204 
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u 2.113 0.37 0.179 

  
o 1.84 0.48 0.155 

Rb+ 464 a 2.263 0.37 0.206 

Cs+ 544 a 2.417 0.37 0.167 

Alkaline-Earth metals 

Be2+ 169 a 1.381 0.37 0.080 

Mg2+ 469 a 1.693 0.37 0.143 

  
o 1.636 0.42 0.120 

Ca2+ 1168 a 1.967 0.37 0.183 

  
o 1.896 0.41 0.171 

Sr2+ 374 a 2.118 0.37 0.222 

Ba2+ 856 a 2.285 0.37 0.237 

Metalloids 

B3+ 1572 a 1.371 0.37 0.069 

Si4+ 2530 b 1.624 0.37 0.126 

  
au 1.622 0.37 0.127 

  
a 1.64 0.37 0.221 

Ge4+ 350 a 1.748 0.37 0.148 

As3+ 28 a 1.789 0.37 0.127 

As5+ 526 a 1.767 0.37 0.108 

Sb3+ 54 be 1.925 0.455 0.086 

  
bg 1.927 0.446 0.085 

  
bd 1.924 0.47 0.093 

  
an 1.955 0.37 0.13 

  
bj 1.885 0.53 0.147 

Sb5+ 183 be 1.904 0.43 0.198 

  
a 1.942 0.37 0.525 
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an 1.912 0.37 0.217 

  
aw 1.908 0.409 0.209 

Te4+ 212 bd 1.955 0.44 0.120 

  
a 1.977 0.37 0.198 

  
bk 1.96 0.41 0.107 

Te6+ 155 a 1.917 0.37 0.229 

  
bk 1.921 0.56 0.146 

Non-metals 

C4+ 433 e 1.39 0.37 0.093 

  
au 1.407 0.37 0.211 

  
o 1.4 0.26 0.716 

N5+ 497 a 1.432 0.37 0.162 

  
o 1.41 0.43 0.620 

P3+ 7 e 1.63 0.37 0.216 

P5+ 3691 a 1.617 0.37 0.107 

  
au 1.615 0.37 0.111 

  
b 1.604 0.37 0.205 

S4+ 30 a 1.644 0.37 0.136 

S6+ 906 a 1.624 0.37 0.124 

Se4+ 202 a 1.811 0.37 0.147 

Se6+ 191 a 1.788 0.37 0.119 

Poor metals 

Al3+ 856 e 1.62 0.37 0.211 

  
o 1.644 0.38 0.121 

Ga3+ 228 a 1.73 0.37 0.139 

In3+ 125 a 1.902 0.37 0.200 

Sn2+ 50 bd 1.849 0.5 0.144 



119 

 

  bh 1.859 0.55 0.135 

  b 1.984 0.37 0.139 

Sn4+ 38 a 1.905 0.37 0.195 

Tl+ 74 a 2.124 0.37 0.148 

  
b 2.172 0.37 0.116 

  
af 1.927 0.5 0.113 

Tl3+ 11 b 2.003 0.37 0.294 

Pb2+ 276 q 1.963 0.49 0.125 

  
a 2.112 0.37 0.177 

Pb4+ 12 a 2.042 0.37 0.286 

Bi3+ 231 a 2.094 0.37 0.190 

Bi5+ 11 b 2.06 0.37 0.316 

Halogens 

Cl3+ 6 e 1.71 0.37 0.151 

Cl5+ 9 e 1.67 0.37 0.089 

Cl7+ 65 e 1.632 0.37 0.180 

Br5+ 9 e 1.84 0.37 0.147 

Br7+ 2 b 1.81 0.37 0.156 

I5+ 134 bd 1.99 0.44 0.113 

  a 2.003 0.37 0.435 

I7+ 36 b 1.93 0.37 0.327 

Transition metals 

Sc3+ 88 a 1.849 0.37 0.152 

  
o 1.877 0.35 0.243 

Ti3+ 24 b 1.791 0.37 0.183 

Ti4+ 324 a 1.815 0.37 0.164 

  
o 1.78 0.43 0.139 
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V3+ 70 a 1.743 0.37 0.130 

  
j 1.749 0.37 0.130 

V4+ 226 a 1.784 0.37 0.149 

  
j 1.78 0.37 0.121 

V5+ 714 a 1.803 0.37 0.139 

  
x 1.799 0.37 0.117 

Cr2+ 17 b 1.73 0.37 0.090 

Cr3+ 104 a 1.724 0.37 0.129 

  
w 1.708 0.37 0.136 

Cr4+ 7 e 1.81 0.37 0.242 

Cr5+ 1 w 1.76 0.37 0.205 

  
e 1.78 0.37 0.061 

Cr6+ 169 a 1.794 0.37 0.157 

Mn2+ 392 a 1.79 0.37 0.126 

  
j 1.765 0.37 0.163 

  ap 1.762 0.40 0.124 

Mn3+ 94 a 1.76 0.37 0.152 

  
j 1.732 0.37 0.188 

  ap 1.762 0.35 0.128 

Mn4+ 21 a 1.753 0.37 0.123 

  
j 1.75 0.37 0.122 

  ap 1.762 0.34 0.137 

Mn5+  ap 1.762 0.30 0.119 

Mn6+ 2 e 1.79 0.37 0.366 

  ap 1.762 0.27 0.260 

Mn7+ 7 e 1.827 0.37 0.239 

  
b 1.79 0.37 0.496 
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  ap 1.762 0.26 0.265 

Fe2+ 192 a 1.734 0.37 0.135 

  
h 1.713 0.37 0.161 

  
j 1.7 0.37 0.205 

Fe3+ 466 a 1.759 0.37 0.137 

  
h 1.751 0.37 0.138 

  
j 1.765 0.37 0.156 

Co2+ 304 a 1.692 0.37 0.102 

  
i 1.685 0.37 0.120 

Co3+ 15 i 1.637 0.37 0.145 

  
b 1.7 0.37 0.441 

Co4+ 1 e 1.72 0.37 0.043 

Ni2+ 255 e 1.675 0.37 0.131 

  
j 1.67 0.37 0.115 

  
a 1.654 0.37 0.105 

Ni4+ 5 e 1.78 0.35 0.645 

Cu+ 57 e 1.61 0.37 0.133 

  
l 1.504 0.37 0.185 

Cu2+ 716 a 1.679 0.37 0.095 

  
j 1.649 0.37 0.172 

  
l 1.655 0.37 0.152 

  
bj 1.679 0.36 0.084 

Cu3+ 11 t 1.735 0.37 0.141 

  
e 1.739 0.37 0.138 

Zn2+ 461 a 1.704 0.37 0.101 

  
o 1.675 0.39 0.085 

Y3+ 178 a 2.019 0.37 0.161 
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b 2.014 0.37 0.157 

  
bj 2.028 0.35 0.176 

Zr4+ 117 a 1.928 0.37 0.135 

  
b 1.937 0.37 0.149 

Nb4+ 3 e 1.88 0.37 0.173 

Nb5+ 251 a 1.911 0.37 0.161 

  x 1.916 0.37 0.188 

Mo3+ 5 m 1.834 0.37 0.067 

Mo4+ 9 j 1.886 0.37 0.449 

  
m 1.856 0.37 0.114 

Mo5+ 76 j 1.907 0.37 0.343 

  
m 1.878 0.37 0.136 

Mo6+ 970 a 1.907 0.37 0.147 

  
x 1.915 0.41 0.183 

  
n 1.87 0.26 0.330 

  
m 1.9 0.37 0.212 

Tc7+ 6 as 1.909 0.37 0.089 

Ru3+ 3 o 1.77 0.37 0.033 

Ru4+ 8 b 1.834 0.37 0.124 

Ru5+ 23 o 1.9 0.37 0.219 

Rh3+ 11 b 1.793 0.37 0.272 

Pd2+ 29 b 1.792 0.37 0.250 

Ag+ 200 a 1.842 0.37 0.088 

  
b 1.805 0.37 0.150 

Cd2+ 164 a 1.904 0.37 0.122 

  
ao 1.875 0.37 0.129 

Hf4+ 22 b 1.923 0.37 0.095 
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Ta5+ 162 a 1.92 0.37 0.214 

W5+ 4 aj 1.881 0.37 0.199 

W6+ 436 a 1.917 0.37 0.196 

  
x 1.916 0.41 0.181 

  
b 1.921 0.37 0.232 

  
aj 1.906 0.37 0.200 

Re5+ 3 e 1.86 0.37 0.091 

Re7+ 59 e 1.97 0.37 0.923 

Os6+ 1 e 2.03 0.37 2.451 

Os8+ 8 e 1.92 0.37 0.608 

Ir4+ 17 e 1.87 0.37 0.243 

Ir5+ 6 b 1.916 0.37 0.180 

  
e 2.01 0.37 1.362 

Pt2+ 3 b 1.768 0.37 0.130 

  
e 1.8 0.37 0.318 

Pt4+ 33 a 1.879 0.37 0.180 

Au3+ 24 e 1.89 0.37 0.097 

  
b 1.833 0.37 0.446 

Hg2+ 52 a 1.972 0.37 0.198 

  
b 1.93 0.37 0.139 

  
bj 1.924 0.38 0.129 

Lanthanides 

La3+ 182 a 2.172 0.37 0.162 

  
ac 2.172 0.33 0.331 

  
ae 2.148 0.37 0.203 

  
bj 2.086 0.45 0.161 

Ce3+ 76 b 2.151 0.37 0.208 
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ab 2.121 0.37 0.162 

  
ae 2.116 0.37 0.186 

Ce4+ 28 b 2.028 0.37 0.564 

  
ab 2.068 0.37 0.213 

  
al 2.074 0.37 0.176 

Pr3+ 99 a 2.138 0.37 0.259 

  
ae 2.098 0.37 0.185 

Nd3+ 203 a 2.105 0.37 0.160 

  
b 2.117 0.37 0.201 

  
ae 2.086 0.37 0.203 

  
bj 2.021 0.46 0.178 

Sm3+ 97 b 2.088 0.37 0.171 

  
ae 2.063 0.37 0.188 

  
ai 2.055 0.37 0.232 

Eu2+ 3 b 2.147 0.37 0.204 

  
al 2.102 0.37 0.071 

Eu3+ 49 a 2.074 0.37 0.198 

  
ae 2.038 0.37 0.196 

Gd3+ 107 b 2.065 0.37 0.202 

  
ae 2.031 0.37 0.188 

Tb3+ 48 a 2.032 0.37 0.122 

  
b 2.049 0.37 0.214 

  
ae 2.013 0.37 0.163 

Dy3+ 70 a 2.001 0.37 0.195 

  
ae 2.005 0.37 0.174 

Ho3+ 81 a 2.025 0.37 0.188 

  
ae 1.992 0.37 0.188 
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Er3+ 102 a 1.988 0.37 0.141 

  
b 2.01 0.37 0.191 

  
ae 1.979 0.37 0.177 

Tm3+ 44 b 2 0.37 0.184 

  
ae 1.968 0.37 0.201 

  
e 1.93 0.37 0.444 

Yb3+ 82 a 1.965 0.37 0.169 

  
b 1.985 0.37 0.237 

  
ae 1.954 0.37 0.191 

Lu3+ 53 b 1.971 0.37 0.175 

  
ae 1.947 0.37 0.227 

Actinides 

Th4+ 27 b 2.167 0.37 0.221 

  
p 2.18 0.35 0.225 

U4+ 18 b 2.112 0.37 0.166 

  
p 2.13 0.35 0.188 

U5+ 4 b 2.075 0.37 0.239 

  
p 2.1 0.35 0.291 

U6+ 585 r 2.051 0.519 0.158 

  
a 2.075 0.37 0.690 

  
p 2.08 0.35 0.889 

Np5+ 33 p 2.09 0.35 0.820 

Np6+ 7 p 2.07 0.35 1.209 

Np7+ 2 p 2.06 0.35 0.361 

Am3+ 1 b 2.11 0.37 0.145 

  
p 2.13 0.35 0.138 

Cm3+ 1 b 2.23 0.37 1.500 
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p 2.12 0.35 0.161 

*Neutron-diffraction data 

†Reference not directly compatible with our dataset if X-Ray data 
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Table 2.S2 ICSD code for the structures used in the derivation of the bond-length to 

bond-valence equations 

ICSD 

code 
R-factor 

No. of Al-

coordination 

polyhedra 

1975 0.020 2 

20495 0.027 1 

29443 0.017 1 

30521 0.015 1 

30538 0.015 1 

32744 0.024 1 

39337 0.016 2 

50618 0.011 1 

60845 0.019 1 

62615 0.013 2 

62616 0.019 2 

63185 0.024 1 

64962 0.028 1 

65004 0.029 1 

65665 0.019 1 

65666 0.016 1 

68913 0.020 1 

69958 0.023 1 

71893 0.013 1 

71894 0.011 1 
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71895 0.013 1 

72416 0.011 2 

73249 0.026 2 

74860 0.029 1 

74968 0.022 1 

75366 0.014 1 

80672 0.013 1 

81358 0.017 1 

83449 0.020 1 

83450 0.016 4 

83458 0.020 1 

86785 0.024 1 

92629 0.002 1 

92708 0.026 2 

94590 0.023 3 

95408 0.027 12 

96685 0.029 1 

100278 0.028 1 

100368 0.018 1 

156658 0.023 2 

156729 0.016 3 

156730 0.017 3 

156731 0.021 3 



129 

 

156732 0.021 3 

156733 0.016 3 

156734 0.014 3 

156735 0.017 3 

240475 0.015 1 

280310 0.020 1 

280607 0.022 2 

300020 0.021 1 
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Table 2.S3 RMSD values for six two-parameter equations for the 90 multiple-

coordination-number ions 

Ion 

No. of 

coordination 

polyhedra 

eq.[2] eq.[3] eq.[4] eq.[14] eq.[15] eq.[19] 

H+ 224 0.042 0.036 0.039 0.032 0.039 0.031 

Li+ 690 0.079 0.078 0.079 0.077 0.079 0.078 

Be2+ 169 0.095 0.093 0.094 0.091 0.095 0.091 

B3+ 1572 0.068 0.069 0.068 0.069 0.069 0.069 

N5+ 497 0.110 0.116 0.113 0.118 0.110 0.126 

Na+ 1683 0.142 0.143 0.142 0.144 0.142 0.143 

Mg2+ 469 0.115 0.112 0.114 0.110 0.114 0.112 

Al3+ 856 0.113 0.111 0.112 0.109 0.115 0.112 

Si4+ 2530 0.114 0.118 0.116 0.120 0.115 0.120 

Cl3+ 5 0.046 0.063 0.054 0.082 0.042 0.085 

K+ 1479 0.167 0.166 0.166 0.165 0.166 0.166 

Ca2+ 1168 0.167 0.165 0.166 0.162 0.166 0.165 

Sc3+ 88 0.106 0.107 0.106 0.108 0.106 0.107 

Ti3+ 24 0.087 0.092 0.089 0.098 0.089 0.094 

Ti4+ 324 0.151 0.146 0.148 0.142 0.148 0.144 

V3+ 70 0.139 0.128 0.134 0.119 0.145 0.115 

V4+ 226 0.099 0.101 0.100 0.105 0.098 0.099 

V5+ 714 0.096 0.099 0.097 0.103 0.098 0.100 

Cr2+ 17 0.059 0.059 0.059 0.059 0.060 0.059 

Cr4+ 7 0.164 0.160 0.161 0.156 0.164 0.160 
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Mn2+ 392 0.120 0.118 0.119 0.116 0.120 0.118 

Mn3+ 94 0.168 0.167 0.167 0.166 0.168 0.167 

Mn4+ 21 0.133 0.128 0.130 0.123 0.137 0.121 

Fe2+ 192 0.118 0.115 0.117 0.113 0.117 0.115 

Fe3+ 466 0.150 0.145 0.147 0.140 0.152 0.147 

Co2+ 304 0.116 0.109 0.113 0.103 0.123 0.115 

Ni2+ 255 0.116 0.111 0.114 0.106 0.113 0.109 

Cu+ 57 0.079 0.079 0.079 0.078 0.080 0.079 

Cu2+ 716 0.084 0.084 0.084 0.084 0.088 0.086 

Zn2+ 461 0.091 0.088 0.089 0.086 0.095 0.091 

Ga3+ 228 0.131 0.133 0.132 0.135 0.131 0.133 

Ge4+ 350 0.148 0.148 0.148 0.149 0.148 0.148 

As3+ 28 0.054 0.057 0.056 0.062 0.092 0.065 

As5+ 526 0.115 0.113 0.114 0.111 0.116 0.113 

Se4+ 202 0.079 0.069 0.071 0.076 0.141 0.080 

Br5+ 9 0.111 0.082 0.097 0.055 0.080 0.060 

Rb+ 464 0.151 0.150 0.150 0.150 0.150 0.151 

Sr2+ 377 0.196 0.193 0.194 0.188 0.195 0.194 

Y3+ 178 0.138 0.139 0.138 0.140 0.117 0.139 

Zr4+ 117 0.102 0.103 0.102 0.105 0.101 0.101 

Nb5+ 251 0.162 0.159 0.160 0.157 0.161 0.159 

Mo5+ 76 0.142 0.143 0.142 0.146 0.134 0.143 

Mo6+ 970 0.129 0.133 0.131 0.142 0.130 0.133 
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Ag+ 200 0.086 0.084 0.085 0.082 0.087 0.086 

Cd2+ 164 0.091 0.090 0.091 0.088 0.092 0.091 

In3+ 125 0.114 0.113 0.113 0.111 0.115 0.114 

Sn2+ 50 0.079 0.072 0.075 0.079 0.101 0.076 

Sn4+ 38 0.166 0.164 0.165 0.161 0.168 0.166 

Sb3+ 54 0.085 0.084 0.084 0.084 0.084 0.084 

Te4+ 212 0.095 0.097 0.096 0.100 0.105 0.101 

I5+ 134 0.166 0.135 0.150 0.106 0.146 0.110 

I7+ 36 0.242 0.226 0.234 0.213 0.276 0.215 

Cs+ 544 0.133 0.133 0.133 0.135 0.133 0.133 

Ba2+ 857 0.227 0.223 0.225 0.216 0.225 0.224 

La3+ 182 0.159 0.157 0.158 0.156 0.159 0.159 

Ce3+ 76 0.127 0.128 0.127 0.131 0.128 0.129 

Ce4+ 28 0.121 0.121 0.121 0.122 0.121 0.121 

Pr3+ 99 0.148 0.142 0.145 0.135 0.152 0.149 

Nd3+ 203 0.175 0.169 0.172 0.161 0.181 0.178 

Sm3+ 97 0.151 0.148 0.150 0.145 0.152 0.150 

Eu2+ 3 0.024 0.024 0.024 0.025 0.024 0.024 

Eu3+ 49 0.138 0.136 0.137 0.134 0.137 0.136 

Gd3+ 107 0.136 0.133 0.134 0.130 0.137 0.135 

Tb3+ 48 0.113 0.113 0.113 0.114 0.115 0.115 

Dy3+ 70 0.132 0.130 0.131 0.129 0.134 0.132 

Ho3+ 81 0.136 0.132 0.134 0.128 0.139 0.136 



133 

 

Er3+ 102 0.138 0.136 0.137 0.133 0.140 0.138 

Tm3+ 44 0.142 0.141 0.141 0.140 0.143 0.142 

Yb3+ 82 0.174 0.173 0.174 0.173 0.176 0.175 

Lu3+ 53 0.165 0.164 0.165 0.163 0.169 0.167 

Hf4+ 22 0.087 0.086 0.086 0.086 0.087 0.086 

Ta5+ 162 0.193 0.194 0.194 0.196 0.195 0.196 

W6+ 436 0.187 0.186 0.186 0.188 0.187 0.187 

Re7+ 59 0.184 0.187 0.185 0.190 0.184 0.187 

Os7+ 7 0.207 0.199 0.201 0.204 0.216 0.200 

Os8+ 8 0.208 0.221 0.215 0.233 0.204 0.220 

Ir4+ 17 0.143 0.141 0.142 0.139 0.145 0.143 

Hg2+ 52 0.190 0.161 0.175 0.129 0.221 0.200 

Tl+ 74 0.109 0.121 0.107 0.098 0.110 0.110 

Tl3+ 9 0.085 0.083 0.084 0.081 0.087 0.086 

Pb2+ 276 0.108 0.108 0.108 0.110 0.111 0.110 

Pb4+ 12 0.192 0.188 0.190 0.184 0.195 0.192 

Bi3+ 231 0.164 0.151 0.157 0.140 0.182 0.170 

Bi5+ 11 0.212 0.208 0.210 0.212 0.213 0.210 

Th4+ 27 0.159 0.160 0.160 0.163 0.159 0.160 

U4+ 18 0.111 0.113 0.112 0.116 0.112 0.115 

U5+ 4 0.016 0.024 0.020 0.035 0.021 0.027 

U6+ 585 0.144 0.148 0.144 0.167 0.146 0.152 

Np5+ 33 0.057 0.059 0.058 0.063 0.058 0.060 
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Np6+ 7 0.083 0.081 0.081 0.085 0.082 0.082 

 
Mean 0.128 0.126 0.126 0.125 0.130 0.127 

 
Wt. mean 0.129 0.128 0.128 0.128 0.130 0.129 
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Table 2.S4 ICSD code for the structures used in the anion bond-valence sum 

verification (inclusive of previous sets) 

Ion ICSD Code 

Brown and Altermatt (1985) 

H+ 202360 

Li+ 84617 

Be2+ 54110 

B3+ 246060 

C4+ 156626 

N5+ 35494 

Na+ 84709 

Mg2+ 31332 

Al3+ 32744 

Si4+ 30521 

P5+ 79756 

S4+ 15554 

S6+ 95407 

Cl7+ 413238 

K+ 280999 

Ca2+ 202245 

Sc3+ 65010 

Ti4+ 40307 

V3+ 59244 
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V4+ 86775 

V5+ 170714 

Cr3+ 245275 

Cr6+ 98653 

Mn2+ 202319 

Mn3+ 39593 

Mn4+ 95653 

Fe2+ 246811 

Fe3+ 80140 

Co2+ 154223 

Ni2+ 59588 

Cu2+ 158375 

Zn2+ 35652 

Ga3+ 280793 

Ge4+ 67535 

As3+ 154363 

As5+ 51072 

Se4+ 412998 

Se6+ 280951 

Rb+ 171137 

Sr2+ 281299 

Y3+ 240470 
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Zr4+ 89899 

Nb5+ 37243 

Mo6+ 158777 

Ag+ 90414 

Cd2+ 87937 

In3+ 90003 

Sn4+ 151591 

Sb5+ 51392 

Te4+ 78917 

Te6+ 245054 

I5+ 416691 

Cs+ 280947 

Ba2+ 76926 

La3+ 95753 

Pr3+ 92444 

Nd3+ 412406 

Eu3+ 84881 

Tb3+ 240703 

Dy3+ 412523 

Ho3+ 79757 

Er3+ 79758 

Yb3+ 280936 
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Ta5+ 280993 

W6+ 60547 

Pt4+ 281475 

Hg2+ 89685 

Tl+ 86099 

Pb2+ 203201 

Pb4+ 36629 

Bi3+ 39611 

U6+ 280839 

Brese and O'Keeffe (1991) 

Ti3+ 8149 

Cr2+ 280309 

Mn7+ 89508 

Co3+ 36355 

Cu+ 61677 

Se6+ 280951 

Ru4+ 95715 

Rh3+ 74726 

Pd2+ 416619 

Sb3+ 31996 

I7+ 400552 

Ce3+ 76608 
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Ce4+ 59302 

Sm3+ 412946 

Eu2+ 30546 

Gd3+ 86172 

Tm3+ 62617 

Lu3+ 412249 

Hf4+ 250391 

Re7+ 416510 

Ir5+ 404507 

Pt2+ 35407 

Au3+ 92488 

Tl3+ 201793 

Bi5+ 240975 

Th4+ 64745 

U4+ 201342 

U5+ 170896 

Best published parameters 

P3+ 300205 

Cl3+ 59935 

Cl5+ 40285 

Cr4+ 71957 

Cr5+ 85055 
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Mn6+ 67580 

Co4+ 922 

Ni4+ 175 

Cu3+ 78595 

Br5+ 47173 

Nb4+ 88879 

Mo3+ 202450 

Mo4+ 202860 

Mo5+ 75353 

Tc7+ 61 

Ru5+ 96219 

W5+ 203048 

Re5+ 10481 

Os8+ 63 

Ir4+ 67826 

Np5+ 66995 

Np6+ 51501 

This work 

Mn5+ 97525 

Rh4+ 16448 

Pd4+ 72312 

Tb4+ 60768 
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Os5+ 170175 

Os7+ 412142 
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Chapter 3 

 

Chemographic Exploration of the Milarite-Type Structure 
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3.1 Preliminary discussion 

The bond-valence model is used extensively in the analysis of inorganic crystal 

structures, and its power is in the fact that it is a simple method in which the physical 

details are not obscured by complexities of computation. When this model was first 

introduced, it was used primarily as a method for checking the correctness of a 

structure, as deviations from the valence-sum rule commonly indicate errors in 

interatomic distances. This has continued to be the major use of the model up to the 

present time (e.g., Delahaye et al., 2006), and most crystallographers use bond-valence 

curves to examine their own structures for possible problems with the refinement, but 

pay no attention to the power and importance of the model itself. More recently, the 

number of uses of the model in crystal structures has expanded, and Brown (2009) 

listed the following aspects of crystal structures that have been considered from the 

perspective of the bond-valence model: [1] distorted ion environments, [2] valence maps 

and ionic conduction, [3] the valence-matching principle and structure stability, [4] 

assigning charge distributions, [5] incommensurate structures, [6] structural effects of 

pressure, [7] structural effects of temperature. However, the majority of uses still involve 

validation of experimental results of individual structures. I am interested in how a 

complicated crystal-structure arrangement responds to different chemical compositions, 

and this issue may be approached using the bond-valence model.   

 

3.1.1 A priori bond-valence calculations 
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Many mineral structures show a wide range of chemical compositions for a given bond 

topology (arrangement of ion sites). Those structures that are quite complicated, both 

crystal-chemically and compositionally, are of considerable interest to examine in this 

regard as [1] it is often not clear what chemical compositions are distinct minerals, [2] 

the factors constraining the possible chemical compositions are not apparent, and [3] 

the primary controls on the stability of the structure in general are not clear. The milarite 

structure is a good example of such structure, where a wide range of cations is 

observed to occupy the various sites of the structures, leading to numerous minerals 

(Table 3.2). 

There are two important theorems to Bond-Valence Theory: [1] the valence-sum rule, 

and [2] the loop rule. The valence-sum rule states that the sum of the bond valences at 

each atom is equal to the magnitude of the atomic valence.  The loop rule states that 

the sum of the directed bond-valences around any circuit (closed path) of bonds in a 

structure is zero. Given a set of formal charges at the ion sites in a structure, the 

equations associated with the valence-sum rule and the loop rule may be solved for the 

bond valences (Brown 1977, Rutherford 1990). I will denote these bond valences as the 

a priori bond-valences. This approach has been used only sparingly, mostly to predict 

bond lengths in simple structures from the a priori bond-valences and the appropriate 

bond-valence curves for the site occupants (Brown 1977, Rutherford 1990, Urusov & 

Orlov 1999, Hawthorne & Sokolova 2008). However, a priori bond-valence calculations 

provide us with an ideal method for examining the control of bond topology on site 

occupancy in crystal structures. In this chapter, I use a priori bond-valence calculations 

to have an in-depth look at the milarite structure and its mineral constituents.  
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3.1.2 Structural strain 

The constraint that a structural arrangement have translational symmetry and 

associated space-group symmetry exerts controls on the local positioning of ions, in 

many cases preventing them from taking up the exact position that will accord with the 

valence-sum rule. Deviation from the valence-sum rule is a measure of the strain in a 

structural arrangement: the larger the deviations the greater the strain on the structure, 

and too great a strain will result in the structure being unstable (i.e., it does not occur). 

The Global Instability Index, GII, was introduced by Salinas-Sanchez et al. (1992), and 

is a direct measure of the deviation of the structure from the valence-sum rule; Brown 

(2002) suggested that a value of over 0.2 v.u. for GII usually indicates that a structure is 

too strained to be stable. The Bond Strain Index, BSI, was introduced by Preiser et al. 

(1999), and is a measure of the deviation from the valence-sum rule and the loop rule, 

i.e., it is a measure of the mismatch between a priori and experimental bond valences. 

The index BSI is obviously a more comprehensive measure of structural strain as it 

depends on deviations from both the valence-sum rule and the loop rule.  

The BSI has not seen very much use (compared with GII) as it requires an a priori 

bond-valence calculation on each structure for which it is used. However, the calculation 

of the BSI has one great advantage over GII: it leads to the specific localization of the 

strain in the structure. This is of considerable interest in complicated structures as this 

allows an assessment of the response of the strain to compositional variations by 

varying the charges of the ions in the structure. Strain has not been examined in a 

complicated structure in this way before, and in the next chapter I will do so for the 
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milarite structure. I use the milarite structure and the milarite-group minerals as this is a 

fairly complicated structure with a range of different coordination numbers and 23 

minerals of different end-member chemical composition. In addition, I will use this 

opportunity to examine all available data on the chemical compositions of both minerals 

and synthetic phases with the milarite structure and assess how many minerals have 

been analyzed with regard to chemical composition but have not been recognized as 

distinct mineral species.  
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3.2 Abstract 

The milarite structure-type has an uncommonly large number of distinct mineral species 

(twenty-three at present). Here we explore this structure type from the point of view of 

possible root charge arrangements and end-member compositions. Enumeration shows 

that there are thirty-four distinct root charge arrangements with Si = 12 apfu and thirty-

nine distinct root charge arrangements with Si = 8-11 apfu. A priori bond-valence 

calculations on all root charge arrangements allows evaluation of lattice-induced strain 

as a function of chemical composition for all arrangements for which the detailed atomic 

arrangement has been refined. Analysis of localized strain indicates that the B site has 

the highest amount of strain in the structure, and in accord with this finding, milarite-

group minerals with vacancies at the B site are more common than milarite-group 

minerals with fully occupied B sites. The a priori bond-valence calculations suggest that 

many other compositions are possible for the milarite structure-type. Examination of 

synthesis results reveals twenty synthetic compounds with the milarite-type structure 

that have distinct (dominant) end-member compositions. Examination of ~350 chemical 

analyses from the literature reveals twenty-nine distinct end-member compositions, six 

of which deserve to be described as new mineral species. Two additional analyses 

could lead to new minerals, but require confirmation of site populations by structure 

refinement.  

Keywords: milarite, crystal structure, chemographic exploration, bond-valence, lattice 

strain. 
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3.3 Introduction 

Milarite, ideally K2Ca[AlBe2Si12O30](H2O), was first described by Kuschel (1877) from 

Val Giuf, Tavetsch, Grischun, Switzerland, and a relatively large number of minerals are 

now known that have this specific structural arrangement. The general formula of the 

minerals of the milarite group (Forbes et al. 1972) may be written as  

A2 B2 C [T(2)3T(1)12O30](H2O)x, x = 0-n 

where the cation species corresponding the letters of the formula for all end-member 

compositions of approved minerals are listed in Table 3.1. Note that groups of cations 

are listed as regular letters whereas crystallographic sites are written in italic letters. As 

is apparent from Table 3.1, the milarite structure is extremely flexible with regard to its 

constituent cations, and a considerable number of minerals (Table 3.2) and synthetic 

compounds adopt this basic atomic arrangement. The value of n, the maximum amount 

of H2O in the structure, is not well-characterized, and we will examine this issue here.  
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Table 3.1 Sites and site occupancies in the milarite-group minerals 

Site Equipoint C.N. Occupancy 
    T(1) 24m 4 Si, Al 

T(2) 6f 4 Li, Be, B, Mg, Al, Si, Mn2+, Zn 
A 4c 6 Al, Fe3+, Sn4+, Mg, Zr, Fe2+, Ca, Na, Y, Sc 
B 4d 9 Na, H2O, , K 
C 2a 12 K, Na, Ba,  
D 2b 18  
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Table 3.2 Current minerals of the milarite group: end-member compositions, site 

occupancies and root charge arrangements 

Name A2 B2 C T(2)3 T(1)12 O30 
Root charge 

arrangement 
Refs 

Agakhanovite-(Y) YCa 2 K Be3 Si12 O30 [21] (1) 

Almarudite Mn2 2 K Be2Al Si12 O30 [10] (2) 

Armenite Ca2 2 Ba Al3 (Si9Al3) O30 {8} (3) 

Berezanskite Ti2 2 K Li3 Si12 O30 [29] (4) 

Brannockite Sn2 2 K Li3 Si12 O30 [29] (5) 

Chayesite Mg2 2 K Mg2Fe3+ Si12 O30 [10] (6) 

Darapiosite Mn2 Na2 K LiZn2 Si12 O30 [24] (7) 

Dusmatovite Mn2 K K Zn3 Si12 O30 [17] (8) 

Eifelite MgNa Na2 K Mg3 Si12 O30 [18] (9) 

Friedrichbeckeite Mg2 Na K Be3 Si12 O30 [17] (10) 

Klöchite Fe2+Fe3+ 2 K Zn3 Si12 O30 [21] (11) 

Merrihueite Fe2+
2 Na K Fe2+

3 Si12 O30 [17] (12) 

Milarite Ca2 2 K Be2Al Si12 O30 [10] (13) 

Oftedalite ScCa 2 K Be3 Si12 O30 [21] (14) 

Osumilite Fe2+
2 2 K Al3 Si10Al2 O30 {6} (15) 

Osumilite-(Mg) Mg2 2 K Al3 Si10Al2 O30 {6} (16) 

Poudretteite Na2 2 K B3 Si12 O30 [2] (17) 

Roedderite Mg2 Na K Mg3 Si12 O30 [17] (18) 

Shibkovite Ca2 K K Zn3 Si12 O30 [17] (19) 

Sogdianite Zr2 2 K Li3 Si12 O30 [29] (20) 

Sugilite Fe3+
2 Na2 K Li3 Si12 O30 [32] (21) 

Trattnerite Fe3+
2 2  Mg3 Si12 O30 [20] (22) 

Yagiite Mg2 2 Na Al3 Si10Al2 O30 {6} (23) 

References: (1) Hawthorne et al. (2014), Černý et al. (1991); (2) Mihajlović et al. (2004); (3) 
Neumann (1941); (4) Pautov & Agakhanov (1997), Hawthorne et al. (2015); (5) White et al. (1973), 
Armbruster & Oberhänsli (1988b); (6) Velde et al. (1989); (7) Semenov et al. (1975), Ferraris et al. 
(1999); (8) Pautov et al. (1996), Sokolova & Pautov (1995); (9) Abraham et al. (1983); (10) Lengauer 
et al. (2009); (11) Bojar et al. (2011); (12) Dodd et al. (1965); (13) Hawthorne et al. (1991); (14) 
Cooper et al. (2006); (15) Miyashiro (1956), Armbruster & Oberhänsli (1988a); (16) Chukanov et al. 
(2011), Balassone et al. (2008); (17) Grice et al. (1987); (18) Fuchs et al. (1966), Hentschel et al. 
(1980), Armbruster (1989); (19) Pautov et al. (1998), Sokolova et al. (1999); (20) Dusmatov et al. 
(1968), Cooper et al. (1999), Sokolova et al. (2000); (21) Murakami et al. (1976), Kato et al. (1976); 
(22) Postl et al. (2004); (23) Bunch & Fuchs (1969). 
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3.4 Description of the milarite structure-type 

Milarite is hexagonal, space group P6/mcc, a ≈ 10.40, c ≈ 13.80 Å, although various 

compositions can show anomalous biaxial behaviour (e.g., Goldman & Rossman 1978; 

Janeczek 1986). Milarite was originally considered a (double-)ring silicate, the structure 

of which was related to that of beryl by melding of two beryl [Si6O18] rings through their 

apical vertices to form an [Si12O30] double-ring. However, inclusion of other types of 

tetrahedra into such structural considerations (Zoltai 1960, Liebau 1985) led to the 

consideration of beryl and milarite as framework beryllo-alumino-silicates, and 

Hawthorne & Smith (1986,1988) showed that the structures of both beryl and milarite 

can be derived from four-connected three-dimensional nets in a similar fashion to other 

framework alumino-silicates. Thus the milarite structure is now considered as a 

framework structure. Cation-coordination polyhedra are identified by the name of the 

central cation site, e.g., the T(1) tetrahedron.  

 

3.4.1 The T(1) tetrahedron 

This tetrahedron shares O anions with two other T(1) tetrahedra to form a six-

membered ring with the tetrahedra all pointing in the same direction (as in beryl), and 

the apical anions of this ring are shared with T(1) tetrahedra of another ring to form an 

[Si12O30] double six-membered ring (Figs. 3.1, 3.2). The T(1) tetrahedron thus shares 

three anions with adjacent T(1) tetrahedra and one anion with a T(2) tetrahedron that 

links the [Si12O30] clusters into a framework (Figs. 3.1, 3.2). The <T(1)-O> distances in 

refined milarite structures show little variation (±0.002 Å in the data of Černý et al. 1980, 
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and Hawthorne et al. 1991). However, the corresponding chemical data show a well-

developed positive correlation between the Si content and the Be/(Be + Al) ratio, 

indicating slight replacement of Si by Al (maximum = 0.1 Al apfu) that is insufficient to 

affect significantly the size of the T(1) tetrahedron. 

 

3.4.2 The T(2) tetrahedron  

The T(2) tetrahedron shares four anions with adjacent T(1) tetrahedra and links the 

[Si12O30] clusters into a framework (Figs. 3.1, 3.2), It also shares two edges with 

adjacent A octahedra. Refinement of several milarite samples of differing chemical 

composition (Hawthorne et al. 1991) has shown that this site is occupied by variable 

amounts of Be and Al, and the <T(2)-O> distance varies linearly as a function of Be/(Be 

+ Al) ratio.  

 

3.4.3 The A octahedron 

The A octahedron lies on the threefold axis between the [Si12O30] clusters, sharing 

corners with the T(1) tetrahedra and further strengthening the linkage of the framework 

of tetrahedra. It also shares edges with three flanking T(2) tetrahedra (Fig. 3.1). This 

site is ideally completely occupied by Ca in milarite itself. However, the A cation 

generally shows extremely anisotropic-displacement parameters, with the long axis of 

the ellipsoid oriented along the c axis; this has been modelled by a “split site” (Kimata & 

Hawthorne 1989, Armbruster et al. 1989), and the amount of splitting correlates with the 

Be/(Be + Al) ratio of the structure in milarite itself.  
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3.4.4 The B polyhedron 

The B site lies on the threefold axis, between the [Si12O30] clusters, and directly above 

and below the A octahedron (Fig. 3.2), surrounded by nine O atoms. The ideal B site 

occurs at z = 0, and has three O neighbors at ~2.78 Å and six O neighbours at ~3.30 Å. 

The B-site constituents show very anisotropic-displacement behaviour (also modelled 

as a “split-site”). Bakakin et al. (1975) and Černý et al. (1980) showed that H2O is an 

important constituent at the B site. However, small amounts of alkali and alkaline-earth 

cations also occupy this site. Armbruster et al. (1989) showed that the split B site is 

occupied by H2O and that the B cations occupy the central B site, and went on to 

suggest that the A-site splitting in milarite is the result of ACa-BH2O interaction in the c 

direction. 

 

3.4.5 The C polyhedron 

The C site occurs in the channel formed by the [Si12O30] clusters that stack along the c 

direction (Figs. 3.1, 3.2), and is coordinated by twelve anions at a distance of ~3.02 Å It 

is occupied primarily by K in all the milarite-group minerals except armenite, where it is 

occupied by Ba, and yagiite (Na).The occurrence of Ba at the C site in armenite is 

related to the occurrence of significant Al at the T(1) site; the divalent cation at C helps 

satisfy the local bond-valence deficiency at the O(2) anion caused by substitution of 

trivalent Al for Si at the T(1) site.  
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3.4.6 The D site 

This site was identified by Forbes et al. (1972) and is generally mentioned in 

discussions of the milarite structure. However, no structure has been reported in which 

this site is occupied, even by small amounts of any constituent, and we will not consider 

it further here. 

Typical interatomic distances (for sugilite) are shown in Table 3.3. In combination with 

Figs. 3.1 and 3.2, Table 3.3 provides important stereochemical details when considering 

chemical substitutions and articulation requirements of the milarite structure. 
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Table 3.3 Selected interatomic distances (Å) in sugilite* 

 

 

 

 

 

 

 

 

 

 

 

 

 

*From Armbruster & Oberhänsli (1988b)  

    
A–O(3)  x3 1.972(2) T(1)–O(1) 1.625(1) 

A–O(3)’ x3 2.409(1) T(1)–O(2) 1.620(3) 

<A–O> 2.334 T(1)–O(2)” 1.615(2) 

  T(1)–O(3) 1.577(1) 

B–O(1) x3 2.420(2) <T(1)–O> 1.609 

B–O(3) x6 2.733(8)   

<B–O> 2.577 T(2)–O(3) x4 1.970(2) 

    

C–O(2)  x12 2.944(2)   
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Figure 3.1 The crystal structure of milarite projected down the c axis. T(1) tetrahedra: 

orange; T(2) tetrahedra: green; A site: small red circle; C site: yellow circle.
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Figure 3.2 The crystal structure of milarite projected orthogonal to the c axis. Legend as 

in Fig. 3.1; B site: mauve circle. 
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3.5 End-members and their significance 

From an algebraic perspective, a chemical system is described in terms of its 

components. System components are those (components) required to describe the 

chemical variability of the system and phase components are those components 

required to describe the chemical variability in individual phases (Spear 1993). Phase 

components must be independently variable (Gibbs 1961), i.e., they must be additive, 

and for minerals, they must be conformable with the structure of that mineral. If we 

define our system as a specific crystal structure, we may define the components of this 

system as the smallest set of chemical formulae required to describe the composition of 

all minerals in the system. The definition, “the smallest set of chemical formulae 

required to describe the composition of all the phases in the system”, defines the 

components of the system as its set of end-member compositions, and the set of end-

member compositions define the possible composition space occupied by that structure. 

End members have certain constraints (Hawthorne 2002):  

(1) they must be fixed and conformable with the crystal structure of the mineral;  

(2) they must be neutral (i.e., not carry an electric charge);  

(3) they must be irreducible within the system considered (i.e., they cannot be 

expressed as two or more simpler compositions that are compatible with the crystal 

structure of the system).  

For the majority of atomic arrangements and chemical compositions, these constraints 

result in end-member formulae which have a single constituent at each site (e.g., 

diopside: CaMgSi2O6: M1 = Mg, M2 = Ca, T = Si, O1 = O2 = O3 = O) or group of sites 
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(forsterite: Mg2SiO4: M1 + M2 = Mg, T = Si, O1 = O2 = O3 = O4 = O) in the structure. 

However, Hawthorne (2002) showed that some end-members have two constituents of 

different valence and in a fixed ratio at one site in their structure (the remaining sites 

having only one constituent each). A classic example of this is milarite itself (Table 3.2), 

in which T(2) = Be2Al apfu (atoms per formula unit) in the end-member formula. Note 

that by definition, an end-member can have more than one species at only one site, and 

only two species at that site. If more than one cation or anion is introduced at another 

site in the structure, or a third species is introduced at a site, the resulting composition is 

not irreducible and may be resolved into two or more end-member compositions.  

 

3.5.1 Root charge arrangements 

In minerals, homovalent and heterovalent substitutions are very different in character. 

Homovalent substitutions generally introduce only minor changes in bond valences (due 

to relaxation of bond lengths), whereas heterovalent substitutions produce major 

changes in the pattern of bond valences due to the different arrangements of formal 

charges in the structure. Thus we may identify a set of root charge arrangements that 

correspond to the set of end members related only by heterovalent substitutions. A set 

of end members related only by homovalent substitutions between themselves will have 

the same root charge arrangement.  

 This difference between homovalent and heterovalent substitutions is embedded 

in the more recent classification/nomenclature schemes for minerals (e.g., arrojadite, 

Chopin et al. 2006; tourmaline, Henry et al. 2011; amphibole, Hawthorne et al. 2012) 
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where root compositions are assigned a root name and homovalent analogues are 

named by adding prefixes or suffixes to the appropriate root name. The idea of root 

charge arrangements provides us with a very compact way to evaluate end-member 

arrangements, as the distinct arrangements with regard to heterovalent substitutions 

correspond to the distinct arrangements of the corresponding formal charges, and the 

distinct arrangements with regard to homovalent substitutions correspond to the distinct 

arrangements of homovalent cations for a specific arrangement of formal charges. We 

will take this approach to the milarite-type structure and derive its set of end-member 

compositions.  

 

3.5.2 Root charge arrangements in the milarite structure-type 

Inspection of the (ideal) site-populations listed in Table 3.2 gives us an idea of what 

ranges of charges to consider. For the A site, the formal charge varies from 2+ (e.g., A 

= Na2 in poudretteite) to 8+ (e.g., A = Ti4+
2 in berezanskite). For the B site, the formal 

charge varies from 0 (e.g., B = □2 in almarudite) to 2+ (e.g., B = Na2 in sugilite). For the 

C site, the formal charge varies from 0 (e.g., C = □ in trattnerite) to 2+ (e.g., C = Ba in 

armenite). For the T(2) site, the formal charge varies from 3+ (e.g., T(2) = Li3 in 

brannockite) to 9+ (e.g., T(2) = Al3 in osumilite). For the T(1) site, the formal charge 

varies from 45+ (e.g., T(1) = Si9Al3 in armenite) to 48+ (e.g., T(1) = Si12 in milarite). We 

note that trace amounts of Nb5+ and vacancy have been observed at the A site of the 

structure for poudretteite (Grice et al., 1987) and berezanskite (Pautov & Agakhanov, 

1997) respectively, and we did not discard these charges in our derivation of the root 

charge arrangements when they were obtained on the basis of charge balance. 
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Table 3.4 shows the root charge arrangements for Si = 12 apfu, i.e., T(1) charge = 48+. 

The arrangements are organized in terms of increasing charge of the A + B + C cations 

(left-hand column in Tables 3.4 and 3.5) and decreasing charge of the T cations (right-

hand column in Table 3.4). It is immediately apparent on inspection of Table 3.4 that 

many root charge arrangements are not represented by analogous mineral species. 

There are thirty-four distinct root charge arrangements with Si = 12 apfu, and nine of 

these correspond to minerals ([2], [10], [17], [18], [20], [21], [24], [29], [32]). Table 3.5 

shows root charge arrangements with Si ≠ 12 apfu and an aggregate T(1) charge of 

greater than 44+ (Si8Al4). Of the thirty-nine arrangements shown, only two correspond 

to the structures of milarite-group minerals ({6}, {8}). We are left with a major question: 

are the other root charge arrangements not stable OR are there many other milarite 

structures with chemical compositions analogous to the as yet unrepresented root 

charge arrangements that we have not yet discovered or synthesized?  We will consider 

this issue next with regard to the known chemical compositions of the milarite-group 

minerals.   
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Table 3.4 Root charge arrangements* for the milarite structure-type with Si = 12 apfu 

Number 
Charge at 

(A + B + C) sites 
A2 B2 C T(1)12 T(2)3 

Charge at 

[T(1) + T(2)] sites 

        
[1] 3 02 12 11 412 33 57 

[2] 3 12 02 11 412 33 57 

[3] 3 0111 12 01 412 33 57 

[4] 3 12 0111 01 412 33 57 

[5] 4 12 12 01 412 3221 56 

[6] 4 22 02 01 412 3221 56 

[7] 4 02 22 01 412 3221 56 

[8] 5 02 22 11 412 3122 55 

[9] 5 12 12 11 412 3122 55 

[10] 5 22 02 11 412 3122 55 

[11] 6 02 22 21 412 23 54 

[12] 6 22 02 21 412 23 54 

[13] 6 12 12 21 412 23 54 

[14] 6 12 22 01 412 23 54 

[15] 6 22 12 01 412 23 54 

[16] 6 0111 22 11 412 23 54 

[17] 6 22 0111 11 412 23 54 

[18] 6 1121 12 11 412 23 54 

[19] 6 12 1121 11 412 23 54 

[20] 6 32 02 01 412 23 54 

[21] 6 2131 02 11 412 23 54 

[22] 7 32 02 11 412 221 53 

[23] 7 12 22 11 412 221 53 

[24] 7 22 12 11 412 221 53 

[25] 8 22 22 01 412 212 52 

[26] 8 32 12 01 412 212 52 

[27] 8 42 02 01 412 212 52 

[28] 9 4151 02 01 412 13 51 
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*Those root charge arrangements shown in bold are the ones that correspond to 

observed end-member compositions of minerals, potential minerals, and synthetics 

 

  

[29] 9 42 02 11 412 13 51 

[30] 9 42 0111 01 412 13 51 

[31] 9 3141 12 01 412 13 51 

[32] 9 32 12 11 412 13 51 

[33] 9 2131 22 01 412 13 51 

[34] 9 22 22 11 412 13 51 
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Table 3.5 Root charge arrangements* for the milarite structure-type with Si ≠ 12 apfu 

Number 
Charge at 

(A + B + C) sites 
A2 B2 C T(1)12 T(2)3 

Charge at 

[T(1) + T(2)] sites 

{1} 4 12 12 01 41131 33 56  

{2} 4 22 02 01 41131 33 56 

{3} 4 02 22 01 41131 33 56 

{4} 5 02 22 11 41032 33 55 

{5} 5 12 12 11 41032 33 55 

{6} 5 22 02 11 41032 33 55 

{7} 6 02 22 21 4933 33 54 

{8} 6 22 02 21 4933 33 54 

{9} 6 12 12 21 4933 33 54 

{10} 6 12 22 01 4933 33 54 

{11} 6 22 12 01 4933 33 54 

{12} 6 32 02 01 4933 33 54 

{13} 7 32 02 11 4834 33 53 

{14} 7 12 22 11 4834 33 53 

{15} 7 22 12 11 4834 33 53 

{16} 7 32 02 11 41131 23 53 

{17} 7 12 22 11 41131 23 53 

{18} 7 22 12 11 41131 23 53 

{19} 8 22 22 01 41032 23 52 

{20} 8 32 12 01 41032 23 52 

{21} 8 42 02 01 41032 23 52 

{22} 9 42 02 11 4933 23 51 

{23} 9 32 12 11 4933 23 51 

{24} 9 22 22 11 4933 23 51 

{25} 10 22 22 21 4834 23 50 

{26} 10 32 22 01 4834 23 50 

{27} 10 42 12 01 4834 23 50 

{28} 10 52 02 01 4834 23 50 
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{29} 10 22 22 21 41131 13 50 

{30} 10 32 22 01 41131 13 50 

{31} 10 42 12 01 41131 13 50 

{32} 10 52 02 01 41131 13 50 

{33} 11 52 02 11 41032 13 49 

{34} 11 42 12 11 41032 13 49 

{35} 11 32 22 11 41032 13 49 

{36} 12 52 12 01 4933 13 48 

{37} 12 42 22 01 4933 13 48 

{38} 13 52 12 11 4834 13 47 

{39} 13 42 22 11 4834 13 47 

*Those root charge arrangements shown in bold are the ones that correspond to 

observed end-member compositions of minerals, potential minerals, and synthetics 
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3.6 Chemical compositions of milarite-group minerals 

A literature review of over 132 publications (listed in Table 3.S1) describing milarite-

group minerals and synthetic milarite-group compounds has provided us with ~350 

chemical analyses. There are currently twenty-three valid mineral species with the 

milarite structure (Table 3.2). Among the ~350 analyses, we have identified twenty-nine 

distinct end-member compositions that are the dominant constituent in one or more 

chemical analyses, twenty-three of which correspond to the minerals of Table 3.2. The 

remaining six dominant distinct end-member formulae do not correspond to named 

mineral species. These are listed in Table 3.6, together with the dominant end-member 

formulae and the corresponding root charge arrangement, and the chemical 

compositions are listed in Table 3.7. Of course, we have made assumptions with regard 

to the site populations in the minerals of Table 3.6; in general, these follow the observed 

site-populations in Table 3.2. Where the dominant divalent cations are Mg and Fe2+, 

there is the potential for order-disorder of these cations over the A and T(2) sites, and 

without crystal-structure or spectroscopic data, we cannot assign distinct site-

populations. In these cases, we have written the site populations as (Mg,Fe2+) or 

(Fe2+,Mg) according to whether Mg or Fe2+ is the dominant constituent (e.g., PM3, FC1 

and FMM, Table 3.6). 
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Table 3.6 New end-member compositions corresponding to observed chemical 

compositions of milarite-group minerals 

Sample 

number 
A2 B2 C T(2)3 T(1)12 RCA* “Name” 

PM3 (Fe2+,Mg)2 K□ K (Fe2+,Mg)3 Si12 [17] K-merrihueite 

KSR Mg2 Na2 K (Mg,Fe2+)3 Si11Al {18} New RCA 

FC1 (Mg,Fe2+)Fe3+ □2 K Mg3 Si12 [21] Mg-klöchite 

ALSU Al2 Na2 K Li3 Si12 [32] Al-sugilite 

MSO Mg2 □2 □ Al3 Si11Al {2} New RCA 

FMM (Fe2+,Mg)Fe3+ □2 K (Fe2+,Mg)3 Si12 [21] Fe-klöchite 

*Root charge arrangement  
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Table 3.7 Chemical formulae consistent with new dominant end-member compositions 

 PM3 KSR FC1 AlSU MSO FMM 

       
SiO2 62.12 68.00 68.98 71.50 63.51 61.80 

TiO2 0.00 0.00 0.08 0.00 ---  

Al2O3 0.05 2.50 0.15 3.59 20.88 0.02 

Cr2O3 0.02 0.00 0.00 0.00   

Fe2O3 0.00 0.00 6.70 5.48   

Mn2O3 0.00 0.00 0.00 3.19   

FeO 25.31 0.40 5.29 0.00 6.41 23.70 

MnO 0.00 0.00 0.23 0.00 ---- 0.50 

MgO 4.18 19.00 12.85 0.00 4.53 4.40 

BeO --- --- --- ---   

CaO 0.06 0.00 0.00 0.00 0.15 0.30 

Li2O 0.00 0.00 0.00 3.67   

Na2O 0.49 5.30 0.43 6.09 0.35 2.00 

K2O 6.66 3.80 4.50 0.75 4.04 3.80 

TOTAL 98.89 99.00 99.21 99.24 99.87 96.70 

       

Si 11.91 11.55 11.96 12.19 10.63 12.00 

Al 0.01 0.45 0.03 --- 1.37 --- 

ΣT(1) 11.92 12.05 11.99 12.19 12.00 12.00 

       
Li --- --- --- 2.52 ---  

Be --- --- --- --- ---  

Mg+Fe2+ --- 2.97 3.00 --- 0.25  
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Fe2++Mg 3.00 --- --- --- --- 3.00 

Al --- 0.03 --- 0.48 2.75  

ΣT(2) 3.00 3.00 3,00 3.00 3.00 3.00 

       
K 1.00 0.82 1.00 1.08 0.06 0.47 

 --- 0.18 --- --- 0.94 
Na 

0.36 

ΣC 1.00 1.00 1.00 1.08 1.00 0.83 

       
Na 0.18 1.75 0.15 2.01 0.10 ---- 

K 0.63 --- --- --- --- --- 

 1.19 0.25 1.85 --- 1.90 2.00 

ΣB 2.00 2.00 2.00 2.01 2.00 2.00 

       
Mg + Fe2+ --- 1.84 0.32 --- 1.74 1.27 

Fe2+ + Mg 2.25 0.06 0.77 ---   

Mn2+ --- --- 0.03 ---  0.08 

Al --- --- --- ---   

Ca --- --- --- 0.72 0.02 0.06 

Fe3+ --- --- 0.87 0.71  0.85 

Mn3+ --- --- --- 0.41   

Y + REE --- --- --- 0.16   

 --- 0.10 --- --- 0.26  

ΣA 2.25 2.00 2.00 2.00 2.00 2.26 

       
References (1) (2) (3) (4) (6) (7) 

(1) Wood & Holmberg (1994); (2) Krot & Wasson (1994); (3) Alietti 

et al. (1994); (4) Taggart et al. (1994); (5) Bogdanova et al. (1980); 

(6) Dodd et al. (1985). 
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3.6.1 H2O content 

There is not a lot of reliable information on the H2O content of milarite-group minerals, in 

part because of the inherent difficulties of analysing for H2O or H, and in part because 

many of the milarite-group minerals are rare and have only been found in very small 

quantities. (H2O) occurs at the B site (Table 3.1) and hence has a maximum value of 2 

apfu. Two of the measured values exceed 2 apfu and must be wrong unless (H2O) 

occupies another site in the structure, something that has not been confirmed by 

crystal-structure work. Previous work has suggested that the amount of (H2O) does not 

exceed 1 apfu. In particular, Hawthorne et al. (1991) showed that for the milarite 

samples of Černý et al. (1980), there is a linear relation between the intensity of the 

infrared combination mode at ~5200 cm-1 (E perpendicular to c) and the (H2O) content, 

and the maximum amount of (H2O) in this correlation is 1.12 apfu. Inspection of Fig. 3.3 

shows four values significantly exceeding this value, suggesting that the (H2O) content 

of the milarite structure does go up to 2 apfu. The crystal-chemical role of (H2O) in the 

milarite structure is not clear. Hawthorne et al. (1991) show that the two-fold rotation 

axis of the (H2O) group is parallel to the c axis, and the relatively short A-B distance in 

some milarites (e.g., Černý et al. 1980) suggests that there could possibly be an 

interaction between the A-site cation and (H2O) at the B site. On the other hand, many 

milarite-group minerals are anhydrous, suggesting that (H2O) does not bond directly to 

any cation and hence belongs to the occluded (H2O) category of Hawthorne (1992). 

This situation remains to be resolved in a convincing manner. 
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Figure 3.3 A histogram of the H2O content (in molecules pfu) in milarite-group minerals 

taken from the literature. Measured values are shown in red, estimated values are 

shown in yellow. 
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Figure 3.4 Possible compositional variation in roedderite-“Mg-merrihueite” structures. In 

roedderite and “Mg-merrihueite”, the A and T(2) site-populations are as follows: A = 

Mg2, T(2) = Mg3 and A = Fe2+
2, T(2) = Fe2+

3; however, order of Mg and Fe2+ over the A 

and T(2) sites can give rise to the following A and T(2) site-populations: A = Mg2, T(2) = 

Fe2+
3 and A = Mg2, T(2) = Fe2+

3, which correspond to distinct end-member 

compositions.  
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3.6.2 Potential new mineral species 

There are other analyses in the literature for which the site assignments are ambiguous, 

and new minerals are possible if the associated site-populations can be derived 

experimentally. These are listed in Tables 3.8 and 3.9. The compositions have the root 

charge arrangement of merrihueite and roedderite (Table 3.2). In end-member 

roedderite, A2 = Mg2 and T(2)3 = Mg3, and in merrihueite, A2 = Fe2+
2 and T(2)3 = Fe2+

3. 

The possible variation in formulae along the solid solution roedderite-merrihueite is 

shown in Fig. 3.4. Where the A and T(2) sites have the same dominant cation, the 

species roedderite and merrihueite are distinct. However, where Mg or Fe2+ is strongly 

ordered at A (or T(2)), the end members Fe2+
2Na□KMg3Si12O30 or 

Mg2Na□KFe2+
3Si12O30 can become dominant and compositions in the un-named areas 

of Fig. 3.4 then require distinct mineral names.  
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Table 3.8 Compositions which may lead to new end-member compositions in the 

milarite-group minerals 

Sample 

number 
A2 B2 C T(2)3 T(1)12 RCA* “Name” 

MM (Fe2+,Mg)2 Na□ K (Fe2+,Mg)3 Si12 [17] Mg-merrihueite ? 

FR (Mg,Fe2+)2 Na□ K (Mg,Fe2+)3 Si12 [17] Fe-roedderite   ? 

*Root charge arrangement (from Tables 3.3 & 3.4) 

 

  



176 

 

Table 3.9 Chemical formulae corresponding to the “end members” of table 3.8 

 MM FR 

   
SiO2 65.70 67.20 

TiO2 0.00 0.00 

Al2O3 0.08 0.09 

Cr2O3 0.03 0.00 

Fe2O3 0.00 0.00 

Mn2O3 0.00 0.00 

FeO 20.10 14.40 

MnO 0.00 0.19 

MgO 7.00 10.60 

BeO --- --- 

CaO 0.02 0.00 

Li2O --- 0.00 

Na2O 1.90 3.10 

K2O 3.60 4.40 

TOTAL 98.43 99.98 

   

Si 12.09 11.97 

Al --- 0.02 

ΣT(1) 12.09 11.99 

   
Li --- --- 

Be --- --- 

Mg + Fe2+ --- 3.00 

Fe2+ + Mg 2.98 --- 

Al 0.02 --- 

ΣT(2) 3.00 3.00 

   
K 0.85 1.00 

 0.15 --- 

ΣC 1.00 1,00 

   



177 

 

Na 0.68 1.07 

K --- --- 

Ca --- --- 

 1.32 0.93 

ΣB 2.00 2.00 

   
Mg+Fe2+ --- 1.97 

Fe2++Mg 2.03 --- 

Mn2+ --- 0.03 

Al --- --- 

Ca --- --- 

Fe3+ --- --- 

Mn3+ --- --- 

Y+REE --- --- 

 --- --- 

ΣA 2.03 2.00 

References: (1) and (2) Krot & Wasson (1994) 
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Table 3.10 Synthetic milarite-like compositions and corresponding end-members for 

which crystal-structure refinements are available 

Composition A2 B2 C T(2)3 T(1)12 Anion RCA* Ref. 

Mg-merrihueite Mg2 K□ K Mg3 Si12 O30 [17] (1) 

Zn-milarite Mn2 □2 K Zn2Fe3+ Si12 O30 [10] (2) 

Mn-milarite Mn2 K□ K Mn3 Si12 O30 [17] (3) 

BaMg2Al6Si9O30 Mg2 □2 Ba Al3 Si9Al3 O30 {8} (4) 

SrMg2Al6Si9O30 Mg2 □2 Sr Al3 Si9Al3 O30 {8} (4) 

Mg2Al4Si11O30 Mg2 □2 □ Al3 Si11Al O30 {2} (4) 

K2Mg3Zn2Si12O30 Mg2 K□ K Zn3 Si12 O30 [17] (5) 

K2Mg3Fe2Si12O30 Mg2 K□ K Fe2+
3 Si12 O30 [17] (5) 

RbNaMg5Si12O30 Mg2 Na□ Rb Mg3 Si12 O30 [17] (5) 

Na2Mg5Si12O30 Mg2 Na□ Na Mg3 Si12 O30 [17] (5) 

Na3Mg4LiSi12O30 Mg2 Na2 Na Mg2Li Si12 O30 [26] (5) 

K3Mg4LiSi12O30 Mg2 K2 K Mg2Li Si12 O30 [26] (5) 

Na2Mg3Cu2Si12O30 Mg2 Na2 □ Cu3 Si12 O30 [15] (5) 

K2Mg3Cu2Si12O30 Mg2 K□ K Cu3 Si12 O30 [17] (5) 

Mg2NaNaMg3Si12O30 Mg2 Na□ Na Mg3 Si12 O30 [17] (6) 

References: (1) Khan et al. (1971); (2) Pushcharovskii et al. (1972); (3) Sandomirskii et al. (1977); (4) 

Winter et al. (1995); (5) Nguyen et al. (1980); (6) Artioli et al. (2013). 

*Root charge arrangement (from Tables 3 and 4) 
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Table 3.11 Synthetic compositions for which there are no crystal-structure refinements 

 

 

 

 

 

 

 

 

*Root charge arrangement 

 

 

  

Number A2 B2, C T(2)3 T(1)12 RCA* Ref. 

(1) Mg2 Na2□ Zn3 Si12 [15] or [17] (1) 

(3) Mg2 Na2□ Fe2+
3 Si12 [15] or [17] (1) 

(5) Mg2 NaRb□ Fe2+
3 Si12 [15] or [17] (1) 

(13) Mg2 NaK□ Cu3 Si12 [15] or [17] (1) 

(14) Mg2 NaRb□ Cu3 Si12 [15] or [17] (1) 

Reference : (1) Choisnet et al. (1981) 
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3.7 Synthetic compounds with the milarite-type structure 

There are twenty synthetic compounds with the milarite-type structure that have distinct 

(dominant) end-member compositions. Those for which the crystal structure and site 

populations have been determined are listed in Table 3.10, and those for which the 

formulae are assumed from the starting compositions are listed in Table 3.11. In Table 

3.10, “Mg-merrihueite”, “Zn-milarite” and “Mn-milarite” are the names assigned in the 

original studies (and hence are retained here) “Mg-merrihueite” and “Zn-milarite” are 

appropriately named, whereas “Mn-milarite” is actually a Mn-analogue of merrihueite. 

The compound BaMg2Al6Si9O30 is the Mg analogue of armenite, SrMg2Al6Si9O30 is the 

Sr-Mg analogue of armenite, and Mg2Al4Si11O30 is a new root charge arrangement: 

arrangement {2} in Table 3.5. Most of the remaining silicate milarite compounds have 

root charge arrangements [17] and [26] (Table 3.10). The compound Na2Mg3Cu2Si12O30 

is unusual in having root charge arrangement [15], which inspection of Tables 3.2 and 

3.6 shows is the first occurrence of this arrangement.  

 

3.8 The relative stability of root charge arrangements with the milarite structure 

There are seventy-three distinct root charge arrangements with the milarite structure, as 

listed in Tables 3.4 and 3.5, and fitteen of these occur in minerals and synthetic 

compounds (Table 3.12). The obvious question arises: Can all these root charge 

arrangements lead to stable structures? Certainly some of the arrangements can be 

thought of as very stable as they occur in several minerals: for example, arrangement 

[17] (Table 3.4) occurs in six minerals, a further three potential minerals, and between 
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eight to thirteen synthetic compounds (Table 3.12), suggesting that it is a particularly 

stable charge arrangement.  

Fig. 3.5 shows the total charge (pfu) at the A site as a function of total charge at the T(2) 

site in milarite-type structures. Red circles are for Si = 12 apfu, green triangles for Si < 

12 apfu, and the yellow area shows the following charge ranges: 0 ≤ A2 ≤ 10, 3 ≤ T(2)3 ≤ 

9. The red dotted lines bound the range where Si ≤ 12 apfu. The region to the bottom 

left of the figure is forbidden as there is insufficient charge at the B and C sites to 

produce electroneutrality, and the lower red line provides a lower bound for the 

observed root charge arrangements. The corresponding upper limit for root charge 

arrangements with Si = 12 apfu (the upper red line) provides an upper bound for 

structures with Si = 12 apfu. Above this line, all root charge arrangements (and 

observed structures) have Si < 12 apfu. In principle, the aggregate charge at T(2)3 could 

be 12 (or even higher if T(1)Si < 12 apfu); however, a completely silicate milarite 

structure, A02
B02

C01
T(2)Si3T(1)Si12O30,  seems unlikely because of the number of 

unoccupied large cavities in the structure.  

 We may examine aspects of observed and algebraically possible root charge 

arrangements using a priori bond-valence calculations; this is shown next. 
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Table 3.12 Numbers of minerals and compounds for specific root charge arrangements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Root charge arrangement 

  

RCA* Minerals 
Potential 

minerals 

Synthetic 

compounds 

[2] 1 - - 

[10] 3 - 1 

[15] - - 1 (+ up to 5) 

[17] 6 3 8 (+ up to 5) 

[18] 1 - - 

[20] 1 - - 

[21] 2 2 - 

[24] 1 - - 

[26] - - 2 

[29] 3 - - 

[32] 1 1 - 

{2} - 1 1 

{6} 3 - - 

{8} 1 - 2 

{18} - 1 - 
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Figure 3.5 Total charge (pfu) at the A site as a function of total charge at the T(2) site in 

milarite-type structures; red circles are have Si = 12 apfu, green triangles have Si < 12 

apfu, the yellow area shows the following charge ranges: 0 ≤ A2 ≤ 10, 3 ≤ T(2)3 ≤ 9, the 

red dotted lines bound the range where Si ≤ 12 apfu.  
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3.8.1 A priori bond-valence calculations 

There are two important theorems in bond-valence theory (Brown 2002): [1] the 

valence-sum rule, and [2] the loop rule. The valence-sum rule states that the sum of the 

bond valences at each atom is equal to the magnitude of the atomic valence.  The loop 

rule states that the sum of the directed bond-valences around any circuit (closed path) 

of bonds in a structure is zero. The equations associated with the valence-sum rule and 

the loop rule result in an exactly determined system with regard to the bond valences; 

these are called the a priori bond-valences, i.e., the bond valences calculated from the 

formal valences of the ions at each site and the bond-topological characteristics of the 

structure (Brown 1977, Rutherford 1990). This approach has been used only sparingly, 

mostly to predict bond lengths of simple structures, based on the solution of the network 

equations (see below) by extraction and conversion of the a priori bond-valences 

(Brown 1977, Rutherford 1990, Urusov & Orlov 1999, Hawthorne & Sokolova 2008).   

An aspect of considerable interest with regard to the milarite structure is the wide range 

of cations that can occur in this structure type, forming numerous minerals (Table 3.2). 

A priori bond-valence calculations provide us with an ideal method for examining the 

control of bond topology on site occupancy in the milarite structure and in the minerals 

of the milarite group. 

 

3.8.2 Calculation of a priori bond-valences 

The equations involved in the valence-sum rule may be written as follows:  

∑ sij = Vi (i = 1-n)   (eq. 3.1) 
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where the summation involves all bonds to the j coordinating ions from the central ion i 

for all n ions in the structure.  

The equations for the loop rule may be written as follows: 

∑ sij = 0   (eq. 3.2) 

where the summation is over the directed bond valences around any circuit in the 

digraph (directed graph) of the bond network of the structure.  

 

3.8.3 A priori bond-valences of the milarite structure 

A general bond-valence table for the milarite structure is shown in Table 3.13. The bond 

valences are represented by the variables a-h. The formal charges of the cations at the 

various cation sites are written as siteV and the charges of the anions are constrained to 

equal to their formal valence. This means that there are eight unknowns (the bond 

valences a-h) and we need eight independent equations to solve for these unknowns.  

The valence-sum rule for the cations gives us the following equations: 

6a = AV 

3b + 6c = BV 

      12d = CV                              (eq. 3.3) 

e + 2f + g = T(1)V 

4h = T(2)V 

The valence-sum rule for the anions gives us the following equations: 
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              b + 2e = 2 

     d +2f = 2   (eq. 3.4) 

         a + c + g + h = 2 

These eight equations are constrained by charge balance, and hence there are only 

seven independent equations. In order to be able to solve for the bond valences, we 

need an additional equation, linearly independent of the other equations, and this is 

provided by the loop rule (see above). There are two (equivalent) ways in which we may 

derive loop equations: (1) by inspection of the crystal structure, and (2) via the bond-

valence table. Fig. 3.6 shows a fragment of the milarite structure. A convenient loop is 

shown in red in Table 3.13: B → O(1) → T(1) → O(3) → B, resulting in the following 

loop equation: 

          b – e + g – c = 0   (eq. 3.5) 

This loop may also be constructed in the structure itself (Fig. 3.6) by tracing out the loop 

indicated in Table 3.13.  

Note that the sites A, C and T(2) are each coordinated by only one crystallographically 

distinct anion and all bonds to each cation are equivalent. This means that none of 

these cations can (usefully) participate in loop equations as the directed bond-valences 

involving each of these cations always sum to zero. On the other hand, their a priori 

bond-valences are calculated directly from the valence-sum equations: a = AV/6; d = 

CV/12; h = T(2)V/4 v.u.  
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Table 3.13 General bond-valence table for the milarite structure, showing a loop in the 

bond topology 

  

 
A2 B2 C T(1)12 T(2)3 ∑ 

O(1) 
 

b x3↓ 
 

e x2→ 
 

2 

O(2) 
  

d x12↓ f x2↓ x2→ 
 

2 

O(3) a x6↓ c x6↓ 
 

g h x4↓ 2 

∑ AV BV CV T1V T2V 
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Figure 3.6 A fragment of the milarite structure viewed perpendicular to c, showing the 

loop that is outlined in Table 3.13 and discussed in the text. 
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3.8.4 Solution of the a priori bond-valence equations 

We may write the system of equations in matrix form as shown below: 

A                            .   B      =      C 

    (eq. 3.6) 

where the A matrix contains the coefficients of the above equations, the first column 

vector (B) contains the a priori bond-valences (unknown) and the second column vector 

(C) contains the formal charges of the ions at the sites, together with the zero 

associated with the loop equation. Thus, we may solve this system of equations to 

obtain the a priori bond-valences.   

Table 3.14 shows the results of this calculation for the charge arrangement 

A32
B12

C11
T(1)412

T(2)13O30 corresponding to sugilite: Fe3+
2Na2KSi12 Li3O30, together with 

the bond valences calculated from the structure of Armbruster & Oberhänsli (1988b) 

and the bond-valence parameters of Gagné & Hawthorne (2015). By-and-large, the a 

priori bond-valence calculations reproduce the observed bond-valences quite closely. 

The principal deviations between the two occur where there are obvious steric 

constraints on the adoption of specific bond-lengths. Thus the major significant 

difference involves the B-O(1) bond.  
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Where the B site is vacant, what are other sources of structural strain in the milarite 

structure? Let us consider the structure of sogdianite (Cooper et al.1998; Sokolova et al. 

2000), where the B site is vacant (Table 3.2). Table 3.15 shows the calculation for the 

charge arrangement A42
B02

C11
T(1)412

T(2)13O30 corresponding to sogdianite: Zr2□2KSi12 

Li3O30, together with the bond valences calculated from the structure of Sokolova et al. 

(2000) and the bond-valence parameters of Gagné & Hawthorne (2015). The 

unoccupied B site in this structure emphasizes the second significant mismatch 

between the a priori and observed bond-valences in the milarite structure, that which 

occurs at the T(1) site: the bond valences T(1)-O(1) and T(1)-O(2) are both too large by 

approximately 0.04 v.u. While the origin of these slightly high bond-valences is not 

clear, we note that this mismatch is a lot less important where the B site is occupied.  

A summary of the mismatch between the a priori and observed bond-valences for all 

observed milarite-group minerals is given in Table 3.16.  
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Table 3.14 A priori (upper) and observed (lower) bond-valences (v.u.) for sugilite*: 
A(Mn3+

0.11Fe3+
0.71Al1.16Na0.02) BNa1.81

 CK1.00
 T(2)Li3.02

 T(1)Si12.06O30 

 A2 B2 C T(1)12 T(2) Σ 

O(1)  0.019 x3↓  0.991 x2→  2 

O(2)   0.0833 x12↓ 0.958 x2↓→  2 

O(3) 0.497 x6↓ 0.141 x6↓  1.113 0.252 x4↓ 2 

Σ 2.980 0.905 1 4.020 1.007  

 

O(1)  0.178 x3↓  0.997 x2→  2.172 

O(2)   0.0924 x12↓ 
1.010 

1.023 
 2.125 

O(3) 0.479 x6↓ 
0.0844 x3↓ 

0.0363 x3↓ 
 1.128 0.243 x4↓ 

1.971 

 

Σ 2.872 0.896 1.108 4.158 0.973  

*Ref: Armbruster & Oberhänsli (1988) 
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Table 3.15 A priori (upper) and observed (lower) bond-valences (v.u.) for sogdianite*: 
A(Zr1.98Hf0.02) C(K0.99Na0.01) T(2)Li2.97

 T(1)Si12.01O30 

 A2 B2 C T(1)12 T(2) Σ 

O(1)  ---  1.000 x2→  2 

O(2)   0.083 x12↓ 0.958 x2↓→  2 

O(3) 0.667 x6↓ ---  1.083 0.248 x4↓ 2 

Σ 4 0 1 4.003 0.99  

 

O(1)  ---  1.044 x2→  2.088 

O(2)   0.0800 x12↓ 
1.000 

1.002 
 2.100 

O(3) 0.667 x6↓ ---  1.077 0.252 x4↓ 1.996 

Σ 4.004  0.960 4.123 1.008  

*Ref: Sokolova et al. (2000) 



Table 3.16 Absolute difference between a priori bond-valence and experimental bond-valences (v.u.) by bond 

 
A-O(3)  

(1) 

A-O(3) 

(2) 
B-O(1) 

B-O(3) 

(1) 

B-O(3) 

(2) 
C-O(2) T(1)-O(1) 

T(1)-O(2) 

(1) 

T(1)-O(2) 

(2) 
T(1)-O(3) T(2)-O(3) 

Almarudite 0.005  0.034 0.037 0.042 0.005 0.027 0.083 0.077 0.024 0.014 

Darapiosite 0.037  0.088 0.076 0.076 0.002 0.027 0.050 0.034 0.018 0.018 

Dusmatovite 0.080  0.081 0.041 0.041 0.002 0.030 0.026 0.042 0.034 0.026 

Eifelite 0.084  0.102 0.062 0.110 0.000 0.029 0.047  0.039 0.069 

Friedrichbeckeite 0.003  0.075 0.054 0.069 0.009 0.023 0.083 0.080 0.026 0.069 

Milarite 0.019 0.087 0.033 0.016 0.018 0.002 0.013 0.058 0.050 0.025 0.029 

Oftedalite 0.031     0.002 0.053 0.082 0.066 0.006 0.007 

Osumilite 0.016     0.016 0.021 0.050 0.034 0.041 0.015 

Osumilite-Mg 0.021     0.015 0.021 0.044 0.028 0.039 0.007 

Poudretteite 0.020     0.006 0.045 0.084 0.064 0.027 0.009 

Shibkovite 0.018  0.072 0.054 0.054 0.004 0.023 0.047 0.034 0.018 0.017 

Sogdianite 0.002     0.003 0.048 0.045 0.043 0.002 0.004 

Sugilite 0.017  0.134 0.062 0.100 0.007 0.012 0.074 0.058 0.031 0.008 

Average deviation 0.031 
 

0.077 0.057 
 

0.006 0.029 0.055 
 

0.025 0.022 
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Table 3.17 Global instability index and bond strain index (v.u.) 

 
Global 

Instability Index 

Bond Strain 

Index 

Root charge 

arrangement 

Almarudite 0.13 0.028 [10] 

Berezanskite 0.10 0.024 [29] 

Darapiosite 0.09 0.040 [24] 

Dusmatovite 0.16 0.040 [17] 

Eifelite 0.26 0.062 [18] 

Friedrichbeckeite 0.13 0.037 [17] 

Milarite 0.10 0.019 [10] 

Oftedalite 0.13 0.029 [21] 

Osumilite 0.07 0.013 {6} 

Osumilite-Mg 0.06 0.014 {6} 

Poudretteite 0.12 0.026 [2] 

Shibkovite 0.09 0.032 [17] 

Sogdianite 0.08 0.017 [29] 

Sugilite 0.12 0.052 [32] 

Average 0.12 0.031  
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3.9 Induced strain in the milarite group 

The bond-valence model offers two a posteriori checks on the stability of crystal 

structures: the Global Instability Index (GII, Salinas-Sanchez et al. 1992), and the Bond 

Strain Index (BSI, Preiser et al. 1999). The bond strain index (BSI) is a measure of the 

lattice-induced strain that causes bonds to violate the network equations (Brown 2002), 

which results in a mismatch between the a priori and experimental bond valences: 

BSI = (
∑ (𝑤𝑖(𝑆𝑖𝑗−𝑠𝑖𝑗)

2
)𝑖

∑ 𝑤𝑖
)

1/2

   (eq. 3.7) 

where Sij is the a priori bond-valence, sij is the corresponding experimental bond-

valence, and where the average is taken over all bonds of the bond-topology table. The 

global instability index (GII) is a complementary measure of the lattice strain, evaluating 

the difference between the bond-valence sums at the sites of the structure compared to 

their ideal values: 

GII = (
∑ (𝑤𝑖(∑ 𝑠𝑖𝑗𝑗 −𝑉𝑖)2)𝑖

∑ 𝑤𝑖
)

1/2

    (eq. 3.8) 

where sij are the experimental bond valences, Vi the valence of the ion, and where the 

average is taken over all ions of the structure. Brown (2002) states that a value of over 

0.2 v.u for GII usually indicates a structure so strained as to be unstable. Table 3.17 

shows the BSI and GII of fourteen minerals of the milarite group for which both a 

reliable chemical analysis and refined crystal-structure is available. The GII varies from 

0.06 (osumilite-Mg) to 0.26 v.u (eifelite), with an average value of 0.12 v.u, whereas the 

BSI varies from 0.013 (osumilite) to 0.062 v.u (eifelite), with an average value of 0.031 

v.u. These indexes are useful to gauge the relative stability of members of the group. 
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For example, the five highest BSI values involve five minerals with partial or total 

occupancy of the B site: darapiosite, dusmatovite, eifelite, friedrichbeckeite and sugilite. 

These minerals are also on the higher end of the GII values for the group, confirming 

the relative instability of milarite-group minerals with an occupied B site. There is a 

correlation coefficient of 0.79 between GII and BSI for the group, meaning that a high 

BSI does not always equate a high GII or vice versa (e.g., darapiosite).Table 3.17 also 

shows that milarite and osumilite have low values of GII and BSI, which could be one of 

the reasons for their relatively common occurrence compared to that of other minerals 

of the group.  

 

3.9.1 The B site in the milarite structure 

Fig. 3.7 compares the a priori bond-valences with the experimental bond-valences for 

thirteen well-refined milarite-group minerals for which reliable chemical analyses are 

available. Inspection of Fig. 3.7 shows that the maximum deviation from concordance of 

the a priori and experimental bond-valences occurs for the B site, with the B-O(1) bond 

showing the largest positive deviations and the B-O(3) bond showing the largest 

negative deviations. In the milarite structure, the B site occupies a cavity within the 

framework, and the dimensions of that cavity are primarily controlled by the detailed 

positions of the surrounding polyhedra (Fig. 3.6). The observed bond-lengths in sugilite 

are shown in Fig. 3.8a: B-O(1) = 2.42,  B-O(3) = 2.73 Å; the ideal bond-lengths 

corresponding to the a priori bond-valences of Table 3.14 are B-O(1) = 3.07,  B-O(3) = 

2.51 Å. These are extremely large differences [up to 0.65 Å for O(1)], and we may 

understand why the structure cannot adjust to these distances by comparing Figs. 3.8a 
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and 3.8b. The [Si12O30] units of the milarite structure encapsulate K in [12]-coordination 

at the C site. The valence-sum rule requires an incident observed bond-valence of 1 v.u 

at the C site, with an a priori bond-valence of 1/12 = 0.083 v.u per (symmetry 

equivalent) bond. This gives a C-O(2) distance of 3.05 Å, close to 2.99 Å observed in 

sugilite and ~3.05 Å observed in brannockite (Armbruster & Oberhänsli 1988b), 

sogdianite (Cooper & Hawthorne 1999, Sokolova et al. 2000) and berezanskite 

(Hawthorne et al. 2015). It is apparent that the [Si12O30] groups act as rigid units, 

buttressed by the central K at the C site. The B-O(1) distance may increase by 

increasing the distances between the [Si12O30] units in the a direction, but this also 

increases the B-O(3) distance which is already too long and needs to be shortened, not 

lengthened. The B-O(3) distance may be shortened by bringing the [Si12O30] units closer 

together; however, this will shorten the B-O(1) distance which needs to be lengthened, 

and will also further flatten the T(2) tetrahedron which is already very flat (see Fig. 3.8b). 

The only way that B-O(1) may be lengthened and B-O(3) may be shortened is by 

displacement of the B cation away from the 4d site parallel to the c axis. Although this 

mechanism is not very effective, it is the only one available, and most milarite minerals 

have the B-site cation “split” up and down the channel direction (e.g., Kimata & 

Hawthorne 1989).  
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Figure 3.7 Comparison of experimental and a priori bond-valences for thirteen well-

refined milarite-group minerals for which reliable chemical analyses are available.  
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Figure 3.8 The coordination around the B site in sugilite; (a) ball-and-stick view with the 

atom-displacements shown; the B site has been moved to its ideal position at z = 0 to 

simplify the figure; (b) the polyhedra around the B site, with the B-O(1) and B-O(3) 

separations shown in yellow and red lines, respectively. Legend as in Figs. 3.1 and 3.2. 
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3.9.2 Compositional implications for milarite-group minerals 

The fact that the largest deviations between the a priori and observed bond-valences 

occur at the B site suggests that minerals with an occupied B site will tend to be less 

stable than those with a vacant B site. In accord with this, of the twenty-three milarite-

group minerals listed in Table 3.2, fifteen have a vacant B site, five have a half-occupied 

B site, and only three have a fully occupied B site. Moreover, the more common and 

widespread milarite-group minerals: armenite, milarite and osumilite have vacant B 

sites.  

Of the thirty-four possible root charge arrangements for the milarite structure with Si = 

12 apfu that are listed in Table 3.4, twenty-one have a fully occupied B site; three of 

these arrangements ([18], [24], [32]) are known in minerals and two are suspected in 

synthetic compounds ([15], [26]); three have a half-occupied B site and one of these 

arrangements ([17]) is known in minerals; ten have a vacant B site; six of these 

arrangements ([2], [10], [17], [20], [21], [29]) are known in minerals.  

Of the thirty-nine possible root charge arrangements for the milarite structure with Si ≠ 

12 apfu that are listed in Table 3.5, twenty-eight have a fully occupied B site, and one of 

these arrangements ({18}) is known in a potential new species identified here; none 

have a half-occupied B site (these arrangements are not possible as they violate the 

requirements of an end member as one site, T(1), is already occupied by two cation 

species); eleven have a vacant B site, two arrangements ({6}, {8}) are known in 

minerals and one potential new species identified here has another arrangement ({2}).  
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We note here that most (49) root charge arrangements of the milarite structure have a 

fully-occupied B site, and are therefore less likely to lead to minerals compared to their 

counterparts. This inventory of distinct root charge arrangements provides many targets 

for synthesis of materials with the milarite structure, especially with regard to B site 

occupancy. 

 

3.10 Summary 

(1) All possible end-member root charge arrangements for the milarite structure-type 

have been derived using the criteria of Hawthorne (2002); 

(2) Examination of ~350 chemical analyses from the literature has led to the 

identification of six examples that definitely deserve the status of new minerals; 

moreover, there are two additional compositions that may also deserve this status, 

pending experimental determination of their patterns of cation order; 

(3) Examination of synthesis results reveals twenty synthetic compounds with the 

milarite-type structure that have distinct (dominant) end-member compositions; 

(4) The inventory of distinct root charge arrangements provides many targets for 

synthesis of materials with the milarite structure; 

(5) A priori bond-valence calculations allow evaluation of lattice-induced strain as a 

function of chemical composition for all arrangements for which the detailed atomic 

arrangement has been refined; 
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(6) Analysis of localized strain indicates that the B site has the highest amount of strain 

in the structure; and in accord with this finding, species with vacant B site tend to be 

more common; 

(7) The inventory of root charge arrangements of the milarite structure shows that out of 

a total of 73 plausible root charge arrangements, 49 have a fully-occupied B site, and in 

accord with (6), are less likely to lead to minerals than the root charge arrangements 

with a vacant B site.  
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4.1 Preliminary discussion 

The two most important types of data that result from crystal-structure solution and 

refinement are [1] interatomic distances, and [2] bond topology (the pattern of chemical 

bonding in a structure). Virtually every paper on crystal structure discusses the variation 

of bond lengths in the crystals examined, and two general approaches to examining 

these variations are commonly used: (1) molecular-orbital approaches; (2) crystal-

chemical arguments. 

 

4.1.1 Molecular-orbital approaches    

In the period 1960-1985, there was a lot of work on rationalizing observed bond lengths 

and bond angles in crystals in terms of molecular-orbital arguments and calculations on 

molecular groups that were intended to simulate the structure fragment under 

consideration. This work tended to focus on strongly bonded clusters, particularly 

oxyanions, as the arguments and calculations were easier to develop than for weakly-

charged species with high coordination numbers. Influential in this regard was the work 

of Cruickshank (1961) which rationalized relations between bond lengths and bond 

angles in simple oxyanions and corresponding crystal structures. The first calculations 

done were simple extended Hückel calculations (e.g., Gibbs et al., 1972) in which the 

crystal environment was simulated by attaching H atoms to the peripheral anions to 

neutralize the total charge of the cluster. These calculations led to semi-quantitative 

understanding of variation in bond angles in silicates. Ab initio calculations of increasing 

sophistication rapidly followed (e.g., Newton & Gibbs, 1980), and calculated distances 
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showed reasonable agreement with observed values in crystal structures for a few 

oxyanions, notably the silicate group. This type of agreement for a few oxyanion groups 

showed that ab initio calculations on small molecules are reasonable first 

approximations for reproducing bond lengths in crystals. However, they cannot address 

bond-length variations that are characteristic of the same groups in different crystal 

structures as they are only molecular calculations and lack the constraints of space-

group symmetry. Pisani et al. (1988) incorporated periodicity into ab initio Hartree-Fock 

calculations by expressing the orbitals as Bloch functions (e.g., Ziman, 1964) which 

enabled sophisticated calculation for crystal structures and overcame the constraints 

associated with a molecular approach. Application of this method has led to better 

reproduction of bond lengths by calculation of specific structures, and fairly accurate 

calculation of many physical properties of crystals. However, it has not led to a general 

understanding of what factors control the detailed variation of bond lengths in crystals. 

 

4.1.2 Crystal-chemical approaches 

Crystal-chemical approaches to the interpretation of structure and their bond-length 

variations arose very early in the development of crystal-structure work, and were a 

major factor in actually solving the crystal structures of more complicated solids once 

the more simple structures had been solved. During the 1920s, Goldschmidt in 

particular developed the ideas of coordination number and ionic radius, and much of 

this information was summarized by Pauling (1929, 1960). Various sets of ionic radii 

were used in crystal chemistry, culminating in the seminal paper of Shannon (1976) 

which lists ionic radii for a wide variety of ions and coordination numbers, and which 
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currently has ~35,000 citations. Initially, the idea was to reproduce bond lengths by 

adding the radii of the constituent ions, but this only works very approximately. Much 

greater reproducibility of bond lengths can be produced by correlating variations in bond 

length as a function of constituent ion radii in specific groups of structures; the reasons 

for the lack of transfer of these relations from one structure type to another are much 

less well-understood.  

The development of the bond-valence model (Brown, 2002, 2009) has led to further 

insight into factors that control variations in bond length. Bond-valence curves are non-

linear, and this leads to a relation between the degree of dispersion of bond lengths in a 

specific coordination polyhedra (often called “bond-length distortion”) and the observed 

mean bond-length. There has been much written on this issue (e.g., Brown & Shannon, 

1973; Urusov, 2003, 2006, 2014), but this work has ignored some other factors that are 

also known to affect bond lengths. For example, Shannon (1976) lists coordination 

numbers for O2- from [2] to [8] with a range of 0.07 Å, indicating that this factor should 

significantly affect mean bond-lengths and cannot be ignored. Furthermore, Shannon 

(1971) and Hawthorne & Faggiani (1979) have shown significant correlations between 

<[4]Ge-O> and <[4]V5+-O> distances and the electronegativity of the other cations 

bonded to the complex anion, suggesting an effect of the relative covalency of the 

surrounding cations on mean bond-length.  

It is significant that no work on the variation in mean bond-lengths has examined the 

effect of more than one of these factors on the data considered. Moreover, the size of 

the datasets considered has usually been small and focused on the structures of 

interest to the author(s). I have established a very large dataset of bond lengths that can 
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be the basis of a much more comprehensive examination of the variation in both 

individual and mean bond-lengths than has been done in the past. Data have been 

gathered for 462 cation configurations, i.e., for 135 cations in all their observed 

coordination numbers. There seems to be a disproportionate amount of time spent on 

determining crystal structures and the understanding of the general factors that drive 

their atomic arrangement and stability. Only a handful of configurations have been 

examined, and these generally involve highly-charged cations in low coordination 

numbers (e.g., [4]Si4+-O, Baur 1971;  [4]P5+-O, Baur 1974, Huminicki & Hawthorne, 2002;  

[3]B3+-O and [4]B3+-O, Hawthorne et al., 1996; [4]S6+-O, Hawthorne et al., 2000). Several 

hundred configurations have not yet been examined, and those that have been 

examined have used smaller data sets than are now available, and can now be further 

examined.  

Obviously the amount of work involved here is huge and is not feasible to be done in 

this thesis. In the next chapter, I examine bond lengths for alkali-metal and alkaline-

earth-metal ions bonded to O2-, a total of 84 configurations. The work in the next 

chapter is only a preliminary examination of the data, but it is immediately apparent that 

the factors affecting variations in bond lengths and mean bond-lengths are more 

complicated than has hitherto been realized. 
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4.2 Synopsis  

Bond-length distributions have been examined for 55 configurations of alkali-metal and 

29 configurations of alkaline-earth-metal ions, for 4859 coordination polyhedra and 

38,594 bond distances (alkali metals) and for 3038 coordination polyhedra and 24,487 

bond distances (alkaline-earth metals).  

 

4.3 Abstract 

Bond-length distributions have been examined for 55 configurations of alkali-metal ions 

and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 

coordination polyhedra and 38,594 bond distances (alkali metals) and for 3038 

coordination polyhedra and 24,487 bond distances (alkaline-earth metals). Bond lengths 

generally show a positively-skewed Gaussian distribution that originates from the 

variation in Born repulsion and Coulomb attraction as a function of interatomic distance. 

The skewness and kurtosis of these distributions generally decrease with increasing 

coordination number of the central cation, a result of decreasing Born repulsion with 

increasing coordination number. We confirm the following minimum coordination 

numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but 

note that some reported examples are the result of extensive dynamic and/or positional 
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short-range disorder and are not ordered arrangements. Some distributions of bond 

lengths are distinctly multi-modal. This is commonly due to the occurrence of large 

numbers of structure refinements of a particular structure type in which a particular 

cation is always present, leading to an over-representation of a specific range of bond 

lengths. Outliers in the distributions of mean bond-lengths are often associated with 

anomalous values of atomic displacement of the constituent cations and/or anions. For 

a sample of [6]Na+, the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with <[6]Na+-O2-

> (R2 = 0.57), suggesting that the mean bond-length is correlated with 

vibrational/displacement characteristics of the constituent ions for a fixed coordination 

number. Mean bond-lengths also show a weak correlation with bond-length distortion 

from the mean value in general, although some coordination numbers show the widest 

variation in mean bond-length for zero distortion, e.g., Li+ in [4]- and [6]-coordination, 

Na+ in [4]- and [6]-coordination. For alkali-metal and alkaline-earth-metal ions, there is a 

positive correlation between cation coordination number and the grand mean incident 

bond-valence sum at the central cation, the values varying from 0.84 v.u. for [5]K+ to 1.06 

v.u. for [8]Li+, and from 1.76 v.u. for [7]Ba2+ to 2.10 v.u. for [12]Sr2+. Bond-valence 

arguments suggest coordination numbers higher than [12] for K+, Rb+, Cs+ and Ba2+.  

Keywords: bond lengths, coordination number, alkali metals, alkaline-earth metals.  

 

4.4 Introduction 

Many crystal structures have been refined in the past 100 years, and a large amount of 

information concerning interatomic distances in the solid state is available. There are 
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many studies of bond-length distributions for specific pairs of ions, notably for cations 

bonded to oxygen (e.g., Baur, 1971 (Si); Burns et al., 1997 (U); Hawthorne et al., 2000 

(S); Schindler et al., 2000 (V); Hawthorne & Huminicki, 2002 (Be); Huminicki & 

Hawthorne, 2002 (P); Mills & Christy, 2013 (Te); Majzlan et al., 2014 (As)). However, 

many of these studies have focused on subsets of the available information, both with 

regard to the number of ions and coordination numbers, and to the amount of data 

available for each example. We have examined the distribution of bond lengths for 135 

ions bonded to oxygen in 462 configurations using 180,331 bond lengths extracted from 

9367 refined crystal structures; these data involve most ions of the periodic table and all 

coordination numbers in which they occur.  Here, we report the bond-length distributions 

for 10 ions, the common alkali-metal ions (Li+, Na+, K+, Rb+ and Cs+) and alkaline-earth-

metal ions (Be2+, Mg2+, Ca2+, Sr2+ and Ba2+) in all observed coordination numbers where 

bonded to O2- for a total of 63,081 bond lengths in 7897 polyhedra from 4258 refined 

crystal structures. An advantage of working with a large number of ion pairs and a large 

amount of data is that it allows examination of subtle differences between the shapes of 

various distributions (e.g., bond-length distributions, mean-bond-length distributions) for 

various configurations of ions, which reflect differences in their bonding behaviour. 

These differences typically arise from either structural and/or electronic effects, and are 

well known for extreme examples such as [6]-coordinated Cu2+ and [6]-, [7]- and [8]-

coordinated U6+; however, more subtle deviations from unimodality could be expected 

for the bond-length distributions of other ion configurations that are involved in related 

electronic or structural effects. Our motivation for this work is twofold: (1) The factors 

that affect bond distances are of continuing interest to all who work on crystal structures 
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and their properties, and a comprehensive analysis of all the data should lead to 

increased understanding of those factors. Here, we give a preliminary examination of 

the alkali-metal ions and alkaline-earth-metal ions in all observed coordination numbers 

where bonded to O2-, and make our complete dataset available for future more detailed 

work. (2) A comprehensive knowledge of the observed variation in bond lengths is 

critically important in assessing the validity of computational results on possible atomic 

arrangements (e.g., Richardson, 2013) and identifying unusual stereochemical features 

in newly solved or refined crystal structures.  

 

4.5 Definitions 

In the interest of clarity, we define certain terms that we use in the following text. We 

make no claims of generality; these are merely working definitions.  

Chemical bond: There is no rigorous definition of a chemical bond that is useful in the 

context of the present work, which deals with some hundreds of thousands of observed 

interatomic distances. The decision on whether or not a specific interatomic distance 

corresponds to a chemical bond is made in terms of the local environment of the 

constituent atoms, e.g., is the distance consistent with a specific coordination number of 

the central ion, and is the valence-sum rule (Brown, 2002) reasonably well-satisfied for 

the constituent ions? These are the criteria that are generally used for the listing of bond 

lengths in crystal-structure papers. 

Coordination number: the number of monoatomic counterions bonded to an ion.  
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Coordination polyhedron: The solid figure defined by the positions of the monoatomic 

counterions directly attached to a central ion.  

Ion configuration: A unique arrangement of ion type and coordination number. 

Typical distribution: A distribution that is smooth and positively skewed, as for [6]Na+ 

(Fig. 4.1).
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Figure 4.1 A typical distribution of bond lengths, shown for [6]Na+ bonded to O2- (n = 

5532). 
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4.6 Coordination polyhedra  

4.6.1 Coordination polyhedra with the same coordination number 

Most coordination numbers may show more than one coordination polyhedron. For 

example, [4]-coordination may be tetrahedral or square planar, [5]-coordination may be 

trigonal bipyramidal or square pyramidal, [6]-coordination may be octahedral or trigonal 

prismatic. However, within the bond-valence model (Brown, 2002), differences in 

angular arrangement of counterions have no effect on the valence sums, and hence we 

do not differentiate between different spatial configurations of coordination polyhedra 

with the same coordination number.   

 

4.6.2 The longest bond 

The determination of coordination number depends on how one defines a chemical 

bond (see “definitions” section). It is fortunate that for many (if not most) crystal 

structures, there is a general consensus as to the coordination numbers observed. Thus 

rutile has Ti4+ in [6]-coordination and O2- in [3]-coordination, and quartz has Si4+ in [4]-

coordination and O2- in [2]-coordination. For cations making a small number of bonds to 

their counterions, the determination of the coordination polyhedron is usually 

straightforward, and the coordination number can be assumed with confidence (e.g., for 

Mg2+, Fe2+, Si4+). However, making a decision on what is the longest bond for cations 

making a large number of bonds to their counterions is often less straightforward.  

We examined the bond-length distributions for [3] + 1 (the latter being the fourth-

shortest distance) and [4]-coordinated Li+, Be2+, B3+, Na+ and S6+ to get a sense of the 
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gap between the three shortest distances and the fourth distance for the coordination 

numbers [3] and [4]. Fig. 4.2a shows the ratio of the gap between the third- and fourth-

shortest distances, and the mean bond-length for the three shortest distances: (l4 – 

l3)/[(l1 + l2 + l3)/3] as a kernel density plot1. For the coordination polyhedra we defined as 

[4], we observe a regular distribution with a mean value of 0.104 and minimum and 

maximum values of 0.000 and 0.333, respectively. For [3] + 1, the mean ratio is 1.056 

and the minimum and maximum values are 0.198 and 2.521, respectively. The 

distributions of the data are strikingly different, and for [3]- and [4]-coordinated Li+, Be2+, 

B3+, Na+ and S6+, suggest that the fourth-longest interatomic distance can be considered 

as bonded if (l4 – l3)/[(l1 + l2 + l3)/3] < 0.333 (Fig. 4.2a). We give analogous data for 

coordination numbers [8]+1 and [9] in Fig. 4.2b and [13]+1 and [14] in Fig. 4.2c; in Fig. 

4.2b, we see a slight increase in the overlap between the distributions for [8]+1 and [9], 

a trend that continues for [13]+1 and [14] in Fig. 4.2c. Fig. 4.2 shows that, for higher 

coordination numbers, the determination of the longest bond is somewhat more 

ambiguous, but still fairly reliable in most cases. 

  

                                                           
1 A kernel-density estimate shows the same distribution as a histogram. A histogram assigns an exact 

value to a piece of data, whereas a kernel-density estimate associates a variance with each piece of data 

and produces a much simpler plot. We use kernel-density estimates in this paper where we want to 

show several distributions on one figure, as several overlapping histograms are difficult to compare, 

whereas overlapping kernel-density estimates are visually more simple and much more easily compared. 
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Figure 4.2 Ratio of the gap between the (a) third- and fourth-, (b) eighth- and ninth-, (c) 

thirteenth and fourteenth-shortest interatomic distance and the mean bond-length of the 

(a) three, (b) eight, (c) thirteen shortest interatomic distances for coordination numbers 

(a) [3] and [4], (b) [8] and [9] and (c) [13] and [14]. Ions used are (a) Li+, Be2+, B3+, Na+ 

and S6+; (b) Na+, Ca2+, Y3+, Te4+, La3+; (c) K+, Rb+, Cs+, Ba2+. The lack of overlap 

between the two distributions of Fig. 4.2a suggests that the 4th shortest distance for ions 

described as [3] is non-bonding. In Figs. 4.2b-c, the increasing overlap between the two 

distributions shows that the determination of the exact coordination number for larger 

coordination polyhedra is more ambiguous. Sample sizes are (a) n[3]+1 = 41 and n[4] = 58 

coordination polyhedra; (b) n[8]+1 = 50 and n[9] = 50 coordination polyhedra; (c) n[13]+1 = 

50 and n[14] = 47 coordination polyhedra.
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4.6.3 Large coordination numbers 

What large coordination numbers can we encounter in crystal structures? In terms of 

oxygen-based structures, Shannon (1976) lists ionic radii for coordination numbers up 

to [12], except for Rb+ which he lists up to [14]. In different types of crystals, higher 

coordination numbers are common, particularly in Frank-Kasper phases. For example, 

A15 intermetallic alloys of the form A3B consist of [12]-coordinated B atoms and [14]-

coordinated A atoms, and Laves AB2 intermetallic phases involve [12]- and [16]-

coordinated atoms. In terms of oxygen-based structures, it is probable that only the 

alkali-metal and alkaline-earth-metal ions may have coordination numbers exceeding 

[12], and we will pay special attention to structures in which such coordination numbers 

may be possible. For these cations, attempting to determine the coordination number 

from a list of nearest-neighbour anions is usually ambiguous. Some cations form ill-

defined coordination polyhedra and require special attention. To this effect, we describe 

the procedure whereby we assign the coordination polyhedron of a cation, below 

(section 4.7.2).  

 

4.7 Methods  

The DVD-ROM version of the ICSD with FindIt, version 2010-2, was used for data 

collection for all ions bonded to oxygen. The collection of bond-length data was done on 

the basis of coordination polyhedra for all cations of the periodic table. A set of 

structures containing each ion pair of interest was accumulated for each cation. In these 

structure sets, only the coordination polyhedra of the cation of interest were evaluated. 
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The bonds in each coordination polyhedron were calculated and individually examined 

to ensure that only suitable entries were included. Valid coordination polyhedra were not 

discarded due to problems elsewhere in the structure that have no effect on the 

coordination polyhedron of interest.  

 

4.7.1 Selection criteria  

The following criteria were used to select structure refinements:  

(1) Publication date ≥ 1975; (2) R1 ≤ 6%; (3) the site of interest is fully occupied by the 

cation; (4) all bonds involve ions at fully occupied sites; (5) the cation and anion sites of 

interest show no positional disorder; (6) crystallographic data were measured at 

ambient conditions; (7) no data from powder, electron or synchrotron diffraction were 

included.  

 

4.7.2 Determination of coordination polyhedra 

The following guidelines were used to decide on the coordination polyhedron (and thus 

coordination number) of each cation treated. For most cations, the first few points were 

sufficient for a clear determination of the coordination number:  

(1) The cation is bonded only to O2-. 
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(2) In general, we assumed that all cation-anion bonds are shorter than the shortest 

cation-cation distance for the coordination number of interest2.  

(3) The ordered list of distances was examined for a hiatus in the increasing distances.  

(4) We examined the effect of different cation-coordination numbers on the anion 

coordination.  

(5) We compared the bond lengths with and without potential bonds to the data already 

gathered for the cation to see if the behaviour resembled that of one coordination 

number more than other. 

(6) After ~10% of the structures had been processed for a specific ion pair, we 

examined the files for different coordination numbers of the same cation for potential 

trends and inconsistencies.  

(7) We examined the chemical formula for the presence of unrefined hydrogen atoms. 

This was mostly relevant in locating weak bonds between the cation of interest and the 

O atom of an (H2O) group. Where hydrogen atoms were not located in the refinement, 

and such bonds seemed plausible, the data were discarded. 

(8) We plotted the structure to get a visual sense of any ambiguity. 

                                                           
2 There are notable exceptions to this criterion. For example, in the structure of RbLiO (Sabrowsky and 

Vogt, 1987), Rb+ is surrounded by six O2- ions with distances 2.897, 2.927 x2, 3.247 x2 and 3.488 Å, but 

the shortest Rb-Li distance is 2.916 Å, shorter than five of the six shortest Rb+-O2- distances. Another 

example occurs in RbNaO (Sabrowsky et al., 1985a); Rb+ is surrounded by six O2- ions with distances 

2.905, 3.066 x4 and 3.589 Å, but the shortest Rb-Na distance is 3.089 Å x4, very similar to the four 

intermediate length Rb+-O2- distances. Similar behaviour is shown by KNaO (Sabrowsky and Schroeer 

1982). However, this behaviour appears to be confined to mixed alkali-metal oxides.  
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(9) Very sparingly, we used bond-valence curves to determine whether the inclusion or 

omission of bonds gave better bond-valence sums. However, little weight was given to 

this method because (1) it is circular, and (2) some published bond-valence parameters 

were doubtful at the time of this evaluation. 

We plotted the bond-length frequency distributions for all ion configurations to identify 

obvious outliers that originated from (1) gross errors in the refinement, (2) errors in the 

ICSD entry, and/or (3) collection errors on our part. Arbitrary (often dynamic) limits were 

set for the lower and upper tails of the distribution of each ion configuration, whereby 

every entry with at least one bond below the former or above the latter was either (1) 

verified and confirmed in the original publication, or (2) discarded as an error. In 

particular, minerals may show considerable chemical zoning within individual grains and 

also significant grain-to-grain compositional differences, depending on details of 

paragenesis. Where this is the case, there may be significant differences between the 

actual composition of the crystal and that assumed for the crystal used to collect the X-

ray intensity data. Thus errors regarding site occupancy may occur (unless the 

composition of that grain is analyzed by electron- and ion-microprobe), leading to 

apparently anomalous bond-lengths. For entries with abundant data (e.g., Si4+ with over 

10,500 bond distances), the entries were verified in terms of increasing bond lengths for 

the lower cut-off, and decreasing bond lengths for the upper cut-off, until a reliable 

series of entries were confirmed with those bond lengths. For configurations with very 

little data (~3 or less coordination polyhedra), all entries were verified.  

Taking into account the large amount of crystal structures examined, it was generally 

safer to discard a doubtful entry than it was useful to have its bond-length information 
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included with reliable data, except where there was a paucity of bond lengths for the 

cation and coordination number(s) of interest.  

Gagné & Hawthorne (2015) found that the agreement with the valence-sum rule of 

Brown (2002) is better when including the longer bonds in higher coordination 

polyhedra. As we shall see later, this is the case for the alkali and alkaline-earth metals, 

and also for configurations involving lone-pair-stereoactive cations (ms. in prep.). Thus 

long bonds obtained from the collection procedure described above were included. 

This procedure resulted in 55 configurations involving 4859 coordination polyhedra and 

38,594 individual bond-lengths for the alkali metals, and 29 configurations involving 

3038 coordination polyhedra and 24,487 individual bond-lengths for the alkaline-earth 

metals. We make our complete dataset available for future more detailed work.  

 

4.8 Shape of the bond-length distributions 

Bond-length distributions commonly resemble a positively-skewed Gaussian 

distribution. The shape originates from the variation in Born repulsion and Coulomb 

attraction as a function of interatomic distance. Two useful statistical measures used to 

describe the shape of these distribution are skewness and kurtosis. Skewness is a 

measure of the asymmetry of the distribution about its mean, and can be positive (as in 

Fig. 4.1 for [6]Na+) or negative. Kurtosis is a measure of the distribution of data between 

the peak and the tails of the distribution: a high kurtosis indicates that the distribution 

has a sharper maximum and larger tails, and a low kurtosis indicates that the 

distribution has a rounder maximum and smaller tails. Thus important data that we 



250 

 

derive from the bond-length distributions determined here are mean bond-length, 

skewness and kurtosis. Deviations from this typical shape are frequent, and can be the 

result of structural and/or electronic effects that result in emergent bond-length 

constraints. Hence, we can gain insight into the reasons underlying the bonding 

behaviour of atoms from a visual inspection of their bond-length distributions, e.g., the 

familiar (4 + 2) bimodal distribution of bond lengths for octahedrally coordinated Cu2+ 

from the Jahn-Teller effect (Jahn & Teller, 1937), associated with the degenerate 

electronic ground-state of a d9 metal in a holosymmetric octahedral field.  

 

4.9 Effect of sampling 

4.9.1 Sample size 

A critical issue involved in the calculation of mean bond-length, skewness and kurtosis 

is whether the sample size (number of bond lengths) is sufficiently large to ensure a 

representative distribution. We examined this issue using the data of Fig. 4.1, 

calculating the mean bond-length, skewness and kurtosis for many different sample 

sizes and examining the values as a function of sample size compared with the values 

for the parent distribution (mean bond-length = 2.441 with a standard deviation of 0.112 

Å; skewness = 1.32, kurtosis = 3.25). The results are shown in Fig. 4.3. In the range 

5500 to 1000 bonds, the values of mean bond-length (Fig. 4.3a) and its standard 

deviation (Fig. 4.3b), skewness (Fig. 4.3c) and kurtosis (Fig. 4.3d)  varied between 

2.437-2.444 and 0.109-0.119 Å, 1.23-1.51 and 2.75-4.08, respectively; in the range 

1000 to 100, the values of mean bond-length and its standard deviation, skewness and 
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kurtosis varied between 2.433-2.446 and 0.104-0.122, 1.02-1.73 and 1.60-5.28, 

respectively; below 100, the values of skewness and kurtosis varied from 2.424-2.471 

and 0.078-0.159 Å, from -1.24 to 3.11 and from -1.49 to 11.72, respectively. Similar 

results were obtained (scaled by a factor of 6) by using polyhedra rather than individual 

bond-lengths. As a result of these large variations, we do not list skewness and kurtosis 

values for sample sizes of less than 100 bonds in this work, and we note that the values 

for sample sizes up to 1000 bonds may be associated with non-negligible error. We do 

list mean bond-lengths as this is important information for ongoing work on these 

materials, but we emphasize that the values listed may be adversely affected by small 

sample size.  
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Figure 4.3 The effect of sample size on (a) mean bond-length (b) standard deviation of 

the mean bond-length, (c) skewness, and (d) kurtosis. The dashed line shows the value 

for the parent distribution.
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4.9.2 The effect of outliers 

Values of skewness and kurtosis are very sensitive to the presence of outliers. For 

example, our dataset for [7]Cs+ (Fig. 4.S1aq) contains two coordination polyhedra with 

bonds longer than 3.75 Å, while the longest bond for the 8 other polyhedra varies in the 

range 3.3-3.5 Å. Calculating the skewness and kurtosis with and without the two 

polyhedra with bonds longer than 3.75 Å, we get values of skewness and kurtosis of 

1.51 and 3.04 (with) and 0.62 and -0.31 (without), respectively. Careful evaluation of the 

structure and of the probable longest bond (see section 4.6.2) has greatly reduced the 

adverse effect of outliers on skewness and kurtosis in our analyses, but one must be 

careful of this issue as a single errant data point for a confirmed structure can change 

the values considerably.  

 

4.9.3 Non-random sampling 

Another issue that can affect skewness and kurtosis is the occurrence of spikes in the 

distribution of bond lengths due to extensive work on specific structure types. A 

prominent example is shown in Fig. 4.4: the bond-length distribution for [6]Cr3+. There is 

a fairly typical distribution except for a prominent spike at 1.99 Å where ~70 distances 

lie above the trend of the general distribution. Examination of the data shows that these 

distances originate from Lenaz et al. (2004); these authors refined structures from the 

solid solution (Mg,Fe2+)Cr3+
2O4 with the spinel structure, and these contributed 11 

structures in which the Cr3+-O2- distances are symmetry-constrained to be identical in 
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each structure, providing 66 distances of ~1.99 Å and accounting for the spike in the 

distribution of Fig. 4.4. 
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Figure 4.4 Bond-length distribution for [6]Cr3+ bonded to O2- (n = 624). A spike of data is 

observed at 1.99 Å due to extensive work done on the spinel structure.
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Thus, sections 4.9.1 to 4.9.3 emphasize that the numerical values for skewness and 

kurtosis must be interpreted with care. While the presence of trends in skewness and 

kurtosis gives us structural information, the absence of such trends may be due to 

sampling issues. 

 

4.10 Results for the alkali metals 

Our collection and filtering criteria resulted in a combined sample size of 38,594 bonds 

and 4859 coordination polyhedra. Table 4.1 gives the 55 observed configurations, the 

mean bond-length and standard deviation, the minimum and maximum bond-length 

(and range), the skewness and kurtosis (where justified by sample size), and the 

number of bonds and coordination polyhedra for the 5 common alkali-metal ions. Fig. 

4.S1 gives all the bond-length distributions for the alkali metals; those with adequate 

sample sizes (as discussed above) are shown in Fig. 4.5. An important issue is the 

reliability of the data at the limits of its distribution, i.e., at the lowest and highest 

observed coordination numbers for each ion, and below we examine the data at the 

lower and upper limits of these distributions. 
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Table 4.1 Bond-length statistics for the 5 common alkali-metal ions 

Ion 
Coordination 

number 

Number 

of 

bonds 

Number of 

coordination 

polyhedra 

Mean 

bond-

length 

(Å) 

Standard 

deviation 

(Å) 

Range 

(Å) 

Maximum 

bond-

length (Å) 

Minimum 

bond-

length 

(Å) 

Skewness Kurtosis 

Li+ 3 12 4 1.913 0.040 0.113 1.984 1.871 -- -- 

4 1676 419 1.972 0.075 0.754 2.444 1.690 1.563 6.273 

5 455 91 2.108 0.161 0.858 2.673 1.815 1.265 1.362 

6 1038 173 2.178 0.137 0.866 2.692 1.826 1.293 1.996 

7 14 2 2.331 0.244 0.728 2.658 1.930 -- -- 

8 8 1 2.513 0.000 0.000 2.513 2.513 -- -- 

Total 3203 690  

Na+ 3 21 7 2.307 0.045 0.153 2.367 2.214 -- -- 

4 524 131 2.359 0.076 0.586 2.775 2.189 0.878 2.032 

5 710 142 2.413 0.108 0.808 2.968 2.160 1.455 3.522 

6 5520 920 2.441 0.112 0.926 3.055 2.129 1.317 3.246 

7 1351 193 2.541 0.180 1.002 3.180 2.178 0.723 -0.020 

8 1608 201 2.599 0.192 1.069 3.211 2.142 0.461 -0.197 

9 450 50 2.686 0.224 1.044 3.204 2.160 0.121 -0.879 

10 170 17 2.741 0.240 0.899 3.156 2.257 -0.063 -1.075 

12 252 21 2.795 0.182 0.950 3.272 2.322 0.053 -0.295 



258 

 

Total 10606 1682  

K+ 4 96 24 2.708 0.078 0.365 2.892 2.527 -- -- 

5 295 59 2.796 0.162 1.032 3.537 2.505 1.404 3.349 

6 714 119 2.828 0.177 1.140 3.587 2.447 1.299 2.268 

7 469 67 2.861 0.179 1.030 3.554 2.524 1.269 1.474 

8 2272 284 2.894 0.172 1.107 3.644 2.537 1.195 1.642 

9 2772 308 2.955 0.214 1.306 3.797 2.491 1.079 0.917 

10 2430 243 3.013 0.246 1.248 3.773 2.525 0.839 0.084 

11 957 87 3.089 0.290 1.181 3.793 2.612 0.550 -0.763 

12 2328 194 3.095 0.264 1.204 3.790 2.586 0.578 -0.535 

13 455 35 3.149 0.298 1.290 3.808 2.518 0.364 -0.834 

14 336 24 3.239 0.296 1.292 3.771 2.479 0.057 -0.929 

15 525 35 3.182 0.265 1.148 3.748 2.600 0.257 -1.164 

Total 13649 1479  

Rb+ 4 48 12 2.951 0.160 0.706 3.360 2.654 -- -- 

5 15 3 2.864 0.078 0.236 2.976 2.740 -- -- 

6 84 14 2.989 0.148 0.734 3.488 2.754 -- -- 

7 140 20 3.002 0.186 0.937 3.628 2.691 1.283 1.554 

8 480 60 3.033 0.190 1.055 3.711 2.656 1.030 1.236 

9 675 75 3.079 0.204 1.172 3.839 2.667 0.980 1.192 
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10 1080 108 3.146 0.244 1.171 3.890 2.719 0.858 0.081 

11 484 44 3.188 0.248 1.211 3.884 2.673 0.725 -0.242 

12 840 70 3.228 0.288 1.181 3.896 2.715 0.545 -0.663 

13 247 19 3.293 0.314 1.148 3.932 2.784 0.376 -1.163 

14 280 20 3.301 0.291 1.151 3.895 2.744 0.332 -0.938 

15 195 13 3.338 0.278 1.065 3.945 2.880 0.485 -0.934 

17 17 1 3.456 0.336 1.009 3.939 2.930 -- -- 

18 90 5 3.478 0.239 0.695 3.771 3.076 -- -- 

Total 4675 464  

Cs+ 6 102 17 3.124 0.139 0.702 3.568 2.866 0.922 1.040 

7 70 10 3.193 0.166 0.858 3.806 2.948 -- -- 

8 200 25 3.244 0.189 1.017 3.911 2.894 0.863 0.708 

9 432 48 3.251 0.181 1.052 3.882 2.830 0.656 0.186 

10 930 93 3.304 0.208 1.257 3.986 2.729 0.696 0.174 

11 748 68 3.333 0.226 1.136 4.023 2.887 0.630 -0.106 

12 1080 90 3.377 0.250 1.162 4.072 2.910 0.670 -0.437 

13 520 40 3.426 0.276 1.256 4.130 2.874 0.480 -0.571 

14 714 51 3.444 0.297 1.242 4.169 2.927 0.528 -0.764 

15 705 47 3.503 0.301 1.253 4.157 2.904 0.241 -0.953 

16 224 14 3.550 0.321 1.276 4.199 2.923 0.341 -0.870 
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17 68 4 3.530 0.326 1.069 4.060 2.991 -- -- 

18 648 36 3.570 0.277 1.243 4.195 2.952 -0.010 -0.807 

20 20 1 3.723 0.419 0.855 4.065 3.210 -- -- 

Total 6461 544  
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Figure 4.5 Bond-length distributions for the configurations of the alkali-metal ions 

bonded to O2- with a sample size of 100+ bonds: (a) [4]Li+, (b) [5]Li+, (c) [6]Li+, (d) [4]Na+, (e) 

[5]Na+, (f) [6]Na+, (g) [7]Na+, (h) [8]Na+, (i) [9]Na+, (j) [10]Na+, (k) [12]Na+, (l) [5]K+, (m) [6]K+, (n) 
[7]K+, (o) [8]K+, (p) [9]K+, (q) [10]K+, (r) [11]K+, (s) [12]K+, (t) [13]K+, (u) [14]K+, (v) [15]K+, (w) 
[7]Rb+, (x) [8]Rb+, (y) [9]Rb+, (z) [10]Rb+, (aa) [11]Rb+, (ab) [12]Rb+, (ac) [13]Rb+, (ad) [14]Rb+, 

(ae) [15]Rb+, (af) [6]Cs+, (ag) [8]Cs+, (ah) [9]Cs+, (ai) [10]Cs+, (aj) [11]Cs+, (ak) [12]Cs+, (al) 
[13]Cs+, (am) [14]Cs+, (an) [15]Cs+, (ao) [16]Cs+, (ap) [18]Cs+.
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Figure 4.6 Observed coordination numbers for the alkali-metal ions. Multi-modal 

distributions are identified.
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4.10.1 Observed coordination numbers  

Fig. 4.6 shows the variation of the coordination numbers for the alkali-metal ions. The 

minimum coordination number increases from [3] for Li+ and Na+ to [4] for K+ and Rb+ to 

[6] for Cs+, and there is a corresponding increase in the maximum coordination number 

from [8] to [20]. The number of coordination numbers also increases along the series, 

from 6 for Li+ to 15 for Rb+ and Cs+.  

 

4.10.1.1 Li+ 

Li+ has 6 coordination numbers from [3] to [8], with a strong preference for coordination 

number [4] (n = 419 coordination polyhedra). [3]Li+ is observed in only 4 coordination 

polyhedra in 4 structures: Li2Yb5O4(BO3)3 (Jubera et al., 2001); KLiO (Sabrowsky et al., 

1985b); RbLiO, Sabrowsky & Vogt, 1987); and LiBa(B9O15) (Pushcharovskii et al. 2002). 

The observed mean bond-lengths are 1.958, 1.891, 1.915 and 1.888 Å, respectively, 

and the incident bond-valence sums (using the parameters of Gagné & Hawthorne, 

2015) are 0.744, 0.825, 0.797 and 0.829 v.u., respectively. The displacement 

parameters for [3]Li+ in Li2Yb5O4(BO3)3 are an order of magnitude larger than those for 

Yb3+ and twice that of [4]Li+. Similarly, in LiBa(B9O15), Ueq for [3]Li+ is ~8 times Ueq for 

both the [3]B3+ and [4]B3+ cations (and the O2- anions). These results suggest significant 

(dynamic or static) positional disorder. However, in KLiO, Ueq for [3]Li+ is similar to the 

Ueq values for K+ and O2-, and there is no reason to question the [3]-coordination of Li+ 

in this structure.  
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[7]Li+ was found in only 2 coordination polyhedra (from two different structures) and [8]Li+ 

was found in only 1 coordination polyhedron. [8]Li+ was reported in Rb6LiPr11Cl16[SeO3]12 

(Lipp & Schieid, 2006) with 8 symmetrically equivalent bonds of length 2.513 Å giving 

an incident bond-valence sum of 0.835 v.u. with the parameters of Gagné & Hawthorne 

(2015). The Ueq value is 5 times that of its nearest-neighbour anions, all of which are 

equivalent, and twice that of the Rb+ cations in the structure. [7]Li+ has been reported in 

LiGd6O5(BO3)3 (Chaminade et al., 1999) and Li2(Mg,Cu)Cu2[Si2O6]2: (Horiuchi et al., 

1997), with mean bond-lengths of 2.337 and 2.325 Å and incident bond-valence sums 

of 1.021 and 1.067 v.u., respectively. Moreover, there are no significant hiati in the list of 

increasing bond-distances for each structure. In LiGd6O5(BO3)3, Ueq for Li+ is 3-4 times 

the values of the other atoms. In Li2(Mg,Cu)Cu2[Si2O6]2, Ueq for Li+ is 5 times the values 

of the other metal atoms and 3 times the values of the anions; moreover, the 

displacements for Li+ are very anisotropic. There is no alternative to Li+ in [7]- and [8]-

coordination in these structures, but it is apparent from the very large Ueq values that Li+ 

is “rattling around” in overly large holes in these structures (the cation is significantly 

displaced from the centre of the polyhedron). Although one might argue that the 

resultant observed mean bond-lengths are thus anomalous, Ueq values are generally 

correlated with coordination number and it is difficult to refute the suggestion that what 

we observe for [7]- and [8]-coordinated Li+ is just a (non-linear) extrapolation of 

behaviour at lower coordination numbers. This issue is discussed further in section 

4.13.3. 

 

4.10.1.2 Na+  
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Na+ is observed in 9 coordinations, from [3] to [12] excluding [11]. [6]Na+ is by far the 

most common coordination (n = 920), followed by [8]Na+ (n = 201) and [7]Na+ (n = 193). 

[3]Na+ (n = 7) has a very small spread in bond lengths, from 2.214 to 2.367Å, but this is 

a common feature we observe for all [3]-coordinated cations. The incident bond-valence 

sums are very low (0.70 v.u. on average); for example, in Na6CoO3 (Möller, 1998), the 

<[3]Na+-O2-> distance is 2.255 Å (the shortest of the 8 coordination polyhedra), and the 

incident bond-valence sum is 0.804 v.u. In this structure, the coordination of [3]Na+ is 

triangular with a <O2--Na+-O2-> angle of 117.2 and a slight pyramidal character, and the 

next-nearest O2- anion is at 3.57 Å, far beyond any significant bond-valence interaction. 

Thus the occurrence of Na+ in [3]-coordination seems established. For [12] coordination, 

the central cation and the coordinating anions generally show similar values of Ueq with 

no anomalous disorder.  

 

4.10.1.3 K+ 

K+ is observed in 12 different coordinations, from [4] to [15], with a preference for 

coordination numbers 9 (n = 308), 8 (n = 284) and 10 (n = 243). There are 24 

coordination polyhedra for [4]K and the central cation and the coordinating anions 

generally show similar values of Ueq with no anomalous disorder. The grand mean 

incident bond-valence for [4]K is 0.77 v.u. with a range of 0.53-0.92 v.u.  

 

4.10.1.4 Rb+ 
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Rb+ is observed in 14 coordinations from [4] to [18], excluding [16]. It favourably adopts 

coordination number 10 (n = 108), followed by coordination numbers 9 (n = 75) and 8 (n 

= 60). Despite little data, [4]Rb+ (n = 12) shows a typical distribution and the constituent 

atoms are well-behaved in most of the structure refinements. The grand mean incident 

bond-valence for [4]Rb+ is 0.57 v.u. with a range of 0.49-0.65 v.u. The following 

coordination numbers [15] (n = 13), [17] (n = 1), and [18] (n = 5) have mean incident 

bond-valence sums of 0.947, 1.002 and 0.912 v.u., respectively.  The Ueq values tend to 

be very high for the central cations in these structures. For example, in Rb5VONb14O38 

(Haddad & Jouini, 1997), Ueq of [18]Rb+ is 5-7 times those of the coordinating anions; in 

Rb10Ta29.2O78 (Fallon & Gatehouse, 1980), Ueq of [18]Rb+ is 15-20 times those of the 

coordinating anions; in Rb2V3P4O17 (Lii et al., 1990), Ueq of [17]Rb+ is ~3 times those of 

the coordinating anions. 

 

4.10.1.5 Cs+ 

Cs+ is observed in 14 coordinations, from [6] to [20] excluding [19], with a preference for 

coordination numbers 10 (n = 94) and 12 (n = 90). [6]Cs+ (n = 18) and [7]Cs+ (n = 10) 

show regular distributions despite limited data, and the central cations and the 

coordinating anions generally show similar values of Ueq with no anomalous disorder. 

For [20]Cs+, there are distances 3.210 Å ×8 and 4.064 Å ×12 with incident bond-valence 

sums of 0.886 v.u. for [8] and 1.029 v.u. for [20], and the Ueq value of the central Cs+ is 

~5 times those of the coordinating anions. 
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4.10.2 Grand mean bond-length as a function of coordination number  

Fig. 4.7a shows the variation in mean bond-length as a function of coordination number, 

and is given for all configurations regardless of sample size. The correlation is positive, 

and is surprisingly regular. Minor anomalies (e.g., [5]Rb+) can be attributed to a small 

sample size. We note that the slope of the variation for each ion in Fig. 4.7a decreases 

slightly with the increasing size of the cations.   

 

4.10.3 Range in bond length as a function of coordination number  

Fig. 4.7b shows the variation in the range of bond lengths as a function of coordination 

number. As the ranges are strongly dependent on sample size, we omitted data for 

configurations of less than 100 bonds. Although this criterion is sufficient to remove 

major outliers, the value for [12]Na+ is ~0.22 Å, smaller than expected from the general 

trend of Fig. 4.7b; the reason for this difference is not clear. There is a strong non-linear 

trend in Fig. 4.7b; the range in bond lengths is positively correlated with coordination 

number, and the range increases more rapidly at lower coordination numbers, and 

flattens out at higher coordination numbers.  

 

4.10.4 Skewness and kurtosis as a function of coordination number  

Figs. 4.7c and 4.7d show skewness and kurtosis as a function of coordination number, 

respectively, for the five alkali-metal ions. As skewness and kurtosis are highly 

influenced by the amount of data used in their calculation, the graphs only show values 
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for configurations with 100 bonds or more, as discussed above.  Fig. 4.7c shows a 

more-or-less linear decrease in skewness with increasing coordination number. Na+ 

shows a lower skewness for coordination [4] than would be expected from the trend, for 

reasons that are not clear, and the rate of decrease in kurtosis with increasing 

coordination number is greater than that for the other alkali-metal ions which show a 

surprisingly consistent trend (considering the sensitivity of skewness to sample size and 

outliers). Fig. 4.7d shows a well-developed trend of non-linear decrease in kurtosis as a 

function of coordination number for all the alkali-metal ions. The trend for Na+ is again 

somewhat less consistent than for the other ions, and the shape is similar to that 

exhibited for skewness (Fig. 4.7c).  
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Figure 4.7 Values of (a) grand mean bond-length, (b) bond-length range, (c) skewness, 

and (d) kurtosis for the different coordination numbers of the alkali-metal ions.
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4.11 Results for the alkaline-earth metals 

Our collection and filtering criteria resulted in a combined sample size of 24,487 bonds 

and 3038 coordination polyhedra. Table 4.2 gives the 29 observed configurations, the 

mean bond-length and standard deviation, the minimum and maximum bond-length 

(and range), the skewness and kurtosis (where justified by sample size), and the 

number of bonds and coordination polyhedra for the 5 common alkaline-earth-metal 

ions. Fig. 4.S2 gives all the bond-length distributions for the alkaline-earth metals; those 

with adequate sample sizes (as discussed above) are shown in Fig. 4.8. These ions are 

found in slightly more than half the number of configurations observed for the alkali 

metals (55), primarily because these ions are not observed in coordinations higher than 

[12], with the exception of Ba2+ (observed as [13] and [14]). 
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Table 4.2 Bond-length statistics for the 5 common alkaline-earth-metal ions 

Ion 
Coordination 

number 

Number 

of 

bonds 

Number of 

coordination 

polyhedra 

Mean 

bond-

length 

(Å) 

Standard 

deviation 

(Å) 

Range 

(Å) 

Maximum 

bond-

length 

(Å) 

Minimum 

bond-

length 

(Å) 

Skewness Kurtosis 

Be2+ 

 

3 24 8 1.550 0.018 0.081 1.587 1.506 -- -- 

4 644 161 1.637 0.040 0.346 1.887 1.541 1.988 8.529 

Total 668 169  

Mg2+ 

 

 

 

4 48 12 1.939 0.020 0.068 1.977 1.909 -- -- 

5 120 24 2.044 0.066 0.342 2.249 1.907 0.643 0.271 

6 2556 426 2.089 0.059 0.562 2.497 1.935 1.976 8.608 

8 56 7 2.255 0.122 0.568 2.582 2.014 -- -- 

Total 2780 469  

Ca2+ 

 

 

 

 

 

 

6 1266 211 2.371 0.069 0.637 2.847 2.210 1.636 5.908 

7 2009 287 2.448 0.133 1.016 3.140 2.124 1.828 4.607 

8 4152 519 2.498 0.151 1.027 3.176 2.149 1.430 2.739 

9 1035 115 2.559 0.196 0.956 3.197 2.241 1.247 0.939 

10 160 16 2.632 0.215 0.902 3.122 2.220 0.478 -0.400 

11 77 7 2.614 0.177 0.686 2.965 2.279 -- -- 

12 156 13 2.668 0.175 0.791 3.117 2.326 0.724 0.379 

Total 8855 1168  
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Sr2+ 

 

 

 

 

 

 

 

6 78 13 2.477 0.050 0.244 2.591 2.347 -- -- 

7 266 38 2.638 0.151 0.937 3.306 2.369 1.553 3.693 

8 904 113 2.656 0.163 1.019 3.368 2.349 1.711 3.740 

9 909 101 2.704 0.178 1.088 3.397 2.309 1.545 3.094 

10 500 50 2.769 0.213 1.033 3.399 2.366 0.962 0.456 

11 88 8 2.798 0.198 0.837 3.319 2.482 -- -- 

12 636 53 2.825 0.181 0.953 3.358 2.405 0.744 0.613 

Total 3381 376  

Ba2+ 

 

 

 

 

 

 

 

 

6 126 21 2.689 0.094 0.400 2.866 2.466 -0.404 -0.665 

7 147 21 2.792 0.135 0.855 3.369 2.514 1.133 2.916 

8 704 88 2.816 0.129 0.846 3.376 2.530 0.962 1.273 

9 1278 142 2.860 0.154 1.074 3.554 2.480 1.000 1.330 

10 1930 193 2.915 0.155 1.014 3.498 2.484 0.783 1.072 

11 902 82 2.944 0.181 1.023 3.612 2.589 0.667 0.074 

12 3624 302 2.965 0.152 0.988 3.624 2.636 1.239 1.951 

13 78 6 3.010 0.206 0.922 3.463 2.541 -- -- 

14 14 1 3.080 0.242 0.879 3.553 2.674 -- -- 

Total 8813 856  
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Figure 4.8 Bond-length distributions for the configurations of the alkaline-earth-metal 

ions bonded to O2- with a sample size of 100+ bonds: (a) [4]Be2+, (b) [5]Mg2+, (c) [6]Mg2+, 

(d) [6]Ca2+, (e) [7]Ca2+, (f) [8]Ca2+, (g) [9]Ca2+, (h) [10]Ca2+, (i) [12]Ca2+, (j) [7]Sr2+, (k) [8]Sr2+, (l) 
[9]Sr2+, (m) [10]Sr2+, (n) [12]Sr2+, (o) [6]Ba2+, (p) [7]Ba2+, (q) [8]Ba2+, (r) [9]Ba2+, (s) [10]Ba2+, (t) 
[11]Ba2+, (u) [12]Ba2+.
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Figure 4.9 Observed coordination numbers for the alkaline-earth-metal ions. Multi-

modal distributions are identified.

 

 

  



278 

 

4.11.1 Observed coordination numbers  

Fig. 4.9 shows the variation of the coordination numbers for the alkaline-earth-metal 

ions. The minimum and maximum coordination numbers increase with size, [3] and [4] 

for Be2+, [4] and [8] for Mg2+, [6] and [12] for Ca2+and Sr2+, and [6] and [14] for Ba2+. The 

number of coordination numbers also increases along the series, from 2 for Be2+ to 4 for 

Mg2+, 7 for Ca2+, 8 for Sr2+ and 9 for Ba2+.  

 

4.11.1.1 Be2+ 

Be2+ occurs in two coordination numbers, with a clear preference for coordination 

number [4] (n = 161) compared to its 3-coordinated form [3]Be2+ (n = 8). However, the 

coordination of [3] seems well-established for Be. For example, Leoni et al. (2005) 

report the structure of Ba3[Be5O8] with a Be atom [3]-coordinated at distances of 

1.545(9) and 1.561(5) Å ×2 with well-behaved Ueq values for both the central cation and 

the coordinating anions, and an incident bond-valence sum of 1.96 v.u. 

 

4.11.1.2 Mg2+  

Mg2+ occurs in 4 different coordination numbers from [4] to [8], excluding [7]. [6]Mg2+ is 

by far the most common coordination with n = 426 coordination polyhedra. [4]Mg2+ (n = 

12) has an apparent bimodal distribution, which is clearly an artifact of a small number 

of bond lengths that show little spread. However, the coordination [4] must be 

considered as well-established for Mg2+ as structure refinements show well-behaved 
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cations and anions. The grand mean incident bond-valence for [8]Mg  is 1.93 v.u. with a 

range of 1.78-2.20 v.u. The structures containing [8]Mg2+ look well-refined, although Ueq 

values are usually somewhat higher than those of the anions, suggesting significant 

displacement. This effect was also suggested by Shannon & Rossman (1992) with 

regard to deviations of measured and calculated dielectric constants for [8]Mg2+. 

 

4.11.1.3 Ca2+ 

Ca2+ occurs in 7 different coordinations from [6] to [12] with a preference for 

coordination number [8] (n = 519). [6]-coordinated Ca2+ is well-established (n = 211). 

The lowest observed <[6]Ca2+-O> distance is 2.254(4) Å in Ba3CaRu2O9 (Wilkens & 

Müller-Buschbaum, 1991); this seems very short compared to the grand <[6]Ca2+-O> 

distance of 2.371(69) Å (Table 4.2), but there is no reason to reject this value based on 

the structure refinement. There are few examples of the higher coordination-numbers: 

[10]Ca (n = 16), [11]Ca (n = 7) and [12]Ca (n = 13). The grand mean incident bond-valence 

for [12]Ca is 2.03 v.u. with a range of 1.43-2.50 v.u. The lowest values are for 

Ca3Zn4Ti16O38 (Gatehouse & Grey, 1983) and CaMg2Al16O27 (Iyi et al., 1995). 

Ca3Zn4Ti16O38 has Ca-O distances 2.762(5) ×6 and 2.792 (5) ×6 Å with a mean value of 

2.777 Å and a displacement parameter that is 3-10 times those of the other atoms in the 

structure. CaMg2Al16O27 has Ca-O distances 2.773(8) ×6 and 2.799 (21) ×6 Å with a 

mean value of 2.786 Å and a displacement parameter that is 2-6 times those of the 

other atoms in the structure. Thus the low incident bond-valence sums are associated 

with central cations that show very large displacements. The highest values are for 

CaCu3Ge4O12 (Ozaki et al., 1977) and CaCu3Ge4O12 (Chenevas et al., 1975). 
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CaCu3Ge4O12 has Ca-O distances of 2.549(4) ×12 Å and a displacement parameter that 

is similar to those of the other atoms in the structure. CaCu3Ge4O12 has Ca-O distances 

of 2.562(3) ×12 Å and a displacement parameter that is similar to those of the other 

atoms in the structure. Thus the high incident bond-valence sums are associated with 

central cations that show displacements similar to those of the other atoms in the 

structure.  

 

4.11.1.4 Sr2+ 

Sr2+ occurs in 7 different coordinations from [6] to [12] with a preference for coordination 

numbers [8] (n = 113) and [9] (n = 101). An unusual coordination for Sr occurs in the 

crystal structure of β-Sr10Ga6O19 (Kahlenburg, 2002), where one of 11 

crystallographically distinct Sr atoms has bond lengths of 2.425(8) ×2, 2.471(9) ×2 and 

3.350(9) ×2 Å; is Sr2+ [4]- or [6]-coordinated? For [4]-coordination, the four anions do not 

form a tetrahedron and the Sr2+ cation lies between  the two closest anions with an O2--

Sr2+-O2- angle of 175.4o. For [6]-coordination, the Sr2+ cation lies almost in the plane of 

four of the anions that form a face of the polyhedron. The sums of the incident bond-

valences are ~1.5 v.u. for both [4]- and [6]-coordination. The two next-nearest anions 

are 3.519 Å away from the central Sr2+, but there are two Ga3+ atoms at 3.410 Å. Thus 

the coordination in this particular case is uncertain, and the coordination polyhedron 

was omitted from the data for Sr2+. 

 

4.11.1.5 Ba2+ 
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Ba2+ occurs in 9 different coordinations from [6] to [14] with a clear preference for 

coordination number [12] (n = 302). There are few examples of coordination numbers > 

[12]: [13]Ba2+ (n = 6) and [14]Ba2+ (n = 1). For [13]Ba2+, the sums of the incident bond-

valences are in the range 1.85-2.37 v.u., and for [14]Ba2+, the sum of the incident bond-

valences is 1.98 v.u. 

 

4.11.2 Grand mean bond-length as a function of coordination number  

Fig. 4.10a shows the variation in mean bond-length as a function of coordination 

number, and is given for all configurations regardless of sample size. The correlation is 

positive and very regular. The slope of the variation for each ion of Fig. 4.10a decreases 

slightly with the increasing size of the cations, although less than is the case for the 

alkali-metal ions.  

 

4.11.3 Range in bond length as a function of coordination number  

Fig. 4.10b shows the variation in the range of bond lengths as a function of coordination 

number, omitting data for configurations of less than 100 bonds. There is a strong non-

linear trend in the data; the range increases more rapidly at lower coordination 

numbers, [4]-[7], but levels out at ~[8] (~0.95 ± 0.1 Å) and is fairly constant thereafter, 

aside from a decrease for the higher coordination of Ca2+ (probably due to few data). 

The initial increase in range for smaller coordination numbers is steeper for the alkaline-

earth metals than for the alkali metals (Fig. 4.7b) with mean slopes of 0.37 for Mg2+, 

Ca2+ and Ba2+ up to [7], compared to ~0.15 for Na+ and Cs+ up to [8]  
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4.11.4 Skewness and kurtosis as a function of coordination number  

Figs. 4.10c and 4.10d summarize the variation of skewness and kurtosis as a function 

of coordination number for the common alkaline-earth-metal ions, respectively. There is 

a more-or-less linear decrease in skewness with increasing coordination number. 

Abnormally low values of skewness (and kurtosis) are obtained for the bond-length 

distributions of [5]Mg2+ and [6]Ba2+, but are likely due to insufficient data. The slopes of 

these graphs are generally steeper for the alkaline-earth metals than for the alkali 

metals, meaning that the progressive “flattening” of the distributions described for the 

alkali metals is less developed for the alkaline-earth metals.  

There is a systematic decrease in kurtosis with coordination number for the alkaline-

earth-metal ions (Fig. 4.10d), with the same anomalies as for skewness (Fig. 4.10c). 

The resemblance of the trends for skewness and kurtosis is striking, as is the case for 

the alkali-metal ions (Figs. 4.7c and 4.7d). The values of skewness and kurtosis arising 

from the bond-length distributions of each family are strongly correlated (alkali metals: 

R2 = 0.75; alkaline-earth metals: R2 = 0.74). 
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Figure 4.10 Values of (a) grand mean bond-length, (b) bond-length range, (c) 

skewness, and (d) kurtosis for the different coordination numbers of the alkaline-earth-

metal ions. 
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4.12 General discussion of bond-length distributions 

4.12.1 Skewness 

As noted in section 4.8, bond-length distributions are expected to resemble a positively-

skewed Gaussian distribution, and this shape originates from the variation in Born 

repulsion and Coulomb attraction as a function of interatomic distance. In particular, as 

the coordination number of a cation increases, the mean bond-length increases and the 

slope of the Born repulsion curve decreases as the mean cation-anion distances 

increase. This makes the potential energy curve more symmetrical about the mean 

bond-length and hence the skewness of the distribution of bond lengths should 

decrease with increasing coordination number. Inspection of Figs. 4.7c and 4.10c 

shows that this is generally the case for the alkali metals and the alkaline-earth metals.  

 

4.12.2 Kurtosis 

As noted above, kurtosis is a measure of the distribution of data between the peak and 

the tails of the distribution: a high kurtosis indicates that the distribution has a sharper 

maximum and larger tails, and a low kurtosis indicates that the distribution has a 

rounder maximum and smaller tails. Fig. 4.11 shows a kernel-density estimation of the 

bond-length distributions of coordination numbers [6] to [9] for Na+. This example shows 

decreases in both kurtosis and skewness from coordination [6] to [9]: kurtosis values 

are 1.317, 0.723, 0.461 and 0.121, and skewness values 3.246, -0.020, -0.197 and -

0.879, respectively. Fig. 4.11 shows that the major contributor to kurtosis is the shape of 

the maximum of the distribution, rather than the length of the tail, as the tails and the 
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minimum and maximum bond-lengths are fairly similar for all coordination numbers, but 

the flattening of the distribution is very notable with increasing coordination number. 

Figs. 4.7d and 4.10d show that kurtosis decreases with increasing coordination number 

for the alkali metals and the alkaline-earth metals; note that the main deviations from 

this trend are the same as those for the skewness plots, reinforcing the suggestion that 

small sample size may be the cause of these deviations.  

For low coordination numbers, a change in bond valence corresponds to a relatively 

small change in bond length because of the steepness of the bond-valence—bond-

length curve at short bond-lengths. For high coordination numbers, a change in bond 

valence corresponds to a large change in bond length because of the shallowness of 

the bond-valence—bond-length curve at long bond-lengths. Thus ions with low 

coordination numbers show a lower range in bond lengths whereas ions with high 

coordination numbers show a much greater range in bond lengths (Figs. 4.7b, 4.10b), 

leading to much flatter distributions (i.e., with lower kurtosis) at higher coordination 

numbers.  
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Figure 4.11 Kernel-density estimation of the bond-length distributions of the 

coordination numbers [6] to [9] for Na+. The plot shows that changes in skewness and 

kurtosis values are primarily due to a change in the shape of the maximum of the bond-

length distribution. 
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4.12.3 Multi-modal distributions 

Several cations show multi-modal distributions of their bond lengths. The most 

prominent bimodal distribution is for [8]Ca2+ and shows in both the distribution of 

individual bond-lengths (Fig. 4.8f) and mean bond-lengths (Fig. 4.12a). For the 

distribution of individual bond-lengths, there is an intense maximum at 2.49 Å and a 

less-intense maximum at 2.35 Å; for the distribution of mean bond-lengths, there is an 

intense maximum at 2.49 Å and a less-intense maximum at 2.42 Å. Inspection of the 

data with <[8]Ca2+-O2-> less than 2.44 Å (79 polyhedra) shows that there are 33 garnet 

structures and 27 vesuvianite structures in this range. The distribution of individual 

[8]Ca2+-O2- distances from polyhedra with a mean bond-length of 2.44 Å or less are 

shown in Fig. 4.12b, and the distribution individual [8]Ca2+-O2- distances from polyhedra 

with a mean bond-length greater than 2.44 Å are shown in Fig. 4.12c. Fig. 4.12b also 

shows the kernel density estimation of the mean bond-length distribution of its 

constituent polyhedra. Removal of the data of Fig. 4.12b from the overall distribution of  

[8]Ca2+-O2- distances gives a single-mode distribution (Fig. 4.12c). The kernel density 

estimations for all three distributions are shown in Fig. 4.12d, and indicate how the 

bimodal distribution of Fig. 4.8f arises. In the garnet and vesuvianite structures, the 

bond lengths are split into two equal populations, four larger than the mean and four 

smaller than the mean. As shown in Fig. 4.12d, the population of larger distances 

merges with the overall distribution of bond lengths and does not materially alter its 

overall shape, whereas the population of smaller distances lies toward the lower edge of 

the overall distribution and gives rise to a shoulder on that distribution.  
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Multi-modal distributions are observed for the following configurations: [10]Na+,[12]K+, 

[13]K+,[14]K+, [15]K+, [18]Cs+, [6]Ca2+ and [8]Ca2+. Other configurations may show deviations 

from unimodal behaviour, although this is often unclear, possibly due to too few data 

and/or significant overlap: [4]Na+, [15]Rb+, [9]Cs+, [10]Cs+, [12]Cs+, [10]Ba2+. What the 

example of [8]Ca2+ makes clear is that one must examine the effects of non-random 

sampling (by large numbers of data on a specific structure type) before ascribing such 

an effect to any crystal-chemical mechanism. 
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Figure 4.12 Mean bond length distribution of [8]Ca2+ bonded to O2- (a). Bond-length 

distribution for [8]Ca2+ bonded to O2- are shown for configurations with a mean bond 

length (b) less or equal to 2.44 Å (superimposed with its mean bond-length kernel-

density estimation) (n = 568), and (c) greater than 2.44 Å (n = 3584). The effect of the 

former on the aggregate bond-length distribution is shown via kernel-density estimation 

(d). 
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Figure 4.13 Bond-valence sum as a function of coordination number for the (a) alkali-

metal and (b) alkaline-earth-metal ions using the parameters of Gagné & Hawthorne 

(2015). 
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4.12.4 Bond valences 

Figs. 4.13a,b show the mean bond-valence sum as a function of coordination number, 

using the parameters of Gagné & Hawthorne (2015) for those alkali-metal and alkaline-

earth metal configurations of 100 bonds or more. There is a general increase in mean 

bond-valence sum with increasing coordination number. This increase is much larger 

with smaller coordination numbers and tends to level off at larger (> [9]) coordination 

numbers. In the bond-valence model, the incident bond-valence sum for any ion is 

(approximately) equal to the ion valence, and there should be no correlation between 

incident bond-valence sum and coordination number of the ion. As indicated in Fig. 

4.13, this is not the case.  Moreover, this correlation is much more exaggerated when 

using the bond-valence parameters of other authors, as Gagné & Hawthorne (2015) 

added a coordination-based optimization factor in their method of derivation of bond-

valence parameters. However, they were not able to eliminate the correlation between 

mean bond-valence sum and coordination number for all ions. Correlations of the type 

shown in Fig. 4.13 have been noted in the past, but have always been attributed to a 

limitation in the form of the bond-valence equation used. In particular, it has been 

suggested (e.g., Wander et al., 2015) that the exponential equation of Brown & 

Altermatt (1985) has too shallow a slope at both short and long bond distances, 

resulting in short (long) bonds seeming weaker (stronger) than they are. However, this 

effect is not limited to the equation of Brown and Altermatt (1985). Gagné & Hawthorne 

(2015) tested a series of two- and three-parameter equations, and found that any 

equation that gives a good fit to the data suffers from the same “curvature problem” at 

short and long bond-distances. Although the origin of this problem is not clear, this 



292 

 

shows that the problem may not lay in the parameterization of the relation, but possibly 

in a breakdown of the model itself in structures with unusual coordinations. This issue 

requires further investigating. 

 

4.12.5 Ions with coordination numbers possibly exceeding [12] 

Gagné & Hawthorne (2015) give bond-valence parameters for 4 ions to which they 

assign coordinations higher than [12]: K+, Rb+, Cs+ and Ba2+. Table 4.3 lists their values 

of the RMSD from the valence-sum rule obtained from their dataset for each ion and 

calculated using the equation of Brown & Altermatt (1985): 

Sij = exp[(Ro – Rij)/B]  (eq. 4.1) 

where Rij is the bond length between ions i and j, Sij is the corresponding bond valence, 

and Ro and B are the bond-valence parameters. Here, we derive new bond-valence 

parameters using a hard cut-off of 12 bonds for those configurations we observe in 

coordination numbers greater than [12]. These are also listed in Table 4.3 with their 

associated RMSD values. There are minor changes in the Ro parameter for K+ and 

Ba2+ (2.047 to 1.985, and 2.223 to 2.208 Å, respectively) but there are major differences 

for Rb+ and Cs+ (1.993 to 1.780 and 2.305 to 1.966 Å, respectively). In all cases, the B 

parameter increases to offset the decrease in Ro: for K+ , 0.398 to 0.425 Å; for Rb+ 

0.478 to 0.577 Å; for Cs+ 0.411 to 0.561 Å; and for Ba2+ 0.406 to 0.417 Å. It is no 

surprise that Ro decreases as some of the longer distances are left out, as Gagné & 

Hawthorne (2015) showed that Ro is correlated with the mean bond-length of an ion (as 
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well as other physical observables such as ionization energy). To compensate for the 

decrease in Ro, the B parameter adjusts to higher values. 
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Table 4.3 Bond-valence parameters for large alkali and alkaline-earth metals calculated 

with and without a hard cut-off of 12 bonds  

Ion Ro (Å) B (Å) 
RMSD 

(v.u.) 

K+ 2.047 0.398 0.164 

K+ (cn ≤ 12) 1.985 0.425 0.157 

Rb+ 1.993 0.478 0.150 

Rb+ (cn ≤ 12) 1.780 0.577 0.148 

Cs+ 2.305 0.411 0.138 

Cs+ (cn ≤ 12) 1.966 0.561 0.138 

Ba2+ 2.223 0.406 0.217 

Ba2+ (cn ≤ 12) 2.208 0.417 0.215 
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We may assess whether or not interatomic distances greater than those used for [12] 

coordination are valid in the following ways: [1] verify if the mean bond-lengths and 

bond-valence parameters still follow established trends (e.g., with ionization energy) 

without the longer bonds; [2] verify the valence-sum rule for the bond-valence 

parameters obtained with and without the cut-off indirectly via the anion bond-valence 

sums for a set of structures containing these ions; [3] run computational simulations as 

to whether electron density is observed between the ions at longer distances. Option [3] 

has no experimental verification and is not considered here.  

[1] We plotted mean bond-length as a function of Ro for the 5 alkali-metal ions for the 

values including and excluding bonds with a hard cut-off of [12]. Including the bonds, R2 

= 0.94, whereas excluding these bonds, R2 drops to 0.79. Plotting Ro/(mean bond-

length) against ionization energy (Gagné & Hawthorne, 2015), R2 (inclusive) = 0.35, 

whereas R2 (exclusive) = 0.01.  

[2] We compared the bond-valence sums of the anions for 19 structures containing K+, 

Rb+, Cs+ and Ba2+, which we originally described in coordinations greater than [12], for 

the following two cases: (1) using the parameters of Gagné & Hawthorne (2015) and no 

cut-off, and (2) using new bond-valence parameters (above) that were derived with a 

cut-off of coordination [12], and doing the evaluation on the 19 structures using a cut-off 

of [12]. We find that both sets of parameters, used in the way they were derived, give 

exactly the same result for the anion bond-valence sums (RMSD = 0.128 v.u., or 6.4% 

from the nominal oxidation state).  
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Following [1] and [2], we conclude that the notion of counting bonds up to a maximum of 

12 seems unjustified. We can find no strong argument against the occurrence of higher 

coordination numbers. 

 

4.13 Mean bond-length distributions  

Figs. 4.S3 and 4.S4 give all mean bond-length distributions for the alkali-metal and 

alkaline-earth-metal ions; those with adequate sample sizes (below) are shown in Figs. 

4.14 and 4.15.  Tables 4.4 and 4.5 give the grand mean bond-length and standard 

deviation, the minimum and maximum mean bond-length (and range), the skewness 

and kurtosis of each distribution (where justified by sample size), and the number of 

coordination polyhedra and coordination numbers for all configurations for the alkali and 

alkaline-earth metals. A minimum sample size was determined in the same way as 

above for [6]Na+, less than which the values of skewness and kurtosis have little 

significance; this threshold was set to 100 coordination polyhedra, and is relatively high 

due to the wide range of mean bond-lengths observed for these families.   
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Table 4.4 Mean-bond-length statistics for the 5 common alkali-metal ions 

Ion 
Coordination 

number 

Number of 

coordination 

polyhedra 

Grand 

mean 

bond-

length (Å) 

Standard 

deviation 

(Å) 

Mean 

bond-

length 

range 

(Å) 

Maximum 

mean 

bond-

length 

(Å) 

Minimum 

mean 

bond-

length 

(Å) 

Skewness Kurtosis 

Li+ 3 4 1.913 0.032 0.070 1.958 1.888 -- -- 

4 419 1.972 0.039 0.287 2.162 1.875 0.803 2.171 

5 91 2.108 0.050 0.214 2.226 2.012 -- -- 

6 173 2.178 0.052 0.311 2.360 2.048 0.886 1.192 

7 2 2.331 0.008 0.012 2.337 2.326 -- -- 

8 1 2.513 -- -- 2.513 2.513 -- -- 

Na+ 3 7 2.307 0.045 0.112 2.360 2.248 -- -- 

4 131 2.359 0.049 0.285 2.537 2.252 0.784 0.937 

5 142 2.413 0.049 0.269 2.561 2.292 0.209 -0.034 

6 920 2.441 0.056 0.466 2.682 2.216 0.295 2.367 

7 193 2.541 0.056 0.313 2.718 2.404 0.423 0.021 

8 201 2.599 0.071 0.458 2.880 2.422 0.574 1.160 

9 50 2.686 0.065 0.382 2.936 2.553 -- -- 

10 17 2.741 0.054 0.183 2.830 2.647 -- -- 

12 21 2.795 0.074 0.254 2.940 2.686 -- -- 

K+ 4 24 2.708 0.056 0.234 2.852 2.618 -- -- 



298 

 

5 59 2.796 0.078 0.438 3.084 2.646 -- -- 

6 119 2.828 0.103 0.652 3.099 2.447 0.022 1.007 

7 67 2.861 0.064 0.295 3.009 2.715 -- -- 

8 284 2.894 0.053 0.299 3.081 2.781 0.619 0.462 

9 308 2.955 0.061 0.503 3.174 2.671 -0.003 2.167 

10 243 3.013 0.065 0.382 3.209 2.827 0.384 0.493 

11 87 3.089 0.066 0.306 3.242 2.936 -- -- 

12 194 3.095 0.092 0.543 3.337 2.794 -0.708 1.232 

13 35 3.149 0.094 0.327 3.293 2.966 -- -- 

14 24 3.239 0.068 0.288 3.374 3.085 -- -- 

15 35 3.182 0.064 0.246 3.332 3.086 -- -- 

Rb+ 4 12 2.776 0.634 2.252 3.018 0.765 -- -- 

5 3 2.864 0.040 0.078 2.899 2.821 -- -- 

6 14 2.989 0.084 0.286 3.122 2.836 -- -- 

7 20 3.002 0.083 0.371 3.213 2.842 -- -- 

8 60 3.033 0.058 0.260 3.182 2.922 -- -- 

9 75 3.079 0.064 0.321 3.287 2.966 -- -- 

10 108 3.142 0.064 0.302 3.279 2.977 -0.262 -0.405 

11 44 3.188 0.054 0.226 3.296 3.070 -- -- 

12 70 3.228 0.084 0.373 3.410 3.037 -- -- 
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13 19 3.293 0.042 0.138 3.350 3.212 -- -- 

14 20 3.301 0.061 0.235 3.400 3.164 -- -- 

15 13 3.338 0.110 0.337 3.545 3.208 -- -- 

17 1 3.456 -- 0.000 3.456 3.456 -- -- 

18 5 3.478 0.078 0.217 3.582 3.364 -- -- 

Cs+ 6 17 3.124 0.032 0.113 3.175 3.062 -- -- 

7 10 3.193 0.061 0.206 3.312 3.106 -- -- 

8 25 3.244 0.064 0.216 3.359 3.143 -- -- 

9 48 3.251 0.054 0.232 3.366 3.134 -- -- 

10 93 3.304 0.056 0.348 3.455 3.107 -- -- 

11 68 3.333 0.054 0.261 3.479 3.218 -- -- 

12 90 3.377 0.072 0.335 3.542 3.207 -- -- 

13 40 3.426 0.063 0.267 3.552 3.285 -- -- 

14 51 3.444 0.064 0.229 3.539 3.310 -- -- 

15 47 3.503 0.066 0.289 3.661 3.372 -- -- 

16 14 3.550 0.068 0.230 3.672 3.442 -- -- 

17 4 3.530 0.029 0.062 3.549 3.487 -- -- 

18 36 3.570 0.062 0.229 3.715 3.487 -- -- 

20 1 3.723 -- -- 3.723 3.723 -- -- 
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Table 4.5 Mean-bond-length statistics for the 5 common alkaline-earth-metal ions 

Ion 
Coordination 

number 

Number of 

coordination 

polyhedra 

Grand 

mean 

bond-

length 

(Å) 

Standard 

deviation 

(Å) 

Mean 

bond-

length 

range 

(Å) 

Maximum 

mean 

bond-

length (Å) 

Minimum 

mean 

bond-

length (Å) 

Skewness Kurtosis 

Be2+ 

 

3 8 1.550 0.012 0.031 1.566 1.535 -- -- 

4 161 1.637 0.017 0.114 1.719 1.605 1.744 6.011 

Mg2+ 

 

 

 

4 12 1.939 0.017 0.054 1.966 1.912 -- -- 

5 24 1.966 0.091 0.309 2.087 1.777 -- -- 

6 426 2.089 0.024 0.185 2.223 2.038 1.179 3.051 

8 7 2.255 0.035 0.080 2.284 2.203 -- -- 

Ca2+ 

 

 

 

 

 

 

6 211 2.371 0.034 0.217 2.471 2.254 -0.261 0.236 

7 287 2.447 0.038 0.225 2.591 2.366 0.735 0.761 

8 519 2.498 0.048 0.259 2.663 2.404 0.216 -0.238 

9 115 2.559 0.039 0.215 2.694 2.479 0.761 0.927 

10 16 2.632 0.048 0.137 2.686 2.549 -- -- 

11 7 2.614 0.060 0.139 2.690 2.551 -- -- 

12 13 2.668 0.073 0.228 2.777 2.549 -- -- 

Sr2+ 

 

 

6 13 2.477 0.034 0.118 2.542 2.424 -- -- 

7 38 2.639 0.054 0.188 2.738 2.549 -- -- 

8 113 2.658 0.061 0.310 2.871 2.561 1.298 1.633 
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9 101 2.703 0.051 0.266 2.871 2.604 1.119 1.523 

10 50 2.769 0.070 0.436 3.053 2.617 -- -- 

11 8 2.798 0.027 0.075 2.830 2.755 -- -- 

12 53 2.825 0.055 0.213 2.930 2.716 -- -- 

Ba2+ 

 

 

 

 

 

 

 

 

6 21 2.689 0.054 0.197 2.794 2.597 -- -- 

7 21 2.792 0.033 0.121 2.855 2.733 -- -- 

8 88 2.816 0.049 0.254 2.952 2.698 -- -- 

9 142 2.860 0.055 0.307 3.036 2.729 0.111 0.302 

10 193 2.915 0.053 0.295 3.091 2.796 0.282 -0.022 

11 82 2.944 0.039 0.187 3.035 2.849 -- -- 

12 302 2.965 0.058 0.289 3.133 2.845 0.467 -0.299 

13 6 3.010 0.051 0.137 3.070 2.934 -- -- 

14 1 3.080 -- -- 3.080 3.080 -- -- 
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Figure 4.14 Mean bond-length distributions for the configurations of the alkali-metal 
ions bonded to O2- with a sample size of 100+ coordination polyhedra: (a) [4]Li+, (b) [6]Li+, 
(c) [4]Na+, (d) [5]Na+, (e) [6]Na+, (f) [7]Na+, (g) [8]Na+, (h) [6]K+, (i) [8]K+, (j) [9]K+, (k) [10]K+, (l) 
[12]K+, (m) [10]Rb+.
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Figure 4.15 Mean bond-length distributions for the configurations of the alkaline-earth-

metal ions bonded to O2- with a sample size of 100+ coordination polyhedra: (a) [4]Be2+, 

(b) [6]Mg2+, (c) [6]Ca2+, (d) [7]Ca2+, (e) [8]Ca2+, (f) [9]Ca2+, (g) [8]Sr2+, (h) [9]Sr2+, (i) [9]Ba2+, (j) 
[10]Ba2+, (k) [12]Ba2+.
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The average range of mean bond-lengths for the 55 configurations of the alkali metals is 

0.308 Å, and is 0.217 Å for the 29 configurations of the alkaline-earth metals. The 

largest range is observed for [6]K+, from 2.447 to 3.099 Å. The distribution for [4]Be2+ 

(Fig. 4.15a) shows a feature that is of importance in examining bond-length 

distributions: there is a notable outlier with two <[4]Be2+-O> distances at ~1.717 Å. These 

values are for sørensenite, ideally Na4Sn4+[Be2Si6O18](H2O)2 (Metcalf-Johansen & 

Hazell, 1976), which was assumed to have the ideal composition in the structure study. 

However, inspection of the chemical analyses listed by Semenov et al. (1965) shows 

that the formulae depart significantly from the ideal stoichiometry used to interpret the 

structure results. In many pegmatite minerals, Be2+ is commonly partly substituted by Li+ 

or Al3+, both of which are larger than Be2+ (Shannon, 1976) and this may be what has 

happened here. Of course, this is speculation, but emphasizes the importance of 

electron- and ion-microprobe analysis of the specific crystal used to collect X-ray 

intensity data for structure analysis of minerals. 

 

4.13.1 The effect of distortion 

4.13.1.1 The distortion theorem  

The distortion theorem states that for any ion, lengthening some bonds and shortening 

others, keeping the bond-valence sum the same, will always increase the mean bond-

length due to the exponential nature of the relation (Brown, 2002). Here, we use the 

following definition of bond-length distortion from the mean value in a polyhedron: 

∆ =  
1

𝑛
∑ [

(𝑅𝑖−𝑅̅)

𝑅̅
]

2
𝑛
𝑖 = 1   (eq. 4.2) 
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where 𝑅𝑖 is the length of bond i, 𝑅̅ is the mean bond length and the summation is taken 

over the n bonds of the polyhedron. This expression was designated the quadratic 

elongation by Robinson et al. (1971) and distortion by Brown & Shannon (1973), and 

was used by many previous authors as a measure of distortion as it is the standard 

deviation of the mean bond-length in a specific polyhedron, i.e., the measure of 

dispersion of the individual bond-lengths. The distortion is shown graphically in Fig. 4.16 

with the bond-valence curve for Na+. For [4]-coordinated Na+, the mean bond-valence is 

0.25 v.u., marked by the dashed line intersecting the bond-valence curve at point b (Fig. 

4.16). If half the bonds shorten and half the bonds lengthen to a and c, respectively, on 

the bond-valence curve, the mean bond-length (marked by D1 in Fig. 4.16) increases 

slightly over the mean bond-length for four equal bonds. For [10]-coordinated Na, the 

mean bond-valence is 0.10 v.u., marked by the dashed line intersecting the bond-

valence curve at point e (Fig. 4.16). If half the bonds shorten and half the bonds 

lengthen to d and f, respectively, on the bond-valence curve, the mean bond-length 

(marked by D2 in Fig. 4.16) increases considerably more over the mean bond-length for 

ten equal bonds.  

Secondly, Fig. 4.16 shows that the effect of the distortion theorem is greatly affected by 

the slope and curvature of the bond-valence—bond-length relation; if we use the same 

concept for points a, b and c, we see that the mean bond-length changes very little, and 

much less relative to points d, e and f. Different ions have their mean bond-length at 

different points (curvature) on this graph, and thus are affected differently by the 

distortion theorem. The best way to visualize this concept is by making use of a 

universal curve as described in Brown & Shannon (1973), where the relation for an 
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isoelectronic series of ions can be described by the same bond-valence curve (with a 

slight decrease in fit compared to ion-based curves). In Fig. 4.17, we show the bond-

valence curve for the Na isoelectronic series (Ro = 1.630, B = 0.438), and identify the 

ideal mean bond-valence and associated mean bond-length for the most common 

coordination number of each ion of the series. We see that ions of lower charge, and 

with generally higher coordination numbers, occur on part of the bond-valence curve 

that is much more susceptible to higher bond-length distortion (i.e., with lower bond-

valences). Hence, the alkali metals are more strongly affected by distortion than the 

alkaline-earth metals, and so on. Figs. 4.18a-d show the variation in the range of bond 

lengths for different coordination numbers as a function of the slope of the bond-valence 

curve at the mean bond-length corresponding to those coordination numbers for Na+, 

K+, Rb+ and Cs+. As predicted above, there is a positive correlation between range and 

slope for each cation; the trends are well-developed for Na+, Rb+ and Cs+, despite a 

decrease at the highest coordination number for Na+ and Rb+ possibly due to fewer 

data, but is perturbed by considerable scatter for K+. As noted above, the distortion will 

also be correlated with the curvature (as well as the slope) of the bond-valence curve, 

but the slope and curvature are highly correlated and their effect is well-represented by 

just the slope of the curve. 
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Figure 4.16 Bond-valence bond-length curve for Na+. The exponential shape leads to 

the distortion theorem of the bond-valence model.
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Figure 4.17 Bond-valence curve for the Na isoelectronic series, and ideal mean bond-

valence and associated mean bond-length for the most common coordination number of 

each ion of the series. 
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Figure 4.18 Variation in the observed bond-length ranges for the different coordination 

numbers of (a) Na+, (b) K+, (c) Rb+ and (d) Cs+ bonded to O2- as a function of the slope 

of the bond-valence curve at the mean bond-length corresponding to those 

coordinations. 
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Figure 4.19 Observed vs predicted values of the grand mean bond-length for all 

observed ion configurations of the alkali-metal and alkaline-earth metal ions. The 

observed values of mean bond-length are usually larger than the ones predicted by the 

bond-valence curve for equidistant bonds. The dashed line is for y = x.
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4.13.1.2 Grand mean bond-length  

Using the bond-valence parameters of Gagné & Hawthorne (2015), we calculated the 

predicted grand mean bond-length for all configurations of the alkali-metal and alkaline-

earth-metal ions by converting the mean bond-valence (i.e., the Pauling bond-strength) 

of the coordination polyhedron into a mean bond-length, where all bonds of the 

idealized polyhedron have the same length. When comparing the observed grand mean 

bond-length (Tables 4.4 and 4.5) to the calculated values, we obtain an overall 

difference of 2.5% for the alkali metals (1.2% when weighted by the number of 

coordination polyhedra), and 1.0% (0.8% weighted) for the alkaline-earth metals. As 

shown in Fig. 4.19, the predicted values closely follow the observed values, but are 

slightly larger and the difference increases with increasing mean bond-length, in accord 

with the idea that distortion of coordination polyhedra  causes an increase in mean 

bond-length, and that this effect should increase with increasing coordination number.  

For any ion configuration, we may calculate the maximum amount of distortion that is 

compatible with its observed bond-length distribution, using the bond-valence model 

and the minimum and maximum bond-length observed for that configuration. We have 

done this for all configurations of the alkali-metal and alkaline-earth-metal ions, by using 

the minimum and maximum bond-length observed for each configuration and 

distributing the other bond lengths in a way that maximizes distortion while satisfying the 

valence-sum rule. This procedure resulted in a mean potential distortion of 3.9% for the 

55 alkali-metal configurations (4.6% when weighted by the number of coordination 

polyhedra), compared to 2.5% (1.2% weighted) for the observed values, and 2.8% 

(3.4% weighted) for the 29 alkaline-earth-metal configurations, compared to 1.0% (0.8% 
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weighted) for the observed values. These calculations show that for most ion 

configurations, the observed ranges of bond-lengths are significantly larger than is 

compatible with the observed distortions. Thus, in addition to distortion, other factors 

must also affect mean bond-lengths.  

 

4.13.1.3 Mean bond-length as a function of distortion 

Fig. 4.20a shows the mean bond-length for [6]Na+-O2- as a function of distortion (n = 

920). There is a positive correlation between mean bond-length and distortion, Δ, for 

reasons discussed above; the inclined solid line shows the result of a linear regression 

(R2 = 0.263). The calculated curve for the effect that distortion has on mean bond-length 

for [6]Na+-O2- is shown by the dashed line on Fig. 4.20a. The difference between 

observed and predicted curve is partly due to the data near Δ = 0 (discussed below) 

which has a very large scatter. Additionally, we note that highly-distorted configurations 

generally have poor agreement with the valence-sum rule, which leads to variability in 

the data above and below the predicted curve. However, highly-distorted polyhedra for 

[6]Na+ (with higher mean bond-lengths) tend to have low bond-valence sums (~0.8-0.9 

v.u.), indicating that the mean bond-lengths of these polyhedra are larger than predicted 

from the valence-sum rule and the form of the bond-valence curves. 

A very prominent feature of Fig. 4.20a is the fact that the widest range of mean bond-

lengths occurs at zero distortion; <[6]Na+-O2-> varies from 2.216 to 2.567 Å at Δ = 0 

alone, compared to 2.276 to 2.682 Å for all other data with Δ ≠ 0, and the range of 

observed mean bond-lengths decreases as Δ increases. The total range in mean bond-
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length is 0.466 Å; this may be compared with the predicted range that may be assigned 

to the effect of distortion (dashed line), 0.11 Å, as well as the observed range (solid 

line), 0.21 Å (Fig. 4.20a).  

We give the analogous bond-length distortion plots for the 55 configurations of the 

alkali-metal ions and 29 configurations of the alkaline-earth-metal ions in Figs. 4.S5 and 

4.S6, respectively. We note that this concentration of data at Δ = 0 is evident for Li+ in 

[4]- and [6]-coordination, Na+ in [4]- and [6]- coordination and K+ in [6]-coordination, and 

occurs more subtly for Na+ in [5]- and [8]-coordination as well as K+ in [8]- [9] and [12]-

coordination. For the alkaline-earth metals, this concentration of data at Δ = 0 occurs for 

Be2+ [4]-coordinated, Mg2+ [4]- and [6]-coordinated, Ca2+ [6]- and [12]-coordinated, Sr2+ 

[6]- coordinated and Ba2+ [12]-coordinated, and more subtly for Ca2+ [7]- and [8]-

coordinated, Sr2+ [8]-coordinated and Ba2+ [8] and [10]-coordinated. In Fig. 4.20b, we 

show the distortion plot of [10]K+, which in contrast to that for [6]Na+ (Fig. 4.20a) shows no 

preference for Δ = 0. It is therefore interesting to see that the observed mean bond-

length values (solid line) are generally lower than what we predict over the whole range 

of distortion (dashed line) because of the absence of the large scatter and amount of 

data near Δ = 0 that greatly affects the slope of the observed curve for ion 

configurations with significant scatter at Δ = 0.  Fig. 4.20c shows [8]Ca2+ as an 

intermediate configuration with some concentration of data near Δ = 0. Some of these 

differences may be due to the distortion parameter that we use not representing 

different distributions of bond lengths within a polyhedron, as this does affect somewhat 

the behaviour of mean bond-length as a function of distortion (Urusov, 2003, 2015). 

However, this issue does not affect the mean bond-length at zero distortion. Thus it is 
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apparent from the large amount of scatter in Fig. 4.20 (Figs. 4.S5 and 4.S6) that much 

of the variation in mean bond-length shown in Figs. 4.14 and 4.15 (Figs. 4.S3 and 4.S4) 

is not due to distortion, and that one or more other factors must also affect mean bond-

length.  
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Figure 4.20 The effect of bond-length distortion on mean bond-length for (a) [6]Na+, (b) 
[10]K+ and (c) [8]Ca2+. The positive correlation indicates that distortion of the coordination 

polyhedron has a sizeable effect on the mean bond-length of said polyhedron. The 

dashed line indicates the predicted effect of distortion on mean bond-length for that ion 

configuration according to the bond-valence curve of the ion. 
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Figure 4.21 The effect of atomic displacement on mean bond-length. Values are for the 

ratio of the atomic displacement parameters between [6]Na+ and its bonded anions (n = 

56). 
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4.13.2 Atomic displacement  

We selected a sample of 56 coordination polyhedra from the parent distribution of [6]Na+ 

(920 coordination polyhedra) to examine other possible factors that may correlate with  

mean bond-length; these samples were selected so that they were representative of all 

values of distortion.  

When examining the data for outliers that were possible erroneous data, we noticed 

very large relative variations in anisotropic-displacement or equivalent isotropic-

displacement parameters in the atoms of the parent structures. Cursory examination 

indicated that the magnitudes of these mean-bond-length outliers often correlated with 

the atomic displacement of the constituent cations and/or anions, suggesting that the 

central cation responds to an overly large coordination environment by increasing its 

dynamic (or static) displacement, while anions respond to an overly small cation-

coordination environment by increasing their own displacement. Shannon (1993) and 

Shannon and Rossman (1992) have commented on the effect of the former when 

considering the additivity of fictive dielectric constants of ions in crystals, denoting this 

behaviour as “rattling”. Inspection of many structures eventually showed that the ratio 

Ueq(Na)/Ueq(bonded anions) was most highly correlated with variation in mean bond-length. 

This is shown in Fig. 4.21; the observed correlation is logarithmic, with R2 = 0.57. The fit 

of the correlation is of the same magnitude as that observed for distortion for the same 

sample of 56 coordination polyhedra (R2 = 0.52). We note that Fig. 4.21 contains an 

apparent outlier with an atomic displacement ratio of 4.46, and that this single data point 

has considerable effect on whether the shape of the regression curve is logarithmic or 

linear. Removing this data point, a linear regression gives R2 = 0.62, while the 
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logarithmic fit becomes R2 = 0.58. However, we found no justification for the removal of 

this data point upon examination of the structure. 

 

4.13.3 The relation between mean bond-length and atomic displacement 

The correlation of mean bond-length with the atomic-displacement parameter has not 

been discussed extensively in previous work on variation in mean bond-lengths. In well-

ordered crystal structures, there is generally a positive correlation between atomic-

displacement parameters and coordination number. As shown above, for [6]Na+ there is 

a positive correlation between atomic-displacement parameters and mean bond-length. 

Taken together, these two observations suggest that the atomic displacements increase 

as the strength of the constituent chemical bonds decreases, and that such variation in 

atomic displacement accompanies variation in bond lengths that occur due to other 

factors such as bond-length distortion.  

For a specific cation with a specific coordination number, one expects the following 

sequence: [1] over a particular range of distances, the atomic displacement increases 

with increasing distance; [2] with further increase in distance, continuous displacement 

changes to discontinuous displacement. i.e., hopping of the central cation in an overly 

large coordination polyhedron; [3] static displacement of the cation away from the centre 

of the coordination polyhedron; [4] collapse of the anions forming the coordination 

polyhedron (perhaps via a ferroelastic phase transition), reducing the coordination 

number and changing the symmetry of the structure. When considering the factors 

affecting bond length, we need to recognize the relation between the type of 
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displacement behaviour of the central cation and mean bond-length. In stage [1], there 

is an increase in mean bond-length due to local differences in structures (together with 

a monotonic change in vibrational displacement). In stage [2], the question arises as to 

whether the observed mean distances are comparable with those of stage [1] as they 

are accompanied by large displacement parameters characteristic of atom hopping. In 

stage [3], the observed distances are not affected by atom hopping, but a change in 

coordination number of the central cation may be observed. When examining variation 

in mean bond-length for a specific ion in a particular coordination, it is important to limit 

the data to structures at stage [1], as once hopping occurs, an additional component is 

added to the measured mean bond-length that is not present at smaller distances.  
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4.14 Summary 

[1] We have examined the bond-length distributions for 55 configurations of alkali-metal 

ions and 29 configurations of alkaline-earth-metal ions, for 4859 coordination polyhedra 

and 38,594 bond distances (alkali metals) and for 3038 coordination polyhedra and 

24,487 bond distances (alkaline-earth metals). 

[2] Bond lengths generally show a positively-skewed Gaussian distribution that 

originates from the variation in Born repulsion and Coulomb attraction as a function of 

interatomic distance.  

[3] The skewness and kurtosis of these distributions generally decrease with increasing 

coordination number of the central cation, a result of decreasing Born repulsion with 

increasing coordination number. 

[4] We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, 

[6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples 

are the result of extensive dynamic and/or positional short-range disorder and are not 

ordered arrangements. 

[5] Some distributions of bond lengths are distinctly multi-modal (primarily bimodal), but 

for the alkali-metal and alkaline-earth-metal ions, this is often due to the occurrence of 

large numbers of structure refinements of a particular structure-type in which a 

particular cation is always present, e.g., for [8]Ca2+, in which many refinements of garnet 

and vesuvianite structures lead to an over-representation of specific bond-lengths. 

[6] For alkali-metal and alkaline-earth-metal ions, there is a positive correlation between 

incident bond-valence sum at the central cation and coordination number, the values 
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varying from 0.84 v.u. for [5]K+ to 1.06 v.u. for [8]Li+, and from 1.76 v.u. for [7]Ba2+ to 2.10 

v.u. for [12]Sr2+. 

[7] Unusually small or large coordination numbers are commonly associated with 

anomalous values of atomic displacement of the constituent cations and/or anions.  

[8] For a sample of [6]Na, the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 

<[6]Na-O> mean bond-length (R2 = 0.57), suggesting that the vibrational/displacement 

characteristics of the constituent ions are affected by mean bond-length for a fixed 

coordination number. 

[9] Mean bond-lengths show a weak correlation with bond-length distortion from the 

mean value, but clearly also correlate with one or more other factors, e.g., atomic 

displacement. In particular, some coordination numbers show the widest variation in 

mean bond-length for zero distortion, e.g., Li+ in [4]- and [6]-coordination, Na+ in [4]- and 

[6]-coordination and K+ in [6]-coordination, and for [4]-coordinated Be2+, [4]- and [6]-

coordinated Mg2+, [6]- and [12]-coordinated Ca2+, [6]- coordinated Sr2+ and [12]-

coordinated Ba2+.   

[10] Bond-valence parameters for the 4 ions observed in coordinations higher than [12], 

K+, Rb+, Cs+ and Ba2+ (Gagné & Hawthorne, 2015) were calculated for a maximum 

coordination number of [12]. Both sets of parameters give exactly the same result for 

anion bond-valence sums. However, the bond-valence parameters calculated for a 

maximum coordination number of [12] show much poorer correlation with mean 

observed bond-length and no correlation at all with ionization energy of the central 

cation, in contrast to the bond-valence parameters of Gagné & Hawthorne (2015). 
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4.17 Appendix A: Supplementary material 

Supplementary material for 

Bond-length distributions for ions bonded to oxygen: Alkali and alkaline-earth 

metals 

 

Figure 4.S1 Bond-length distributions for all configurations of the alkali-metal ions 

bonded to O2-: (a) [3]Li+, (b) [4]Li+, (c) [5]Li+, (d) [6]Li+, (e) [7]Li+, (f) [8]Li+, (g) [3]Na+, (h) [4]Na+, 

(i) [5]Na+, (j) [6]Na+, (k) [7]Na+, (l) [8]Na+, (m) [9]Na+, (n) [10]Na+, (o) [12]Na+, (p) [4]K+, (q) [5]K+, 

(r) [6]K+, (s) [7]K+, (t) [8]K+, (u) [9]K+, (v) [10]K+, (w) [11]K+, (x) [12]K+, (y) [13]K+, (z) [14]K+, (aa) 
[15]K+, (ab) [4]Rb+, (ac) [5]Rb+, (ad) [6]Rb+, (ae) [7]Rb+, (af) [8]Rb+, (ag) [9]Rb+, (ah) [10]Rb+, 

(ai) [11]Rb+, (aj) [12]Rb+, (ak) [13]Rb+, (al) [14]Rb+, (am) [15]Rb+, (an) [17]Rb+, (ao) [18]Rb+, (ap) 
[6]Cs+, (aq) [7]Cs+, (ar) [8]Cs+, (as) [9]Cs+, (at) [10]Cs+, (au) [11]Cs+, (av) [12]Cs+, (aw) [13]Cs+, 

(ax) [14]Cs+, (ay) [15]Cs+, (az) [16]Cs+, (ba) [17]Cs+, (bb) [18]Cs+, (bc) [20]Cs+.
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Figure 4.S2 Bond-length distributions for all configurations of the alkaline-earth-metal 

ions bonded to O2-:(a) [3]Be2+, (b) [4]Be2+, (c) [4]Mg2+, (d) [5]Mg2+, (e) [6]Mg2+, (f) [8]Mg2+, (g) 

[6]Ca2+, (h) [7]Ca2+, (i) [8]Ca2+, (j) [9]Ca2+, (k) [10]Ca2+, (l) [11]Ca2+, (m) [12]Ca2+, (n) [6]Sr2+, (o) 
[7]Sr2+, (p) [8]Sr2+, (q) [9]Sr2+, (r) [10]Sr2+, (s) [11]Sr2+, (t) [12]Sr2+, (u) [6]Ba2+, (v) [7]Ba2+, (w) 
[8]Ba2+, (x) [9]Ba2+, (y) [10]Ba2+, (z) [11]Ba2+, (aa) [12]Ba2+, (ab) [13]Ba2+, (ac) [14]Ba2+.
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Figure 4.S3 Mean bond-length distributions for all configurations of the alkali-metal ions 
bonded to O2-:(a) [3]Li+, (b) [4]Li+, (c) [5]Li+, (d) [6]Li+, (e) [7]Li+, (f) [8]Li+, (g) [3]Na+, (h) [4]Na+, 
(i) [5]Na+, (j) [6]Na+, (k) [7]Na+, (l) [8]Na+, (m) [9]Na+, (n) [10]Na+, (o) [12]Na+, (p) [4]K+, (q) [5]K+, 
(r) [6]K+, (s) [7]K+, (t) [8]K+, (u) [9]K+, (v) [10]K+, (w) [11]K+, (x) [12]K+, (y) [13]K+, (z) [14]K+, (aa) 
[15]K+, (ab) [4]Rb+, (ac) [5]Rb+, (ad) [6]Rb+, (ae) [7]Rb+, (af) [8]Rb+, (ag) [9]Rb+, (ah) [10]Rb+, 
(ai) [11]Rb+, (aj) [12]Rb+, (ak) [13]Rb+, (al) [14]Rb+, (am) [15]Rb+, (an) [17]Rb+, (ao) [18]Rb+, (ap) 
[6]Cs+, (aq) [7]Cs+, (ar) [8]Cs+, (as) [9]Cs+, (at) [10]Cs+, (au) [11]Cs+, (av) [12]Cs+, (aw) [13]Cs+, 
(ax) [14]Cs+, (ay) [15]Cs+, (az) [16]Cs+, (ba) [17]Cs+, (bb) [18]Cs+, (bc) [20]Cs+.
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Figure 4.S4 Mean bond-length distributions for all configurations of the alkaline-earth-

metal ions bonded to O2-:(a) [3]Be2+, (b) [4]Be2+, (c) [4]Mg2+, (d) [5]Mg2+, (e) [6]Mg2+, (f) 
[8]Mg2+, (g) [6]Ca2+, (h) [7]Ca2+, (i) [8]Ca2+, (j) [9]Ca2+, (k) [10]Ca2+, (l) [11]Ca2+, (m) [12]Ca2+, (n) 
[6]Sr2+, (o) [7]Sr2+, (p) [8]Sr2+, (q) [9]Sr2+, (r) [10]Sr2+, (s) [11]Sr2+, (t) [12]Sr2+, (u) [6]Ba2+, (v) 
[7]Ba2+, (w) [8]Ba2+, (x) [9]Ba2+, (y) [10]Ba2+, (z) [11]Ba2+, (aa) [12]Ba2+, (ab) [13]Ba2+, (ac) 
[14]Ba2+.
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Figure 4.S5 The effect of bond-length distortion on mean bond-length for all 
configurations of the alkaline-earth-metal ions bonded to O2-:(a) [3]Li+, (b) [4]Li+, (c) [5]Li+, 
(d) [6]Li+, (e) [7]Li+, (f) [8]Li+, (g) [3]Na+, (h) [4]Na+, (i) [5]Na+, (j) [6]Na+, (k) [7]Na+, (l) [8]Na+, (m) 

[9]Na+, (n) [10]Na+, (o) [12]Na+, (p) [4]K+, (q) [5]K+, (r) [6]K+, (s) [7]K+, (t) [8]K+, (u) [9]K+, (v) [10]K+, 
(w) [11]K+, (x) [12]K+, (y) [13]K+, (z) [14]K+, (aa) [15]K+, (ab) [4]Rb+, (ac) [5]Rb+, (ad) [6]Rb+, (ae) 
[7]Rb+, (af) [8]Rb+, (ag) [9]Rb+, (ah) [10]Rb+, (ai) [11]Rb+, (aj) [12]Rb+, (ak) [13]Rb+, (al) [14]Rb+, 
(am) [15]Rb+, (an) [17]Rb+, (ao) [18]Rb+, (ap) [6]Cs+, (aq) [7]Cs+, (ar) [8]Cs+, (as) [9]Cs+, (at) 
[10]Cs+, (au) [11]Cs+, (av) [12]Cs+, (aw) [13]Cs+, (ax) [14]Cs+, (ay) [15]Cs+, (az) [16]Cs+, (ba) 
[17]Cs+, (bb) [18]Cs+, (bc) [20]Cs+.

 



344 

 



345 

 

 



346 

 

 



347 

 

Figure 4.S6 The effect of bond-length distortion on mean bond-length for all 

configurations of the alkaline-earth-metal ions bonded to O2-: (a) [3]Be2+, (b) [4]Be2+, (c) 
[4]Mg2+, (d) [5]Mg2+, (e) [6]Mg2+, (f) [8]Mg2+, (g) [6]Ca2+, (h) [7]Ca2+, (i) [8]Ca2+, (j) [9]Ca2+, (k) 

[10]Ca2+, (l) [11]Ca2+, (m) [12]Ca2+, (n) [6]Sr2+, (o) [7]Sr2+, (p) [8]Sr2+, (q) [9]Sr2+, (r) [10]Sr2+, (s) 
[11]Sr2+, (t) [12]Sr2+, (u) [6]Ba2+, (v) [7]Ba2+, (w) [8]Ba2+, (x) [9]Ba2+, (y) [10]Ba2+, (z) [11]Ba2+, 

(aa) [12]Ba2+, (ab) [13]Ba2+, (ac) [14]Ba2+.
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Chapter 5 

 

Conclusion 

 

 

 

  



351 

 

5.1 Summary and significance of thesis 

Since the determination of the first crystal structures in 1913 and the ensuing 

development of the fields of Crystallography and Crystal Chemistry, a large amount of 

information concerning crystal structures and their atomic arrangements has been 

collected. However, we still only have a limited understanding of the factors that control 

crystal-structure arrangements and the variation in bond lengths in crystals. Some work 

has been done on characterizing the variation in bond lengths and mean bond-lengths 

in crystals, but this has involved only a small number of highly charged ions with low 

coordination-numbers using only small sets of data. I have begun a much larger-scale 

investigation of these issues involving bonds to oxygen in inorganic crystal-structures. 

[1] I have done a bond-length dispersion analysis of the Inorganic Crystal Structure 

Database (by far the largest of its kind) involving 180,331 bond lengths from 31,514 

coordination polyhedra for 135 ions bonded to oxygen in 462 ion configurations, using 

9367 refined crystal-structures. For all ion configurations for which sufficient data exist, I 

have determined the frequency distributions, their shapes (skewness, kurtosis, range 

and any multimodal behaviour), and the minimum and maximum bond-lengths. This 

work has provided the data used in the rest of my thesis. I also intend to make this 

database generally available to the scientific community, as the work that can be done 

on understanding the detailed variation of bond lengths and mean bond-lengths in 

crystals for the listed 462 ion configurations would necessarily involve many scientists 

for many years. This distillation of crystallographic knowledge will allow experimentalists 

to cross-reference their results against a database of existing structures, and for 

computational results to be verified against experimental results (Richardson, 2013). 
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The consequences of this work extend beyond crystallography, and will provide 

reference material for understanding the structural arrangements around cations and 

anions in situations where it is not possible to determine and refine crystal structures by 

x-ray diffraction (e.g., adsorption sites, local structures in glasses and melts or aqueous 

fluids).  

[2] I have used the results of the bond-length dispersion analysis to assess the 

published parameterizations of the bond-length—bond-valence relation for cations 

bonded to oxygen. This evaluation was necessary for a number of reasons:  

 (1) there is no consistency between bond-valence parameters published from 

different sources; in particular, the criteria used to select the bond lengths used in the 

derivation of the bond-valence curves vary widely;  

 (2) different fitting methods have been used by different authors to derive the 

bond-valence parameters, and there is no consensus on the best way to derive the 

bond-valence parameters;  

 (3) many ion pairs have several different sets of bond-valence parameters 

available in the literature; at the beginning of my work, there were 1749 sets of 

parameters for 1350 pairs of ions in the literature (185 ion pairs when bonded to 

oxygen), and there had been little or no comparative work to guide the general user; 

 (4) while there has been some criticism of the algebraic form of the bond-valence 

equation for specific ion-pairs, few alternative forms of the bond-valence—bond-length 

equation have actually been tested.  
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I evaluated published bond-valence parameters with regard to their agreement with the 

valence-sum rule, and identified the “best set” of these parameters that gave the closest 

agreement with the valence-sum rule for each ion pair for which reliable data was 

obtained from the bond-length dispersion analysis (i.e., for 135 cations bonded to 

oxygen). This gave me a baseline set of data to which I could test new bond-valence 

parameters and equations for the ion pairs.  

I then examined a wide variety of algebraic expressions in order to test for the optimal 

form of the bond-valence equation. I found the following: several equations give very 

similar agreement with the valence-sum rule, including the widely used equation of 

Brown & Altermatt (1985); none was conspicuously better than that currently in use, and 

hence I retained the equation of Brown & Altermatt (1985) for my further work. 

Next, I compared the various ways in which bond-valence parameters have been 

derived. For reasons discussed in Chapter 2, none of these methods was adequate, 

and I introduced a new method, the GRG (Generalized Reduced Gradient) method, that 

proved much more robust than previous methods in deriving bond-valence parameters. 

Using this method, I derived a new set of bond-valence parameters using the data 

derived from my dispersion analysis for 135 cations bonded to oxygen. I tested these 

parameters against the set of best published parameters for cations and showed that 

my new parameters are in better accord with the valence-sum rule. I have also shown 

that the parameters I derived give better fit to the data for both cations and anions when 

compared to the parameterizations of Brown & Altermatt (1985) and Brese & O’Keeffe 

(1991), the two most commonly used sets of bond-valence parameters which account 

for ~7300 and ~5100 citations today, respectively. 
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Finally, I showed that there is a consistency in the bond-valence parameters that was 

lacking from published values, in that they correlate with parameters such as ionization 

potential, oxidation state and electronegativity.  

This in-depth look at the parameterization of the bond-length—bond-valence relation will 

serve as an unprecedented reference to those who wish to improve this 

parameterization further, extend it to ion pairs not treated here, or to investigate the 

physical meaning of the relation.  

[3] The new parameterization derived in Chapter 2 was used in Chapter 3 to gain insight 

into the milarite structure. As I show in this chapter, the bond-valence model may be 

used beyond structure verification to gain crystal-chemical insight into crystal structures, 

and as so, an optimal parameterization of the model is critical so that deviations from 

the valence-sum rule are reflective of the phenomenon investigated rather than being 

the result of inaccuracies in the bond-valence–bond-length parameterization.  

The milarite structure was selected here for the wide compositional variation of its 

constituent minerals and synthetic phases, which is interesting from the point of view of 

the factors constraining the possible chemical compositions of crystal structures. First, I 

did a literature review of all published structural and chemical data on milarite-group 

minerals and synthetic phases, and examined all compositions for the group in order to 

clarify end-member compositions. I found that, in addition to the twenty-three approved 

mineral species for the group, six examples definitely deserve the status of new 

minerals, and that two additional compositions may also deserve this status pending 

experimental determination of their patterns of cation order via crystal-structure 

refinement. Moreover, I found that twenty synthetic compounds with the milarite-type 
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structure have distinct end-member compositions, suggesting that there may be many 

more undiscovered minerals of the milarite group in nature.  

Next, I used the mathematical method of Rutherford (1990) to calculate the a priori 

bond-valences of several minerals with the milarite structure; this has been done only a 

few times since the initial proposal of Brown (1977) (e.g., Urusov & Orlov 1999, 

Hawthorne & Sokolova 2008). Here, I show how to determine the a priori bond-valence 

of any crystal structure (no matter how complicated) and the kind of information that can 

be derived from it. I show how the bond topology of a crystal structure influences its a 

priori bond-valences which in turn affects site occupancy. Comparison of a priori and 

experimental bond-valences for refined crystal structures observed in this group has 

shown that the agreement between the two is close at all sites except for the B site. 

Parallel to this, I used the a priori bond-valences of compositions for which a structure 

refinement had been done, and evaluated induced strain as a function of chemical 

composition for the structure. I found that the B site has the highest amount of strain in 

the structure, and in accord with this finding, milarite compositions with a vacant B site 

tend to be more common. The method used is easily transferable to any crystal 

structure; the calculation of the a priori bond-valences of a crystal structure can 

therefore be used to easily localize strain in a crystal structure, which has otherwise 

been a difficult phenomenon to study before, and therefore shows great promise in the 

study of crystal-structure stability. This is in addition to the initial proposal of Brown 

(1977) of using a priori bond-valences to predict the ideal bond-lengths of a crystal 

structure for a given site occupancy using the appropriate bond-valence curves, which 
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is a method I have also made more accurate via the updated parameterization of the 

bond-length—bond-valence relation derived in Chapter 2.  

 [4] Following the bond-length dispersion analysis of the Inorganic Crystal Structure 

Database (see [1]), I examined the bond-length distributions for 55 configurations of 

alkali-metal ions and 29 configurations of alkaline-earth-metal ions, for 4859 

coordination polyhedra and 38,594 bond distances (alkali metals) and for 3038 

coordination polyhedra and 24,487 bond distances (alkaline-earth metals). 

I found that bond-lengths generally show a positively-skewed Gaussian distribution that 

originates from the variation in Born repulsion and Coulomb attraction as a function of 

interatomic distance, and that the skewness and kurtosis of these distributions generally 

decrease with increasing coordination number of the central cation, a result I attribute to 

decreasing Born repulsion with increasing coordination number. I investigated the effect 

of sample size on the shape of the bond-length and mean bond-length distributions, and 

note that the occurrence of multi-modal distributions for these ions is often due to 

sampling issues that lead to an over-representation of specific bond-lengths (e.g., for 

[8]Ca2+, due to many refinements of garnet and vesuvianite structures).  

I found that unusually small or large coordination numbers are commonly associated 

with anomalous values of atomic displacement of the constituent cations and/or anions.  

I examined the validity of less-common configurations of the alkali-metal and alkaline-

earth metal ions, such as [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ 

and [6]Ba2+, and note that some of these configurations are the result of extensive 
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dynamic and/or positional short-range disorder and are not ordered arrangements, while 

others are well-ordered atomic arrangements. 

I found a positive correlation between incident bond-valence sum at the central cation 

and coordination number for the alkali and alkaline-earth metals, with values for these 

families respectively varying from 0.84 v.u. ([5]K+) to 1.06 v.u. ( [8]Li+), and from 1.76 v.u. 

([7]Ba2+) to 2.10 v.u. ([12]Sr2+). 

I examined possible factors that affect variations in bond-length and mean bond-length. 

Mean bond-lengths show a weak correlation with bond-length distortion from the mean 

value, but clearly also correlate with other parameters. In particular, some coordination 

numbers show the widest variation in mean bond-length for zero distortion, and thus the 

variation in mean bond-length must be caused by factors other than distortion. I found a 

positive correlation between mean bond-length and atomic displacement for [6]Na+ 

bonded to O2-, suggesting that the central cation responds to an overly large 

coordination environment by increasing its dynamic (or static) displacement, while 

anions respond to an overly small cation-coordination environment by increasing their 

own displacement. 

Finally, I found that ions may occur in coordination numbers greater than [12]. New 

bond-valence parameters for the 4 ions observed in coordinations higher than [12], K+, 

Rb+, Cs+ and Ba2+ were calculated for a maximum coordination number of [12] and 

compared to the ones derived without a cut-off. Both sets of parameters give exactly the 

same result for anion bond-valence sums. However, the bond-valence parameters 

calculated for a maximum coordination number of [12] show much poorer correlation 

with mean observed bond-length and no correlation at all with ionization energy of the 
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central cation. The inclusion of these longer bond distances in routine analysis may 

therefore increase the fit to the valence-sum rule and to various properties that correlate 

with bond length.  

 

5.2 Future research opportunities  

5.2.1 Bond-length dispersion analysis for all ion pairs 

Analysis of the data gathered from the bond-length dispersion analysis of the Inorganic 

Crystal Structure Database (180,331 individual bond-lengths taken from 31,514 

coordination polyhedra in 9367 crystal structures for 135 cations and a total of 462 

configurations) goes beyond the scope of this Ph.D. thesis, and examination of this data 

will take many more years of work. 

In Chapters 2 and 3, I showed that these data can be used indirectly to gain insight into 

the stability of crystal structures by deriving an improved parameterization of the bond-

valence model (Chapter 2) and by applying it to the milarite structure (Chapter 3). 

Analysis of the raw data begins in Chapter 4, where I did a preliminary examination of 

this data for the alkali- and alkaline-earth-metal ions. Work done for this thesis has 

shown that there is a tremendous amount of information available with regard to the 

positions of atoms in crystal structures, and that we have much to gain from the 

distillation of this information with regard to the evaluation and improvement of our 

current understanding of atomic-scale phenomena (e.g., the reasons underlying the 

arrangements of atoms in crystals). Addressing these questions will require a much 

closer look at the associated atomic arrangements.  
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I am currently extending my work on the alkali and alkaline-earth metal families to other 

families of the periodic table of elements for which I have gathered data for ions bonded 

to oxygen. These include the metalloids, non-metals, halogens, transition metals, poor 

metals, lanthanides, actinides, and the hydrogen atom. Their bond-length distributions, 

bond-length and bond-valence ranges and statistics will be given and analyzed in a 

similar fashion as was done for the alkali and alkaline-earth metals, and crystal-

chemical phenomena of interest that go beyond preliminary examination will be 

identified as suitable for further work. The bond-length dispersion analysis may also be 

expanded to include cations bonded to anions other than oxygen.  

 

5.2.2. Reassessment of ionic radii 

Landé (1920) published a seminal paper on the estimation of ionic radii in crystals, 

which Shannon later updated (1969, 1976) to list ionic radii as a function of oxidation 

state, coordination number, electronic coordination and spin state. In his work, which 

has been cited ~35,000 times today, Shannon used approximately 900 mean 

polyhedron bond-distances to determine 497 ionic radii. My work totals 31,521 reliable 

mean polyhedron bond-distances for a total of 462 ion configurations. Of these 462 ion 

configurations, 313 may be used to revise radius values given by Shannon (157 of 

which were only estimated by Shannon), while radii for the other 149 configurations will 

result in new values of ionic radii that are not listed in Shannon (1976). 

  



360 

 

5.2.3 Enumeration of all possible end-member compositions of a crystal structure 

and materials discovery 

The results of the bond-length dispersion analysis I have done allow the assignment of 

a range of bond lengths that the 462 observed configurations of ions can adopt when 

bonded to oxygen. Using the new parameterization of the relation between bond length 

and bond valence I derived in Chapter 2, the observed bond-length ranges may be 

converted to the range of bond valences that these ion configurations can adopt. This 

allows new a priori analysis in crystal structures. I showed in Chapter 3 how the a priori 

bond-valences can be calculated (no matter how complex the structure); the a priori 

bond-valences can then be coupled to the range of bond-valences that ions 

configuration can adopt as a mean to study and predict site populations in crystal 

structures. In other words, an ion may occupy the site of a crystal structure if it 

encompasses all a priori bond-valences calculated for that site within its observed range 

of bond valences derived from the bond-length dispersion analysis. From this, all 

possible site occupants of a crystal structure may be derived, and all possible end-

members of a given crystal structure can be enumerated via combinatorial analysis.  

Thus, this proposed method sets a limit as to what atoms can occupy the sites of a 

crystal structure; whether or not an assignment may yield a stable structure is subject to 

further inspection, as other factors come into play. An important factor consists of 

whether or not the bond-valence arrangement, once the ions are assigned to the sites 

of a structure, can lead to reasonable bond lengths (the a priori bond-lengths). A priori 

bond-lengths are obtained by converting the a priori bond-valences into bond lengths 
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using the appropriate bond-valence parameters, which were derived in Chapter 2. I am 

planning to test this method with the milarite structure.  

Further development of this approach may be useful in the field of materials discovery 

by enabling targeted synthesis of new compositions for a given bond topology, whereby 

the feasibility of proposed combinations of topology and ions with properties of interest 

may be evaluated before expending effort on synthesis. 

From here, the prediction of the connectivity of crystal structures would be the next 

logical step in realizing crystal-structure prediction from first principles; unfortunately, 

this remains a largely unresolved issue (e.g., Oganov et al. 2010). 

 

5.2.4 Toward a better understanding of crystal-structure stability 

The work done in this thesis shows ways in which the study of crystal-structure stability 

may be approached using transparent arguments based on crystal-chemical grounds. 

Whereas an important objective of any scientific process is the making of predictions, it 

is unclear that making accurate predictions using “black-box” methods will enhance our 

understanding of processes that go on at the atomic scale. Our inability to (for example) 

predict the structure of crystals from first principles, despite harnessing the tremendous 

computing power available today, shows that we fall short of a clear understanding of 

the factors that control crystal-structure stability. Better understanding will emerge from 

a distillation of crystal-chemical knowledge that allows the isolation and investigation of 

these factors.  
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