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Published two-body bond-valence parameters for cation–oxygen bonds have

been evaluated via the root mean-square deviation (RMSD) from the valence-

sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489

coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–

40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of

charge). The set of best published parameters has been determined for 128 ions

and used as a benchmark for the determination of new bond-valence parameters

in this paper. Two common methods for the derivation of bond-valence

parameters have been evaluated: (1) fixing B and solving for Ro; (2) the

graphical method. On a subset of 90 ions observed in more than one

coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u.

(6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per

unit of charge). The advantages and disadvantages of these (and other) methods

of derivation have been considered, leading to the conclusion that current

methods of derivation of bond-valence parameters are not satisfactory. A new

method of derivation is introduced, the GRG (generalized reduced gradient)

method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of

charge) over the same sample of 90 multiple-coordination ions. The evaluation

of 19 two-parameter equations and 7 three-parameter equations to model the

bond-valence–bond-length relation indicates that: (1) many equations can

adequately describe the relation; (2) a plateau has been reached in the fit for

two-parameter equations; (3) the equation of Brown & Altermatt (1985) is

sufficiently good that use of any of the other equations tested is not warranted.

Improved bond-valence parameters have been derived for 135 ions for the

equation of Brown & Altermatt (1985) in terms of both the cation and anion

bond-valence sums using the GRG method and our complete data set.

1. Introduction

Many people have investigated correlations between devia-

tions from Pauling’s second rule (Pauling, 1929) and bond-

length variations in crystals (e.g. Baur, 1970, 1974; Donnay &

Allmann, 1970; Pyatenko, 1972; Brown & Shannon, 1973;

Ferguson, 1974), generally developing quantitative relations

between bond length and the strength of a bond. During the

1960s and early 1970s, the term ‘bond strength’ was used, but

was later changed to ‘bond valence’ to distinguish these values

from Pauling bond strengths. In the early 1970s, several

different forms of the (inverse) relation between bond valence

and bond length were used, but the equation of Brown &

Altermatt (1985) was eventually accepted as the general form

of the bond-valence–bond-length curve: S ¼ exp½ðRo � RÞ=B�,
where S is the bond valence (in valence units), R is the

observed bond length, and Ro and B are fitted constants called

bond-valence parameters. Brown & Altermatt (1985) gave

values of Ro and B for 141 pairs of ions, and Brese & O’Keeffe
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(1991) gave analogous values for 969 pairs of ions. Many

smaller-scale studies have produced bond-valence parameters

for a wide range of ion pairs that have been compiled by

Brown (2002, 2009, 2013). Brown’s latest list of published

bond-valence parameters (Brown, 2013) contains 1749 sets of

bond-valence parameters for the equation of Brown &

Altermatt (1985), for 1350 unique ion pairs, and counts 340

sets of bond-valence parameters for 194 cations bonded to

oxygen. Several sets of bond-valence parameters are often

available for unique ion pairs, and there has been little

comparison between different sets of parameters available to

determine which is the most suitable for a given ion pair. Here

we consider bond-valence parameters for cations bonded to

oxygen. Notably, with regard to the bond-valence parameters

currently available:

(1) There is no consistency between parameters from

different sources; in particular, the criteria used to select the

bond lengths used in the derivation of the bond-valence curves

vary widely.

(2) Different fitting methods have been used by different

authors to derive the bond-valence parameters (i.e. there is no

consensus on the best way to derive the bond-valence para-

meters).

(3) Very few alternative forms of the bond-valence–bond-

length relation have been tested.

Here, we (1) evaluate published bond-valence parameters

for 128 cations bonded to oxygen, using a very large set of

bond lengths that have undergone rigorous filtering; (2)

investigate many alternative algebraic forms of the bond-

valence—bond-length relation; (3) evaluate different fitting

methods used in the derivation of bond-valence parameters;

(4) determine new bond-valence parameters for 135 cations

bonded to oxygen.

2. Experimental bond lengths used in this work

As part of other work examining the dispersion of bond

lengths in inorganic crystals, we have used the Inorganic

Crystal Structure Database (ICSD) to extract bond lengths for

all atoms of the periodic table of elements bonded to oxygen,

as a function of oxidation state and coordination number. The

following selection criteria were used during collection of the

bond-length data: (1) publication date � 1975; (2) R1 � 0.06;

(3) the site of interest is fully occupied by the cation; (4) all

bonds involve ions at fully occupied sites; (5) the cation and

anion sites of interest show no positional disorder; (6) crys-

tallographic data were measured at ambient conditions; (7) no

data from powder, electron or synchrotron diffraction were

included; (8) where there was severe ambiguity as to the

correct coordination number, the data were not included to

avoid error; (9) for H, only neutron-diffraction data were

collected.

Following collection of the bond distances, the bond-length

distributions were examined for outliers. Where outliers were

identified, the original publications were examined to validate

the distances or identify errors. The most common source of

error involved sites which, in the ICSD, were erroneously

identified as containing only one cation whereas inspection of

the original paper showed that cation disorder was present

(e.g. for Si, large mean distances commonly involved the

presence of Al3+ at the Si4+ site, and small distances involved

the presence of B3+ at the Si4+ site). We note here that verified

outliers that showed no apparent error were retained in our

analysis. Where such analysis had been done for specific ions,

we checked our results with those given previously to ensure

compatibility (or confirm the validity of any differences). For

example, Sidey (2013) gives the shortest [3]-coordinated B3+—

O distance as 1.20 Å, in close accordance with our value of

1.22 Å, and Mills et al. (2009) and Mills & Christy (2013) use

maximum Sb3+ and As3+ distances of 3.5 Å, in reasonable

accordance with our values of � 3.4 Å. Use of the above

criteria resulted in 180 369 bond lengths from 31 521 coordi-

nation polyhedra, for 135 ions bonded to oxygen from 9367

refined crystal structures.

3. Method of evaluation of bond-valence parameters

To evaluate the bond-valence parameters for an ion pair, we

calculated the root-mean-square deviation (RMSD) between

the bond-valence sum (using the bond-valence parameters

and the experimental bond lengths) and the valence of the

constituent cation for each polyhedron, over the entire dataset

of coordination polyhedra for that cation

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

nð
P

j Sij � ViÞ2
n

s
; ð1Þ

where Sij is the bond valence between ions i and j, Vi is the

valence of the ith cation, and the sum is over the j bonds that

cation i makes to O for the n coordination polyhedra available

from the dataset of that particular ion pair. This method

evaluates deviations from the valence-sum rule (Brown, 2002),

and is applicable to any parameterization. From here on, any

mention of RMSD in the text will imply the deviation to be

from the valence-sum rule, in valence units (v.u.).

Brown & Shannon (1973) reported the relative RMSD (Di),

on the basis of a unit of charge

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

zi�pið Þ2
z2

i

� �
m

vuut
� 100%; ð2Þ

where zi is the valence of ion i, pi is the bond-valence sum, and

m is the number of ions of type i. This expression has been

used by many people reporting new bond-valence parameters.

However, the basis of bond-valence curves is the valence-sum

rule (Brown, 2002), and minimization of deviations from the

valence-sum rule involves bond valences, not bond valences

divided by valence, and hence a more appropriate measure of

agreement with the valence-sum rule involves equation (1)

rather than equation (2). Although equation (1) is the

recommended way of reporting the RMSD in the future, our

results will be reported using both equations (1) and (2) for

the most part throughout this work, so that they can easily be

compared with other published work.
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4. Evaluation of published oxide bond-valence
parameters

We evaluated 244 pairs of bond-valence parameters (Ro, B)

for 128 ion pairs involving cations bonded to O2�. By and

large, bond-valence parameters have been, and continue to be,

derived based on the first coordination shell of ions. However,

Adams (2001, 2014) used the concept of bond softness to

argue for the consideration of higher coordination shells in the

determination of bond-valence parameters (which he calls

softBV parameters) for use in dynamic situations where the

use of discrete coordination number is not continuously

applicable (e.g. ionic conduction; Adams & Prasada Rao,

2014). Due to the coordination-based nature of our dataset,

we did not evaluate softBV parameters.

Table S1 of the supporting information gives the bond-

valence parameters of the constituent ions and their asso-

ciated RMSD obtained from equation (1), listed in the same

order as in Brown (2013), using the same reference codes. The

RMSD values range from 0.033 to 2.451 v.u. However, the

extremely large values are caused by inappropriate para-

meters; for example, Cm3+ has two published sets of para-

meters, with RMSD values of 1.500 and 0.161 v.u., and U6+ has

three sets of parameters with RMSD values of 0.894, 0.699 and

0.193 v.u., respectively. The mean value of the RMSD for all

published parameters using our dataset is 0.219 v.u. with a

standard deviation of 0.232 v.u. and a median value of

0.241 v.u.

We note here that it is critical for bond-valence parameters

to be evaluated in the same way they were derived; while this

may seem intuitive, we often observed poor agreements for

ions showing large gaps in their bond-length distributions (i.e.

ions that form ‘secondary bonds’), as different sets of bond-

valence parameters available for the same ions were

presumably derived both with and without the inclusion of

secondary bonds (e.g. for I5+, Te4+). Following experimenta-

tion with this practice, we conclude that the inclusion of the

long bonds in the first coordination shell leads to better bond-

valence sums, and have therefore retained them in our dataset

for this evaluation. As a corollary, as we derive our bond-

valence parameters (below) using the longer bonds where

appropriate (e.g. elements of periods 4–6, typically not tran-

sition metals), the longer bonds should be included when using

the parameters derived in this work.

From the results of Table S1, we may identify a set of best

published parameters that provides a useful benchmark for

comparison in the derivation of new bond-valence parameters.

5. The H atom

It is necessary to treat the H atom somewhat differently from

the other atoms of the periodic table for two reasons: (1) for H

atoms, positional parameters derived from X-ray data show

significant systematic error, as the electron density notionally

associated with the H atom is partly delocalized into the O—H

bond, leading to O—H distances that are systematically

shorter than the O—H internuclear distances. In turn, this will

lead to H	 	 	O (hydrogen-bond) distances that are system-

atically longer than the H	 	 	O internuclear distances; (2) some

authors suggest the use of more than one pair of bond-valence

parameters to model the relation for this atom. These condi-

tions are specified in Table S1 for each reference.

Grabowski (2000) used neutron-diffraction data to derive a

single pair of parameters, Ro = 0.93 Å and B = 0.40 Å,

resulting in a RMSD of 0.035 v.u. for our dataset. Also using

neutron-diffraction data, Brown (2002) proposed the use of

three pairs of parameters to model the relation over specific

ranges of bond lengths (the resulting RMSD for our dataset is

0.059 v.u.) and argued that the use of different parameters

over different bond-length ranges gives better sums around

the O2� ions than the parameters of Alig et al. (1994).

Yu et al. (2006) argued that hydrogen requires two sets of

parameters, one set for s > 0.5 v.u. (the donor–hydrogen

bond), and another set for s < 0.5 v.u. (the hydrogen–acceptor

bond); they also give 1.30 Å as the cut-off between stronger

and weaker bonds. Although they do not specify if they used

X-ray data, neutron data or a combination of both, the

reported bond lengths strongly suggest the sole use of X-ray

data. As a result, their parameters are not directly compatible

with our dataset, which consists of neutron-diffraction data for

hydrogen. However, we decided to test their parameters on

our dataset of 224 coordination polyhedra for hydrogen, to

evaluate the effect of using X-ray versus neutron data for H+;

we used their first set of parameters (Ro = 0.79 Å and B =

0.37 Å) with the shorter of the O—H distances and their

second set of parameters (Ro = 1.409 Å and B = 0.37 Å) with

the longer of the H	 	 	O distances, which resulted in an overall

RMSD of 0.181 v.u.

The lowest RMSD for bonds involving hydrogen and

oxygen (0.035 v.u.) is thus obtained for the single pair of

parameters of Grabowski (2000), and suggests that a single

pair of parameters is sufficient to deal with bonds involving

hydrogen and oxygen.

6. Use of bond-valence parameters for hydrogen–
oxygen bonds

Bond-valence parameters derived from neutron-diffraction

data (such as those we give later) are obviously not relevant to

hydrogen positions from unconstrained refinement of X-ray

diffraction data (for the reasons outlined above). However,

most information on hydrogen in crystal structures originates

from X-ray diffraction data. The best way around this situation

is to use constrained refinement in the derivation of hydrogen

positions. The Odonor—H distance may be softly constrained to

an appropriate value (� 0.96–0.98 Å) for OH and H2O groups

involved in asymmetric hydrogen bonds, and the H—H

distance in H2O groups may be constrained to � 1.55 Å

(which gives an H—O—H angle of � 105
). Of course, the

result is only approximate, but the ensuing H	 	 	Oacceptor

distances are likely to be far closer to the analogous nucleus–

nucleus distances than those derived by unconstrained X-ray

refinement. This method of refinement allows the use of bond-

valence parameters derived from neutron-diffraction data
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with bond lengths derived from X-ray diffraction data, and

usually leads to good bond-valence sums.

7. Comments on fixing the B parameter

The results of the evaluation (Table S1) give us some insight

into the practice of fixing the B parameter (to 0.37 Å), an issue

that has received some comment in recent years (Adams, 2001;

Krivovichev & Brown, 2001; Locock & Burns, 2004; Sidey,

2008, 2010; Brown, 2009, 2014; Mills et al., 2009; Krivovichev,

2012). Many ions have bond-valence parameters to oxygen

available for both fixed and refined values of B, and we may

use these ions to evaluate the effectiveness of fixing B to

0.37 Å. Out of 37 instances, 12 ions have lower RMSD values

for B = 0.37 Å, whereas 25 ions have lower RMSD values for

B 6¼ 0.37 Å. This comes as a surprise, as fitting with two

variable parameters should give at least as good a fit as fitting

with only one variable parameter. This result is probably due

to the choice of method for the derivation of the bond-valence

parameters, as this can greatly influence the quality of the fit;

the use of a poor method of derivation that allows refinement

of both Ro and B can easily lead to a poorer fit than the

method of fixing B, as will be shown later. Nonetheless,

significant improvements in fit with two variable parameters

are common. A persuasive example is that of Burns et al.

(1997). Their parameters for U6+ have B = 0.519 Å and result

in a RMSD value of 0.158 v.u. for our dataset (585 polyhedra),

whereas the other parameters (with B = 0.37 Å) give a RMSD

of 0.690 and 0.889 v.u. (Table S1). Even where bond-valence

parameters with B = 0.37 Å give low RMSD values, the fit can

be improved significantly by allowing B to vary. For example,

Mills & Christy (2013) derive new parameters for Te6+ with B

= 0.56 Å, resulting in a RMSD value of 0.146 v.u. compared

with 0.229 v.u. for the available parameters with B = 0.37 Å).

These examples suggest that both Ro and B should be varied in

the derivation of bond-valence parameters; of the 244 pairs of

bond-valence parameters examined here, 191 have B fixed at

0.37 Å.

8. Comments on the level of fit

The mean RMSD for the 244 pairs of bond-valence para-

meters evaluated here, weighted by the number of coordina-

tion polyhedra of the ions, is 0.174 v.u. [7.34% per unit of

charge using the equation of Brown & Shannon, 1973; equa-

tion (2)]. The set of best parameters available for each ion (the

128 best pairs) has a mean weighted-RMSD of 0.136 v.u.

(5.68% per unit of charge). These values are slightly higher

than those commonly reported in the literature, and to the

generally accepted ‘5% error margin’ observed by Brown &

Shannon (1973). This difference may be due to the fact that

authors typically select a small subset of ‘high-quality’ struc-

tures from the available data to derive bond-valence para-

meters, the size of which strongly influences the reported

RMSD value, which in turn does not necessarily reflect the fit

for all data. Although the data we use here have been thor-

oughly filtered for errors, our derivation of the bond-valence

parameters (below) foregoes this practice to reduce the

possibility of such bias.

From the evaluation of the published bond-valence para-

meters, we conclude that the fit of the currently available

parameters to the valence-sum rule is variable and can be

significantly improved.

9. Parameterization

9.1. Methods of derivation of the bond-valence parameters

Bond-valence parameters have been derived using a variety

of methods based on different optimization criteria for both

experimental and extrapolated data. Here we discuss the most

common methods used in the derivation of bond-valence

parameters based on experimental data.

9.1.1. Least-squares fitting. The initial form of the bond-

valence equation proposed by Brown & Shannon (1973) is

s ¼ so
R

Ro

� ��N

; ð3Þ

where s is the bond valence (called bond strength by them), R

is the bond length, so is a parameter usually set to have

R=Ro � 1, and Ro and N are the bond-valence parameters.

Brown & Shannon (1973) derived their bond-valence para-

meters in three different ways using least-squares fitting to

minimize deviations from the valence-sum rule:

(1) vary Ro and N for the incident bond-valence sums

around the cations;

(2) fix N and vary Ro for the incident bond-valence sums

around the cations;

(3) vary Ro and N for the incident bond-valence sums

around the cations and the anions.

In principle, method (3) is best as the valence-sum rule holds

around both cations and anions. However, the inclusion of the

anion bond-valence sums in the optimization is quite difficult

on a large scale (this issue will be discussed later). Brown &

Shannon (1973) generally used methods (1) and (2) to derive

their parameters. The least-squares optimization was done

using the following equation

Q ¼
Xm

i¼1

wi zi � pið Þ2; ð4Þ

where Q is the sum of the residuals, m is the number of ions of

type i, zi is the valence, pi is the bond-valence sum and wi is a

weight set to 1/�2(pi), where �(pi) is the standard error on pi.

Following the optimization, Brown & Shannon (1973) eval-

uated the quality of their parameters by calculating root-

mean-square relative deviations between the sums of the

bond-valences of an ion, and its valence [equation (2)].

9.1.2. Fixing the B parameter. Brown & Altermatt (1985)

proposed a new equation to model the bond-length to bond-

valence relation

Sij ¼ exp
Ro � Rij

B

� �
; ð5Þ
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where Rij is the bond length between ions i and j, Sij is the

bond valence, and Ro and B are the bond-valence parameters.

The valence-sum rule requires thatX
Sij ¼

X
j

exp
Ro � Rij

B

� �
¼ Vi: ð6Þ

Equation (6) may be rearranged to give equation (7)

Ro ¼ B ln
ViP

j exp
�Rij

B

� � : ð7Þ

Other than an improved fit, an advantage of this equation is

that the B parameter adopts a narrow range of values that has

a relatively low influence on the resulting bond-valence sums.

This led Brown & Altermatt (1985) to give B a fixed value of

0.37 Å for all ion pairs, which allows the exact solution of Ro

for individual cation coordination polyhedra. The value of Ro

for a given ion pair given by Brown & Altermatt (1985) is the

geometric mean value for all cation-coordination polyhedra

used in the calculation.

9.1.3. Graphical method: cation and anion sums. Krivo-
vichev (1999) pointed out that oxygen ions encapsulated as

OPb4 clusters consistently show higher-than-expected bond-

valence sums at the central anion, and Krivovichev & Brown

(2001) attributed this problem to the choice of bond-valence

parameters. They suggested a new method of derivation that

refines both Ro and B using the following equation, obtained

by rearrangement of the equation of Brown & Altermatt

(1985)

Ro ¼ c þ kB; ð8Þ
where c and k are fitted constants. Equation (8) is refined for

both the cations and the anions, and the bond-valence para-

meters are extracted at the intersection of these curves.

Krivovichev (2012) derived 8 pairs of bond-valence para-

meters using this method, but pointed out that the introduc-

tion of anion-centered coordination polyhedra into the

refinement greatly limits the applicability of the method; for

structures to be usable, not only must the cation make all

bonds to the same anion, but the anion must also make all

bonds to that same cation. This constraint is of significant

importance in data collection and precludes this method being

used for most cation–anion pairs. Furthermore, equation (8)

only holds for B ’ 0.30–0.60 Å.

9.1.4. Graphical method: cation sums. Sidey (2009)

proposed a variation of the method of Krivovichev & Brown

(2001) that also allows simultaneous determination of Ro and

B where only the bond-valence sums of the cations are opti-

mized. This enhances the applicability of the approach, and

the anion bond valences are checked a posteriori to see if they

are of acceptable quality. The valence-sum rule [equation (6)]

may be rearranged toX
j

Rij ¼ Ro � B
X

j

ln Sij: ð9Þ

For coordination environments in which all bonds are of the

same length, this equation simplifies to

Rij ¼ Ro � B ln Sij; ð10Þ

where Rij is the mean bond length and Sij is the mean bond

valence.

Graphical representation of ln Sij as a function of Rij gives B

as the slope and Ro as the y-intercept from a linear least-

squares fit for many coordination polyhedra. However, the

constraint of equal bond lengths on the coordination envir-

onment greatly restricts the amount of data that can be used

with this method. Moreover, the sole use of coordination

environments of equal bond length is generally not recom-

mended in the determination of bond-valence parameters, as

they cannot appropriately model the relation over the full

range of bond lengths of the ion pairs.

Brown (2009) used an approximation proposed by Urusov

(2003) (in dealing with the distortion theorem) in order to

circumvent the constraint on the bonding environment. A

Taylor expansion is applied to the mean bond length, Rij, to

obtain the adjusted mean bond length, Rs

Rs ¼ Rij �
�2
2B

þ �3
3B2 ; ð11Þ

where �2 is the mean-square deviation and �3 the mean-cube

deviation of the bond lengths from the mean bond length Rij.

Substituting Rs for Rij in equation (10) and changing the mean

bond-valence Sij to its ideal value of Vi=n, where Vi is the

valence of the cation and n its coordination number:

Rs ¼ Ro � B
X

j

ln
Vi

n

� �
: ð12Þ

Solution for the bond-valence parameters then follows the

same procedure as for equation (10). Although the graphical

method is attractive for providing a solution for both Ro and

B, and having wide applicability, it suffers a major drawback in

addition to the approximation introduced in equation (11):

rather than minimizing deviations between the sum of the

bond valences and the valence of the ion, the parameters

derived by this method are based on minimization of bond-

length deviations from the mean, and hence do not relate

directly to the valence-sum rule. Moreover, this method

assumes that variations in mean bond lengths are solely the

result of distortion, whereas variation in coordination number

of the anions can also contribute in a major way to variations

in mean bond length (e.g. Shannon, 1976). The method also

fails for certain ions showing very large gaps in their bond-

length distributions (e.g. H+, Se4+, I5+, discussed below).

9.1.5. RMSD minimization. Brown (2002) proposed mini-

mizing the squared difference between the sum of the bond

valences and the valence (oxidation state) of the ion

X
i

Vi �
X

j

Sij

 !2

! 0: ð13Þ

Mills et al. (2009) reformulated this optimization into a mini-

mization of the root-mean-square deviation
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RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

P
j Sij � Vi

� �2
n

s
! 0; ð14Þ

where the minimization is done over n cation coordination

polyhedra. They generally report their results in v.u. but also

sometimes in % deviation per unit of charge [equation (2)].

Whereas equations (13) and (14) lead to the same result,

equation (14) is more appropriate for reporting these results,

as the squared deviation from equation (13) is extensive, i.e.

the resultant value is dependent on the number of coordina-

tion polyhedra used in the minimization, whereas the RMSD

from equation (14) is intensive, i.e. it is independent of the

number of coordination polyhedra used.

A significant drawback of the RMSD minimization

(although not exclusive to it) is found in its weighting scheme.

In this minimization, every coordination polyhedron is

weighted equally, meaning that the dominant coordination

number of a cation can easily dominate the optimization at the

expense of others. A classic example of this failure is for Si4+,

with � 100 times more data for coordination 4 than for

coordination 6. When deriving bond-valence parameters for

Si4+ by minimizing the RMSD, we obtain stellar agreement for

coordination number 4, with a mean bond-valence sum (BVS)

of 3.99 v.u., and overall (mean BVS 4.00 v.u., RMSD =

0.097 v.u.), but the refined parameters yield a mean bond-

valence sum of 4.54 v.u. for coordination 6. We observe this

result to various degrees for all ions with multiple coordina-

tion numbers, and hence minimizing the RMSD is often not

reliable. However, the minimization can be modified to

become an integral part of the method of derivation of choice

(next).

9.2. Generalized reduced gradient (GRG) method of RMSD
minimization

To address the problem described above, we (1) use a

weighting scheme that finds a balance between overall fit, and

fit on the basis of coordination number, and (2) introduce the

use of a new search algorithm.

9.2.1. The generalized reduced gradient method. The

search for the global minimum involving equation (14) has so

far been done iteratively, by varying the bond-valence para-

meters until a minimum, presumably the global minimum, was

found (Mills et al., 2009; Mills & Christy, 2013). However, this

method is not practicable when dealing with more than a

handful of ions.

We propose using the generalized reduced gradient (GRG)

search algorithm (Abadie & Carpentier, 1969) in combination

with the RMSD minimization. We chose this algorithm

because (1) it can deal with the optimization of non-linear

equations, (2) it is very efficient (convergence occurs in a

matter of seconds), (3) it consistently gives a better fit to the

data than other search algorithms used, and always converges

to the same value for each ion pair.

While the GRG optimization has proved to be much more

effective than an iterative search method, the use of a search

algorithm generally raises concern as to whether the mini-

mization obtained is a local minimum as opposed to the global

minimum. Mills & Christy (2013) show that contour plots of

RMSD as a function of Ro and B for Te4+ and Te6+ are smooth

and concave in shape, but the plots only cover a narrow range

of values around the extracted parameters. In Fig. 1 we show

(for Fe3+) that the shape remains concave over a much larger

range of values, and no maxima, saddle points or other minima

are observed. As a result, convergence can only lead to the

global minimum. Note that both Fig. 1 and the plot of Mills &

Christy (2013) show that the contour lines can have a

pronounced oval shape; thus different combinations of values

for Ro and B can lead to the same level of fit over a non-

negligible range of values for the cations (although different

parameters from one contour line may give different anion

BVS), which may be deceptive in an iterative search for the

global minimum.

9.2.2. Weighting scheme. To deal with the weighting issue

for the different coordinations of an ion (as discussed for Si4+),

we introduced a second optimization criterion where we

additionally minimize the RMSD between the mean bond-

valence sum of the observed coordination numbers of an ion

and the oxidation state of that ion (i.e. coordination-based

RMSD minimization). Following experimentation with

weighting schemes, we concluded that a 2:1 ratio between

overall RMSD and coordination-based RMSD gave the best

results, in keeping the overall RMSD low while supressing the

dominant effect of certain coordination numbers.

Hence, the GRG method of RMSD minimization proposed

here implicitly entails optimization on both the overall and

coordination-based RMSD (denoted hereon as the GRG

method), and addresses many shortcomings of the other

methods of derivation in that it (1) refines both bond-valence

research papers

Acta Cryst. (2015). B71, 562–578 Olivier Charles Gagné et al. � Derivation of bond-valence parameters 567

Figure 1
RMSD (v.u.) from the valence-sum rule as a function of the bond-valence
parameters for Fe3+.
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parameters, (2) optimizes the appropriate quantity, (3) does

not require approximations and (4) is universally applicable.

The main drawback of this new method (although it is a

drawback of most methods) is that it does not optimize the

anion bond-valence sums. However, as will be discussed

below, optimizing the anion bond-valence sums may not be

necessary, and is not practical on the scale of this study. Where

using this method, the bond-valence sums of the anions are

tested a posteriori.

In this work, the GRG method used a multi-start approach

of 1000 random starting pairs of variables until convergence to

the fourth decimal place using forward derivative.

9.3. Comparison of the most common methods of derivation

First we will focus on ions that occur in more than one

coordination by O2�; of the 135 ions examined here, 45 have

only one coordination number and 90 have more than one

coordination number. Table 1 compares two common methods

of derivation to the GRG method for the 90 ions. The first and

second columns give the ion identity and number of coordi-

nation polyhedra obtained in our bond-length dispersion

analysis, respectively. The third column gives the RMSD of the

set of best published parameters, taken from Table S1. The

fourth column gives the RMSD obtained using the graphical

method [equation (12)]. The fifth column gives the RMSD by

setting B = 0.370 Å and refining Ro in the same way as the

GRG method, and the last column gives the RMSD values for

the GRG method, refining both Ro and B.
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Table 1
Comparison between the RMSD values (v.u.) of the set of best published
bond-valence parameters and the values obtained for bond-valence
parameters derived using common methods of derivation for the
90 multiple-coordination-number ions.

Ion

No. of
coordination
polyhedra

Best
published
parameters

Graphical
method

Fixing B
at 0.370 Å

GRG method
(this work)

H+ 224 0.035 0.532 0.040 0.033
Li+ 690 0.092 0.091 0.115 0.077
Be2+ 169 0.080 0.092 0.082 0.092
B3+ 1572 0.069 0.069 0.068 0.069
N5+ 497 0.162 0.118 0.164 0.118
Na+ 1683 0.132 0.172 0.157 0.143
Mg2+ 469 0.120 0.119 0.121 0.110
Al3+ 856 0.121 0.109 0.115 0.108
Si4+ 2530 0.126 0.119 0.128 0.119
Cl3+ 5 0.151 0.374 0.087 0.086
K+ 1479 0.155 0.212 0.171 0.164
Ca2+ 1168 0.171 0.174 0.176 0.163
Sc3+ 88 0.152 0.112 0.140 0.108
Ti3+ 24 0.183 0.099 0.161 0.094
Ti4+ 324 0.139 0.155 0.139 0.143
V3+ 70 0.130 0.113 0.129 0.115
V4+ 226 0.121 0.109 0.103 0.105
V5+ 714 0.117 0.105 0.114 0.105
Cr2+ 17 0.090 0.064 0.060 0.060
Cr4+ 7 0.242 0.156 0.185 0.156
Mn2+ 392 0.124 0.124 0.126 0.116
Mn3+ 94 0.128 0.173 0.130 0.166
Mn4+ 21 0.122 0.120 0.122 0.120
Fe2+ 192 0.135 0.115 0.133 0.114
Fe3+ 466 0.137 0.140 0.138 0.139
Co2+ 304 0.102 0.099 0.099 0.100
Ni2+ 255 0.105 0.110 0.107 0.107
Cu+ 57 0.133 0.081 0.079 0.078
Cu2+ 716 0.084 0.103 0.085 0.085
Zn2+ 461 0.085 0.086 0.087 0.085
Ga3+ 228 0.139 0.139 0.138 0.136
Ge4+ 350 0.148 0.152 0.148 0.149
As3+ 28 0.127 0.485 0.086 0.065
As5+ 526 0.108 0.111 0.109 0.111
Se4+ 202 0.147 47.223 0.090 0.083
Br5+ 9 0.147 3.771 0.104 0.064
Rb+ 464 0.186 0.233 0.171 0.150
Sr2+ 377 0.222 0.225 0.221 0.189
Y3+ 178 0.157 0.140 0.157 0.140
Zr4+ 117 0.135 0.106 0.135 0.106
Nb5+ 251 0.161 0.162 0.157 0.157
Mo5+ 76 0.136 0.252 0.116 0.131
Mo6+ 970 0.147 0.145 0.140 0.143
Ag+ 200 0.088 0.085 0.080 0.081
Cd2+ 164 0.122 0.092 0.102 0.088
In3+ 125 0.200 0.113 0.143 0.111
Sn2+ 50 0.135 0.125 0.147 0.082
Sn4+ 38 0.195 0.158 0.196 0.158
Sb3+ 54 0.085 0.178 0.130 0.084
Te4+ 212 0.107 4 � 104 0.108 0.104
I5+ 134 0.113 108.803 0.130 0.107
I7+ 36 0.327 0.199 0.212 0.196
Cs+ 544 0.138 0.176 0.143 0.135
Ba2+ 857 0.237 0.248 0.231 0.217
La3+ 182 0.162 0.159 0.153 0.155
Ce3+ 76 0.162 0.132 0.137 0.131
Ce4+ 28 0.176 0.124 0.154 0.122
Pr3+ 99 0.185 0.135 0.146 0.134
Nd3+ 203 0.160 0.163 0.159 0.159
Sm3+ 97 0.171 0.149 0.150 0.145
Eu2+ 3 0.071 0.028 0.047 0.024
Eu3+ 49 0.196 0.142 0.132 0.134
Gd3+ 107 0.188 0.141 0.138 0.129
Tb3+ 48 0.122 0.116 0.117 0.115
Dy3+ 70 0.174 0.134 0.134 0.129

Table 1 (continued)

Ion

No. of
coordination
polyhedra

Best
published
parameters

Graphical
method

Fixing B
at 0.370 Å

GRG method
(this work)

Ho3+ 81 0.188 0.129 0.133 0.128
Er3+ 102 0.141 0.138 0.134 0.133
Tm3+ 44 0.184 0.146 0.143 0.140
Yb3+ 82 0.169 0.260 0.172 0.174
Lu3+ 53 0.175 0.171 0.170 0.162
Hf4+ 22 0.095 0.087 0.087 0.087
Ta5+ 162 0.214 0.183 0.185 0.195
W6+ 436 0.181 0.207 0.182 0.188
Re7+ 59 0.923 0.192 0.237 0.191
Os7+ 7 – 0.230 0.197 0.209
Os8+ 8 0.608 0.264 0.266 0.233
Ir4+ 17 0.243 0.136 0.239 0.136
Hg2+ 52 0.129 0.143 0.120 0.120
Tl+ 74 0.113 0.101 0.113 0.098
Tl3+ 9 0.294 0.080 0.145 0.079
Pb2+ 276 0.125 0.118 0.177 0.111
Pb4+ 12 0.286 0.184 0.219 0.181
Bi3+ 231 0.190 0.149 0.152 0.138
Bi5+ 11 0.316 0.202 0.195 0.203
Th4+ 27 0.221 0.167 0.182 0.163
U4+ 18 0.166 0.123 0.116 0.116
U5+ 4 0.239 0.089 0.214 0.030
U6+ 585 0.158 0.786 0.226 0.161
Np5+ 33 0.820 0.126 0.073 0.061
Np6+ 7 1.209 0.745 0.169 0.083
Weighted mean 0.140 0.161† 0.139 0.128
No. of improvements 59 62 76

† Without the values for Se4+, Br5+, Te4+ and I5+ where the method fails.
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We use the set of best published parameters (Table S1) as a

benchmark to evaluate the other methods. Table 1 shows that

the graphical method gives better parameters for 59 of the 90

ions with more than one coordination number, 62 for the

method of fixing B at 0.37 Å, and 76 for the GRG method.

One of the major problems of the graphical method is

observed for ions showing large gaps in their bond-length

distributions, such as Se4+ (RMSD = 47.223 v.u.), Te4+

(4 � 104 v.u.), I5+ (108.803 v.u.), where the approximation of

the ‘adjusted mean bond length (Rs)’ fails, and unusual values

of the bond-valence parameters are obtained (e.g. Ro = 2.119

and B = �0.052 for Te4+).

In terms of the mean weighted-RMSD (weighted by the

number of coordination polyhedra), a higher value is obtained

for the graphical method than for the set of best published

parameters with values of 0.161 v.u. (7.96% per unit of charge)

and 0.140 v.u. (6.5% per unit of charge), respectively, despite

omitting the ions with RMSD > 1 v.u. in the calculation for the

graphical method. The method of fixing B gives an overall fit

similar to the set of best published parameters, with a mean

weighted-RMSD of 0.139 v.u. (6.7% per unit of charge). In

contrast, the GRG method shows significant lowering of the

mean weighted-RMSD with 0.128 v.u (6.1% per unit of

charge).

These results for the GRG method are welcome improve-

ments, and confirm our choice of a 2:1 weighting scheme

between overall RMSD and coordination-based RMSD. This

weighting scheme thus allows a significant improvement in

overall fit for cations, without sacrificing the fit of the different

coordination numbers of the cations (i.e. allowing a very small

increase in the RMSD leads to overwhelmingly better agree-

ments over the entire range of coordination numbers of an

ion). Moreover, we found the GRG method to give much

better bond-valence sums for the anions than a regular RMSD

minimization (see below).

9.4. General considerations

9.4.1. Optimizing both cation and anion bond-valence
sums. The valence-sum rule states that the sum of the bond

valences for an ion is equal to the valence of that ion (Brown,

2002), and does not discriminate between cations and anions.

The tendency to focus on the bond-valence sums of the cations

more than those of the anions arises from the fact that cation-

centered coordination polyhedra commonly involve a single

type of anion, whereas anion-centered coordination polyhedra

commonly do not, although exceptions such as MgO and NaCl

do occur.

Modifying equation (14) to include the m anions in the

summation leads to

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnþm

i¼1

P
j Sij � Vi

� �2
n þ m

s
! 0: ð15Þ

Equation (15) can be solved in two ways to extract the

bond-valence parameters. First, the optimization can be done

on the basis of individual crystal structures, and the resulting

parameters are averaged over all crystal structures used.

However, the requirement of having at least two unique and

linearly independent coordination environments (e.g. two

cation environments in different coordination numbers, or one

cation environment and one anion environment for the same

ion pair) for every bonded pair of ions in every crystal

structure renders this method practically inoperable.

The second (and more conventional) way of solving equa-

tion (15) consists of optimizing the bond-valence sums on the

basis of single coordination polyhedra. In this case, bonding

environments are recorded for both cations and anions. A

single optimization is then run for the coordination polyhedra

of all crystal structures combined, to simultaneously solve for

the bond-valence parameters of all pairs of ions. Whereas this

removes the constraint on the bonding environments that

makes the solution on the basis of individual crystal structures

impractical, this method introduces a new drawback: the

ensuing optimization results in a large system of (non-linear)

equations, of dimension D where

D ¼ 2ðnmÞ; ð16Þ
where n and m are the numbers of cations and anions,

respectively, and D is the minimum number of linearly inde-

pendent equations required to solve equation (15) for all

bond-valence parameters. Furthermore, any sensible attempt

at solving equation (15) using this approach necessarily entails

a highly over-determined system of equations for the results to

be significant. In this study, we have 135 cations bonded to a

single anion (O2�), and thus D ¼ 270. Whereas we need a

minimum of 270 equations to solve equation (15) for the 135

pairs of bond-valence parameters, we derived 31 521 non-

linear equations from the valence-sum rule, for the cation

coordination polyhedra alone. We did not collect the bond-

length data of anion-centered coordination polyhedra, but the

number of resulting equations would be somewhat similar.

While the simultaneous optimization of � 60 000 270-dimen-

sional non-linear equations may not be impossible, this kind of

calculation is very impractical.

A number of approximations can be made to circumvent

this problem: (1) limit the number of ion environments in the

refinement to only a couple of ions (e.g. Krivovichev, 2012),

(2) increase the ‘universality’ of the parameterization to lower

the number of bond-valence parameters (e.g. one pair per

isoelectronic series; Brown & Shannon, 1973), or (3) optimize

the cation bond-valence sums only, and verify that the anion

sums work a posteriori.
9.4.2. On the universality of the bond-valence equation.

The universality of the bond-length to bond-valence relation is

generally understood to mean the transferability of the rela-

tion between pairs of ions from structure to structure.

However, it is important to realise that selection of the level of

universality on the basis of pairs of ions is arbitrary, and

depends on the quality of fit desired.

Bond-valence parameters can be derived with different

levels of universality. Coulomb’s law, which is arguably at the

core of the relation (Preiser et al., 1999), offers an extreme

case where only eight pairs of bond-valence parameters are

required to model all ions bonding to oxygen (i.e. a pair of
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bond-valence parameters for each cation oxidation state, 1+ to

8+). However, this parameterization would yield a very poor

fit due to structural and electronic effects that are not trans-

ferable between ions of the same charge. Conversely, reducing

the universality from ion pairs to (for example) specific

coordination environments could increase the fit to the

valence-sum rule slightly, although at the cost of a more

cumbersome parametrization. Two levels of universality are

compared by Brown & Shannon (1973) in their initial

description of the relation. They derive parameters based on

isoelectronic series, reporting a root-mean-square relative

deviation [equation (2)] of 5.4% per unit of charge for a total

of 27 ion pairs, compared with 4.0% per unit of charge for

parameters derived for individual ion pairs. This result led to a

widespread use and derivation of parameters based on ion

pairs, which today still seems like the best compromise

between universality and fit.

9.4.3. Minimization using a priori bond valences. A priori

bond valences (called theoretical by Brown, 1987; and ideal by

Brown, 2013) are obtained by solution of the network equa-

tions of a crystal structure (see Brown, 2002). Brown (2002)

suggests optimizing the bond-valence parameters on the basis

of minimization of the squared difference between observed

and a priori bond valences. This approach has not yet been

examined, and we note that it is not equivalent to the methods

examined above (x9.1). Aside from the method of Krivovichev

(Krivovichev & Brown, 2001; Krivovichev, 2012), the methods

examined above rely on minimizing the RMSD of the bond-

valence sums around the cations and omit consideration of the

anions. As a priori bond valences are derived from all the

valence-sum-rule equations in a structure (usually augmented

by loop equations), it follows that optimizing bond-valence

parameters with reference to observed and a priori bond

valences is equivalent to optimizing the valence-sum rule for

all ions (cations and anions) in a structure. However, this

method faces a similar constraint as for the solution of

equation (15): a very large number of high-dimensional non-

linear equations to solve.

9.5. The bond-length–bond-valence equation

We now have an effective method for the derivation of

bond-valence parameters (the GRG method), and have

determined that (1) the minimization should be done on the

cation bond-valence sums, while the anion bond-valence sums

are verified a posteriori, and (2) the most useful level of

universality remains on the basis of ion pairs. In this section,

we use these criteria to examine new potential equations to

describe the bond-length–bond-valence relation.

9.5.1. Evolution of the bond-length–bond-valence equa-
tion. Generalization of equation (14) shows that the desired

optimization entails minimization of the difference between

the valence of the cation Vi and some function of the inde-

pendent parameter xi, f xið Þ

Vi �
X

f xið Þ ! 0: ð17Þ

Pauling (1929) first used coordination number as the inde-

pendent parameter

f xið Þ ¼ Vi

ni

; ð18Þ

where ni is the coordination number of cation i. Taking the

sum on each side of equation (18)X
f xið Þ ¼

XVi

ni

¼ ni

Vi

ni

� �
¼ Vi: ð19Þ

Equation (17) [and by extension equation (14)] has an exact

solution

Vi �
X

f xið Þ ¼ Vi � Vi ¼ 0: ð20Þ
In short, Pauling suggested an exact solution to equation (14).

However, with this parameterization, there is the lack of

correspondence between the resulting anion bond-strength

sums and the oxidation states of the anion(s).

Pauling (1947) proposed using bond length as a parameter

in describing electron-sharing in metallic bonds

R 1ð Þ � R nð Þ ¼ 0:300 log n; ð21Þ
where R(1) is the length of the shortest bond in the coordi-

nation polyhedron, R(n) is the length of the bond considered,

and n is the bond number (the number of bonding electrons).

This equation was used by Byström et al. (1951) to show (from

bond-length considerations) that the sum of the bond numbers

around V in V2O5 is 4.96, fairly close to the vanadium

oxidation state of 5. Subsequent contributions to the relation

(Smith, 1953; Zachariasen, 1954, 1963; Zachariasen & Plet-

tinger, 1959; Evans & Mrose, 1960; Evans, 1960; Pant &

Cruickshank, 1967; Clark et al., 1969; Perloff, 1970, Donnay &

Allmann, 1970) led to a major advance in the parameteriza-

tion of f xið Þ by Brown & Shannon (1973) who proposed a

universal correlation between bond length and bond strength

(transferable from structure to structure) using equation (2).

This equation was later updated by Brown & Altermatt (1985)

to equation (5), which is still in use today. Other equations

have been proposed (Ziółkowski, 1985; Naskar et al., 1997;

Valach, 1999; Mohri, 2000) that commonly attempt to give a

physical justification to the bond-length–bond-valence rela-

tion, but they are of more complicated form and have not seen

wide application.

Note that the choice of bond length as a parameter,

although well ingrained in the bond-valence method, is not

required by bond-valence theory, as none of the three axioms

of the theory (see Brown, 2002) mention bond lengths, and it is

feasible in principle that other parameters could be found in

the future.

9.5.2. Derivation of new equations. In deriving new

equations to model the relation, we must keep in mind that the

number of coordination environments required to solve for

the bond-valence parameters of a pair of ions is at least equal

to the number of parameters of the equation used in

describing the relation. In other words, the addition of para-

meters to increase the degree of fit is not without conse-

quences, as many ions have few different coordination
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numbers. The conventional choice of a two-parameter equa-

tion to represent the bond-valence relation means that at least

two distinct coordination environments are necessary to solve

for the parameters of the equation. As noted above, of the 135

ions examined in this work, 45 ions occur in only one coor-

dination, making this a common and significant problem in the

derivation of bond-valence parameters.

To derive new equations for the description of the bond-

length to bond-valence relation, we focused on a specific ion

assumed to be representative of the relation. We used Al3+ for

this purpose as (1) it covers a wide range of bond valences, and

(2) a large amount of structural data on crystals containing

Al3+ is available.

51 crystal structures containing Al3+ were selected from the

Inorganic Crystal Structure Database (ICSD), following a

strict set of filtering criteria: (1) the site of interest is fully

occupied by Al3+; (2) R1 < 0.03; (3) the structure contains no

H; (4) all sites in the structure are fully occupied and show no

positional disorder; (5) the structure is not extensively

strained; (6) the structure contains no ions showing known

stereochemical electronic effects (e.g. [6]Cu2+, [6]Mn3+); (7)

crystallographic data were measured at ambient conditions;

(8) there is no heterovalent solid solution at any site; (9) there

is no more than 10% homovalent solid-solution at any site

other than that occupied by Al3+. The coordination polyhedra

must also be clearly defined; any doubt resulted in a discarded

entry. Table S2 gives the ICSD code of the resulting 51 crystal

structures, their R value (mean = 0.019), and the number of

Al-centered coordination polyhedra used for each structure

(for a total of 90). Note that duplicate structure types are used,

as long as there is a significant change in site occupancy.

The network equations were derived for each of the 51

crystal structures to determine their a priori bond valences

using the method of Rutherford (1990). The a priori bond

valences were then compared with their respective experi-

mental bond lengths, for a total of 481 pairs. The resulting plot

is shown in Fig. 2. A series of simple equations were then fitted

to the data points by least-squares minimization. These

equations are considered next.

9.5.3. Two-parameter equations: sample evaluation. The
top 17 two-parameter equations obtained in the above fitting

procedure were selected for further analysis. These equations

are given in Table 2 and are identified by the numbers in

square brackets. They include the exponential equation of

Brown &Altermatt (1985) as equation [1]. We group the three

equations containing an external parameter (a parameter that

is not a multiplier of x) as equations [15]–[17], and add two

more equations: the original equation of Brown & Shannon

(1973), equation [18], and an expression related to the Born–

Landé (1918) equation, equation [19].

To evaluate these equations, we considered eight relatively

common ions that cover different types of bonding behavior:

Na+, Al3+, Si4+, Ca2+, Mn2+, Mo6+, La3+ and Pb2+. We used the
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Figure 2
Determination of the curvature of the bond-valence relation by a match
of the a priori bond valences to their observed bond lengths.

Table 2
RMSD values (v.u.) for a sample of ions for 19 different two-parameter equations fitted with the GRG method.

Equation Na+ Al3+ Si4+ Ca2+ Mn2+ Mo6+ La3+ Pb2+ Mean

[1] y = exp[(a � x)/b] 0.143 0.108 0.119 0.163 0.116 0.143 0.155 0.111 0.132
[2] y = (a + bx)2 0.127 0.114 0.109 0.164 0.129 0.129 0.180 0.117 0.134
[3] y = [a + bln(x)]2 0.129 0.111 0.113 0.163 0.114 0.131 0.172 0.110 0.130
[4] y = (a + bx0.5)2 0.129 0.112 0.111 0.163 0.119 0.129 0.176 0.113 0.132
[5] y = 1/(a + bx) 0.136 0.109 0.147 0.174 0.109 0.316 0.158 0.178 0.166
[6] y = 1/(a + bx0.5) 0.155 0.110 0.151 0.175 0.109 0.339 0.162 0.186 0.173
[7] y = 1/(a + bx1.5) 0.166 0.109 0.144 0.173 0.109 0.292 0.155 0.170 0.165
[8] y = 1/[a + bx0.5ln(x)] 0.159 0.109 0.148 0.174 0.096 0.322 0.159 0.180 0.168
[9] y = 1/[a + bexp(�x)] 0.147 0.112 0.160 0.178 0.110 0.410 0.178 0.219 0.189
[10] y = 1/[a + bexp(x)] 0.136 0.108 0.136 0.168 0.111 0.233 0.147 0.140 0.147
[11] y = exp(a + bx0.5) 0.133 0.108 0.122 0.163 0.115 0.150 0.153 0.114 0.132
[12] y = exp[a + bln(x)] 0.135 0.107 0.125 0.164 0.114 0.159 0.151 0.118 0.134
[13] y = exp[a + bexp(�x)] 0.139 0.107 0.129 0.168 0.112 0.178 0.147 0.136 0.139
[14] y = [a + bexp(�x)]2 0.132 0.109 0.117 0.162 0.115 0.136 0.160 0.110 0.130
[15]† y = a + bexp(�x) 0.128 0.117 0.107 0.165 0.118 0.143 0.188 0.126 0.136
[16]† y = a + bx0.5 0.127 0.123 0.101 0.173 0.123 0.178 0.211 0.168 0.151
[17]† y = a + bln(x) 0.127 0.120 0.104 0.170 0.121 0.165 0.206 0.157 0.146
[18]‡ y = s0(a/x)

�b 0.135 0.107 0.125 0.164 0.114 0.159 0.151 0.118 0.134
[19] y = a/x2 + b/r3 0.132 0.109 0.121 0.162 0.114 0.140 0.167 0.109 0.132

† Has an external parameter. ‡ Added manually.
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GRG method to derive bond-valence parameters for each of

these eight ions bonded to O2� for the 19 equations of Table 2.

Table 2 gives the RMSD obtained by the GRG method for

each equation, for each ion. Thus, the current form of the

relation, equation [1], gives a mean RMSD of 0.132 v.u for the

ions considered. Many equations give a RMSD similar to that

of equation [1], and five of the 19 equations ([3], [4], [11], [14]

and [19]) give an equal or slightly lower mean RMSD

(including the expression related to the Born–Landé equa-

tion). The original equation of Brown & Shannon (1973),

equation [18], also gives reasonable results with a mean

RMSD of 0.134 v.u. for the sample of ions considered. The

mean RMSD of the 14 best-fit equations with no external

parameters ([1]–[14]) is 0.148 v.u. The top three equations

with one external parameter (equations [15]–[17]) have a

mean RMSD of 0.144 v.u., which indicates that although the

presence of an external parameter removes some flexibility in

the shape of the curve, it does not necessarily reduce the fit.

9.5.4. Two-parameter equations: full evaluation of best
equations. Next, we selected six two-parameter equations that

gave a similar or better fit to that of the equation of Brown &

Altermatt (1985; equation [1]) on the sample of eight ions

(equations [2], [3], [4], [14], [15], [19]) and compared them to

that equation for the 90 multiple-coordination-number ions of

our bond-length dispersion analysis. Bond-valence parameters

were derived for the seven equations, for each of the 90 ions,

using the GRGmethod of derivation. The resulting RMSD for

the six equations obtained for the 90 ions are given in Table

S3. Using the number of coordination polyhedra for each ion

as a weighting factor, equations [3], [4] and [14] give a mean

weighted-RMSD of 0.128 v.u., equations [2] and [19] 0.129 v.u.,

and equation [15] 0.13 v.u., compared with 0.128 v.u. (Table 1)

for equation [1].

In addition to the similarity of the overall values, there is

little spread in the RMSD values of the different equations of

Table S3 (mean standard deviation of 0.005 v.u. on the basis of

ions). This leads to two conclusions: (1) many equations (and

in various forms) can describe the relation, and (2) we have

likely reached a plateau in the fit for two-parameter equations.

It is notable that the equation of Brown & Altermatt (1985)

leads to the best fit (tied here with equations [3], [4] and [14]),

even though we derive the equation and its bond-valence

parameters in a different way than Brown &Altermatt, and on

a very different dataset. This is a welcome result, as it does not

warrant update of the well established ‘exponential equation’;

only an improved set of bond-valence parameters is

needed.

9.5.5. Three-parameter equations: sample evaluation. Next
we examined three-parameter equations using the same

procedure as above. Six three-parameter equations were

selected for evaluation over the sample of ions (above) and

are given in Table 3 (equations [20]–[25]). We also add a third

(external) parameter to the best two-parameter equation of

Table 2 (equation [26]), bringing the total to seven three-

parameter equations.

The lowest mean weighted-RMSD for the sample was

obtained for equations [20]–[22] with a value of 0.119 v.u.,

compared with 0.130 v.u. for the best two-parameter equations

(Table 2, equations [3] and [14]). Despite the decrease in

RMSD, there are three drawbacks that make the three-para-

meter equations less attractive: (1) the derivation of the bond-

valence parameters requires at least three coordination

environments per ion; (2) the search for the global minimum

of the RMSD (for evaluation of the bond-valence parameters)

becomes much less reliable as the RSMD landscape (i.e. Fig.

1) becomes more complicated; (3) the bond-valence para-

meters cannot be interpolated to ions with less than three

coordination numbers because of high variability, and, of the

135 ions used here, 64 ions have less than three coordination

numbers. Thus, three-parameter fits do not seem desirable, at

least at the present time.

9.5.6. The bond-valence equation: conclusions. From our

search for a new equation, we conclude that (1) many equa-

tions can model the bond-length–bond-valence relation

adequately; (2) the loss of trends in the bond-valence para-

meters for three-parameter equations discourages their use;

(3) the current form of the relation given by Brown &

Altermatt (1985) shows the best compromise between

applicability and fit.

9.6. New bond-valence parameters

New bond-valence parameters were derived in the same

way as for the trial equations (above), that is by minimization

of the difference between the sum of the bond valences of an

ion and its valence using the GRG method. The bond-valence

parameters of the 90 ions with more than one coordination

number are given in Table 4 for the equation of Brown &

Altermatt (1985). Table 4 also includes 45 additional pairs of

parameters for those ions with only one coordination number,
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Table 3
RMSD values (v.u.) for a sample of ions for seven different three-parameter equations fitted with the GRG method.

Equation Na+ Al3+ Si4+ Ca2+ Mn2+ Mo6+ La3+ Pb2+ Mean

[20] y = exp(a + bx + cx2) 0.127 0.105 0.075 0.159 0.114 0.120 0.146 0.107 0.119
[21] y = (a + + cx2)2 0.127 0.104 0.075 0.159 0.110 0.125 0.147 0.108 0.119
[22] y = 1/(a + bx + cx2) 0.126 0.108 0.078 0.159 0.110 0.115 0.146 0.107 0.119
[23] y = (a + cx)/(1 + bx) 0.127 0.117 0.117 0.165 0.117 0.129 0.152 0.114 0.130
[24] y = (a + cx2)/(1 + bx2) 0.127 0.114 0.117 0.162 0.115 0.130 0.150 0.110 0.128
[25] y = (a + cx0.5)/(1 + bx0.5) 0.127 0.118 0.117 0.166 0.119 0.129 0.153 0.117 0.131
[26]† y = (a + bln(x))2 + c 0.127 0.103 0.161 0.159 0.110 0.129 0.147 0.108 0.130

† Added manually
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Table 4
New bond-valence parameters derived with the GRG method for ions
bonded to O2�.

Ion

No. of
coordination
polyhedra Ro (Å) B (Å) RMSD (v.u.)

Method of
interpolation†

H+ 224 0.918 0.427 0.033
Li+ 690 1.062 0.642 0.077
Be2+ 169 1.429 0.297 0.092
B3+ 1572 1.372 0.357 0.069
C4+ 433 1.398 0.399 0.086 3
N5+ 497 1.492 0.482 0.118
Na+ 1683 1.695 0.420 0.143
Mg2+ 469 1.608 0.443 0.110
Al3+ 856 1.634 0.390 0.108
Si4+ 2530 1.624 0.389 0.119
P3+ 7 1.655 0.399 0.079 3
P5+ 3691 1.624 0.399 0.099 3
S4+ 30 1.643 0.399 0.087 3
S6+ 906 1.634 0.399 0.111 3
Cl3+ 5 1.722 0.370 0.086
Cl5+ 9 1.703 0.428 0.068 2
Cl7+ 65 1.669 0.428 0.138 2
K+ 1479 2.047 0.398 0.164
Ca2+ 1168 1.907 0.409 0.163
Sc3+ 88 1.780 0.452 0.108
Ti3+ 24 1.654 0.545 0.094
Ti4+ 324 1.819 0.342 0.143
V3+ 70 1.718 0.412 0.115
V4+ 226 1.776 0.364 0.105
V5+ 714 1.799 0.388 0.105
Cr2+ 17 1.761 0.350 0.060
Cr3+ 104 1.725 0.361 0.114 1
Cr4+ 7 1.783 0.410 0.156
Cr5+ 1 1.777 0.375 – 2
Cr6+ 169 1.799 0.375 0.146 2
Mn2+ 392 1.740 0.417 0.116
Mn3+ 94 1.823 0.247 0.166
Mn4+ 21 1.750 0.374 0.120
Mn5+ 8 1.781 0.375 0.091 2
Mn6+ 2 1.814 0.375 0.118 2
Mn7+ 7 1.819 0.375 0.121 2
Fe2+ 192 1.658 0.447 0.114
Fe3+ 466 1.766 0.360 0.139
Co2+ 304 1.698 0.376 0.100
Co3+ 15 1.655 0.364 0.100 1
Co4+ 1 1.729 0.358 – 1
Ni2+ 255 1.689 0.347 0.107
Ni4+ 5 1.734 0.335 0.040 1
Cu+ 57 1.601 0.335 0.078
Cu2+ 716 1.687 0.355 0.085
Cu3+ 11 1.737 0.375 0.137 2
Zn2+ 461 1.684 0.383 0.085
Ga3+ 228 1.736 0.345 0.136
Ge4+ 350 1.750 0.363 0.149
As3+ 28 1.775 0.423 0.065
As5+ 526 1.765 0.352 0.111
Se4+ 202 1.805 0.401 0.083
Se6+ 191 1.797 0.399 0.104 3
Br5+ 9 1.890 0.571 0.064
Br7+ 2 1.850 0.428 0.052 2
Rb+ 464 1.993 0.478 0.150
Sr2+ 377 1.958 0.479 0.189
Y3+ 178 1.978 0.407 0.140
Zr4+ 117 1.913 0.406 0.106
Nb4+ 3 1.853 0.479 0.048 1
Nb5+ 251 1.909 0.369 0.157
Mo3+ 5 1.792 0.436 0.053 1
Mo4+ 9 1.834 0.404 0.053 1
Mo5+ 76 1.888 0.314 0.131
Mo6+ 970 1.903 0.349 0.143
Tc7+ 6 1.915 0.375 0.070 2
Ru3+ 3 1.745 0.401 0.004 1
Ru4+ 8 1.833 0.366 0.121 1

Table 4 (continued)

Ion

No. of
coordination
polyhedra Ro (Å) B (Å) RMSD (v.u.)

Method of
interpolation†

Ru5+ 23 1.894 0.346 0.156 1
Rh3+ 11 1.769 0.369 0.162 1
Rh4+ 3 1.836 0.422 0.088 1
Pd2+ 29 1.749 0.375 0.104 2
Pd4+ 2 1.856 0.352 0.038 1
Ag+ 200 1.875 0.359 0.081
Cd2+ 164 1.827 0.430 0.088
In3+ 125 1.823 0.459 0.111
Sn2+ 50 1.910 0.451 0.082
Sn4+ 38 1.946 0.274 0.158
Sb3+ 54 1.932 0.435 0.084
Sb5+ 183 1.892 0.475 0.167 1
Te4+ 212 1.960 0.389 0.104
Te6+ 155 1.922 0.387 0.208 2
I5+ 134 1.992 0.474 0.107
I7+ 36 1.930 0.299 0.196
Cs+ 544 2.296 0.411 0.135
Ba2+ 857 2.223 0.406 0.217
La3+ 182 2.179 0.359 0.155
Ce3+ 76 2.114 0.389 0.131
Ce4+ 28 2.046 0.416 0.122
Pr3+ 99 2.071 0.411 0.134
Nd3+ 203 2.103 0.371 0.159
Sm3+ 97 2.049 0.404 0.145
Eu2+ 3 1.943 0.490 0.024
Eu3+ 49 2.068 0.359 0.134
Gd3+ 107 1.988 0.433 0.129
Tb3+ 48 2.020 0.379 0.115
Tb4+ 7 2.018 0.395 0.069 2
Dy3+ 70 2.002 0.389 0.129
Ho3+ 81 1.993 0.387 0.128
Er3+ 102 1.991 0.373 0.133
Tm3+ 44 1.977 0.381 0.140
Yb3+ 82 1.969 0.373 0.174
Lu3+ 53 1.939 0.403 0.162
Hf4+ 22 1.923 0.375 0.087
Ta5+ 162 1.916 0.343 0.195
W5+ 4 1.848 0.553 0.128 1
W6+ 436 1.909 0.339 0.188
Re5+ 3 1.834 0.557 0.033 1
Re7+ 59 1.943 0.406 0.191
Os5+ 4 1.870 0.485 0.045 1
Os6+ 1 1.904 0.375 – 2
Os7+ 7 1.937 0.349 0.209
Os8+ 8 1.966 0.405 0.233
Ir3+ 1 1.755 0.414 – 1
Ir4+ 17 1.909 0.258 0.136
Ir5+ 6 1.909 0.449 0.138 1
Pt2+ 3 1.742 0.375 0.040 2
Pt4+ 33 1.856 0.407 0.136 1
Au3+ 24 1.890 0.375 0.095 2
Hg2+ 52 1.947 0.370 0.120
Tl+ 74 2.063 0.422 0.098
Tl3+ 9 1.874 0.504 0.079
Pb2+ 276 2.032 0.442 0.111
Pb4+ 12 2.056 0.280 0.181
Bi3+ 231 2.068 0.389 0.138
Bi5+ 11 2.050 0.318 0.203
Th4+ 27 2.117 0.420 0.163
U4+ 18 2.100 0.373 0.116
U5+ 4 2.009 0.660 0.030
U6+ 585 2.046 0.473 0.161
Np5+ 33 2.036 0.411 0.061
Np6+ 7 2.022 0.523 0.083
Np7+ 2 2.076 0.477 0.132 2
Am3+ 1 2.068 0.392 – 1
Cm3+ 1 2.034 0.412 – 1

† 1: Ro fixed to predicted value; 2: B fixed to family average; 3: B fixed to 0.399 Å.
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to bring the total to 135 pairs of bond-valence parameters. The

parameters for the 45 additional ions are identified by a

number (from 1 to 3), depending on how these parameters

were derived (see below).

9.6.1. Trends in the bond-valence parameters for ions with
two or more coordination numbers. Here we will examine

trends in the bond-valence parameters derived with the GRG

method for the 90 ions with two or more coordination

numbers. We begin with the relation between the bond-

valence parameter Ro and the mean bond length of a pair of

ions. Fig. 3 shows our new values for Ro as a function of mean

bond length. The correlation is not strong (R2 = 0.457),

although it changes slightly by removing the two lower outliers

(H+, Li+; R2 = 0.516). Certain groups of ions of similar crystal-

chemical behavior also show significant correlation (e.g. alkali

metals, R2 = 0.937; alkaline-earth metals, R2 = 0.962). Attempts

to relate the individual parameters Ro and B directly to other

physical properties of the ions were not successful.

On the other hand, the ratio Ro/hRiji shows significant

correlation with various cation properties: (1) oxidation state,

Vi; (2) ionization energy, IE; and to a much lesser extent (3)

Pauling electronegativity, �i

Ro

hRiji
¼ 0:677� Vi

0:210 R2 ¼ 0:673 ð22Þ

Ro

hRiji
¼ 0:254� ðIEÞ0:154 R2 ¼ 0:751 ð23Þ

Ro

hRiji
¼ 0:775þ 0:183 ln�i R2 ¼ 0:276: ð24Þ

These relations are shown in Fig. 4. We use the Pauling elec-

tronegativity scale (Pauling, 1960) as it gives a slightly better

value for R2 (0.276) compared with the scales of Allen (Allen,

1989; 0.272) and Allred–Rochow (Allred & Rochow, 1958;

0.262). Similarly, Brese & O’Keeffe (1991) derived a correla-

tion between Ro and a combination of (Allred–Rochow)

electronegativity and an empirically derived ‘size parameter’.

To evaluate the reliability of equations (22)–(24), we calculate

the mean absolute deviation between the values of Ro

predicted by these equations, and those derived by the GRG

method for all usable ions. Equations (22)–(24) give mean

deviations of 4.89, 4.21 and 9.00%, respectively. Even though

the deviations calculated from equations (22) and (23) seem

reasonable, one must be careful when using these equations to

interpolate values for Ro. Thus, for equation (23) the experi-

mental value of Ro falls within the range of its predicted value

with error for only 61 of the 90 ions. Moreover, deviations on

Ro have a much larger effect on the bond-valence sums than
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Figure 4
Relation between bond-valence parameter Ro divided by mean bond
length and (a) oxidation state, (b) ionization energy and (c) Pauling
electronegativity.

Figure 3
Bond-valence parameter Ro as a function of mean bond length for the 90
multiple-coordination-number ions
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deviations on B. As a result, it is much safer to fix B to a

reasonable value (such as the mean value of 0.399 Å) rather

than fixing Ro, when dealing with uncommon cations observed

in only one coordination.

9.6.2. The one-coordination-number problem. As noted

above, the choice of a two-parameter equation to represent

the bond-valence relation [equation (5)] means that at least

two distinct coordination environments are required to solve

for the parameters of the equation. Of the 135 ions examined

here, 45 ions occur in only one coordination, resulting in a

significant problem with regard to the calculation of their

bond-valence parameters. Several ways around this ‘one-

coordination-number problem’ have been proposed. For

example, Brown & Shannon (1973) used the bond-length

information for the same cation in different coordination and

bonded to other anions, and adjusted the bond lengths in

proportion to the difference in ionic radius of the anions, while

Brown & Altermatt (1985) fixed the B parameter to 0.37 Å,

which effectively removes the factor of 2 in equation (21).

Other ways of dealing with this problem (e.g. Krivovichev &

Brown, 2001) are applicable only to a small set of data.

9.6.3. Interpolation to ions with only one coordination
number. Here, we explore different options for fixing one of

the bond-valence parameters for the 45 ions with only one

coordination number, using the trends in the bond-valence

parameters described above. We use three different methods

that involve fixing either Ro or B, and letting the other para-

meter refine by the GRG method.

Although the system is underdetermined, any useful solu-

tion must be physically realistic and consistent with the results

obtained for the ions observed in multiple coordination

numbers. Thus, we have an idea of the range that calculated

values of Ro, B and of the RMSD should occur within, based

on ions showing similar crystal-chemical behavior as well as

for all ions considered. We experimented with fixing both Ro

and B, and found that ions should be treated on a case-by-case

basis. The following three methods of derivation were used to

derive the bond-valence parameters of ions observed in only

one coordination:

(1) Fix Ro to the value predicted by equation (22) (ioniza-

tion energy), or to the mean of the values predicted by

equations (22) and (23). Let B refine, and see if the values for

both B and the RMSD fall within a reasonable range for that

family or group of ions with similar crystal-chemical behavior.

If this is not the case, move to method (2).

(2) Fix B to a reasonable value based on family (e.g. for the

transition metals, the mean value of B is 0.375 Å) or group of

ions with similar crystal-chemical

behavior. Let Ro refine, and see if

both Ro and the RMSD fall within a

reasonable range for that family. If

this is not the case, move to method

(3).

(3) Fix B to the mean value for all

multiple-coordination-number ions

combined (0.399 Å) and let Ro refine.

This is done where (1) and (2) fail, or

where there is insufficient data available to make a reasonable

estimate of B (e.g. for the non-metals).

For the 45 ions considered, we fixed Ro for 22 ions and B for

23 ions. Parameters derived by fixing a parameter are identi-

fied by their method of derivation (1, 2 or 3) in Table 4.

9.7. Precision

Several factors affect the precision of the RMSD and bond-

valence parameters calculated in this work: (1) uncertainty in

the experimental bond lengths, (2) uncertainty in the para-

meterization of the model, and (3) the presence of structural

strain in the bond-length data. We estimated the effect of (1)

by taking an average standard deviation for a bond length

(� 0.005 Å) and, using a sample of nine ions (H+, Na+, Mg2+,

Al3+, S6+, Zn2+, La3+, Pb2+, Th4+), determined the effect of

varying bond lengths by � 0.005 Å on the RMSD. The

uncertainty on the bond length resulted in variations in the

third decimal of the RMSD (first decimal for the relative

RMSD). The error on Ro and B was then determined by

incrementally varying the value of these parameters until the

same variation in the RMSD was observed. The uncertainty

on both Ro and B caused by (1) is thus determined to be in the

third decimal place. On the other hand, while we strived to

minimize the effect of uncertainty in the parameterization of

the model in this work (2), simple factors such as the largely

variable sample sizes of the ions affect the accuracy and

precision of the results in ways that are arguably more

important than the uncertainty on the experimental bond

lengths. As for the presence of structural strain (3), this

phenomenon is structure dependent and cannot (currently) be

evaluated by any method not dependent on the valence-sum

rule. We thus give the values to be precise to the third decimal

as a best-case scenario.

10. Anion-sum verification

Bond-valence parameters are usually derived on the basis of

the cation bond-valence sums. However, as discussed earlier,

parameters are expected to work equally well for both cations

and anions according to the valence-sum rule. If a method of

derivation is selected that optimizes the bond-valence sums

for cations only, it is critical that these parameters be eval-

uated a posteriori to check that they also work well for anions.

As this is seldom done, here we will evaluate the anion bond-

valence sums for four sets of parameters: (1) those of Brown &

Altermatt (1985), (2) those of Brese & O’Keeffe (1991), (3)
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Table 5
Overall RMSD (v.u.) for the anion bond-valence sums of four large sets of bond-valence parameters.

No. of structures
(coordination polyhedra)

Brown &
Altermatt (1985)

Brese &
O’Keeffe (1991)

Best published
parameters This work

72 (296) 0.130 0.119 0.100 0.100
100 (398) – 0.121 0.106 0.099
122 (490) – – 0.120 0.103
128 (511) – – – 0.104
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the set of best published parameters from Table S1, and (4) the

new parameters given in this work.

We assembled a set of structures covering all pairs of bond-

valence parameters derived in this paper (with at least one

unique structure per cation), unless no structure could be

evaluated solely with the parameters of our dataset. This

resulted in a set of 128 structures (Table S4). The structures

were then evaluated with the three (smaller) sets of para-

meters given above, where applicable, which resulted in four

overlapping sets of evaluated structures shown in Table 5

(note that the way the structure sets are assembled, less

common cations become part of the evaluation as the sets get

larger.). We used the program KDist (part of the Kalvados

software suite; http://www.fzu.cz/~knizek/kalvados) to calcu-

late the overall RMSD of the anion bond-valence sums for the

different sets of parameters over the structure sets.

The results are summarized in Table 5 together with the

number of structures and the number of anion-centered

coordination polyhedra used for each set. For the set of 72

structures, the set of best published parameters as well as the

parameters given in this work give the best anion bond-

valence sums, with an overall RMSD of 0.100 v.u. (5.0% per

unit of charge), compared with 0.119 and 0.130 v.u. for the sets

of Brese & O’Keeffe (1991) and Brown & Altermatt (1985),

respectively. Over the set of 100 structures, the parameters of

this work give the best anion bond-valence sums, with a

RMSD of 0.099 (4.9% per unit of charge), compared with

0.106 and 0.121 v.u. for the set of best published parameters

and the parameters of Brese and O’Keeffe, respectively. The

structure set covering 122 unique ions shows even greater

distinction between the parameters of this work and what we

identified to be the set of best published parameters, with an

overall RMSD of 0.103 v.u. (5.1% per unit of charge)

compared with 0.120 v.u. Finally, the set of structures covering

128 unique ions yields an overall RMSD of 0.104 v.u. (5.2%

per unit of charge) for the parameters derived here.

Fig. 5 shows the bond-valence sums for O2� for the para-

meters of Brown &Altermatt (1985) and the parameters given

in this paper. Although the parameters given in this paper

account for more coordination polyhedra (511 versus 296), the

range of bond-valence sums is smaller (1.63–2.30) compared

with that obtained from the parameters of Brown &Altermatt

(1.67–2.52). The mean bond-valence sum for the parameters of

this paper is 2.02 v.u. compared with 2.04 v.u. for the para-

meters of Brown &Altermatt, with standard deviations of 0.10

and 0.12 v.u. respectively.

We conclude that the parameters given in this paper give

the best anion bond-valence sums of the large sets of para-

meters, in addition to giving the best bond-valence sums for

the cations (above). Moreover, the results show that the

approximation of deriving bond-valence parameters on the

basis of cation coordination polyhedra is justified.

11. Improvement in fit: cations

It is more difficult to compare different sets of bond-valence

parameters in terms of cation bond-valence sums, as the sets of

parameters often cover a wide array of cations that have

different expected levels of fit. However, we can safely

compare the two largest sets of parameters discussed above,

which are those given in this paper and the set of best

published parameters from Table S1.

The parameters given in this paper yield a mean weighted-

RMSD of 0.128 v.u. (6.1% per unit of charge) over 31 515

coordination polyhedra for 129 of the 135 ions (9 cations are

only found in only one coordination polyhedron, for which the

RMSD calculation is irrelevant). On the other hand, the set of

best published parameters gives a mean weighted-RMSD of

0.136 v.u. (5.7% per unit of charge) over 31 489 coordination

polyhedra for 128 ions. To put things in perspective, the mean

weighted-RMSD for the anion bond-valence sums using the

parameters of this paper (0.104 v.u.) is 5.2% per unit of charge,

slightly lower than for the cation bond-valence sums, although

this may be the result of a much smaller sample size.

We usually observe small but consistent improvements in

the overall RMSD for most ions in comparison to the set of

best published parameters. Where the overall RMSD is not

improved (e.g. Be2+), this is usually because the GRG method

gave parameters with a slightly higher overall RMSD in order

to compensate for the coordination-based RMSD. The bond-

valence sums for coordination numbers 3 and 4 for the best

published parameters for Be2+ are thus 1.901 and 2.010 v.u.,

whereas they are 2.000 and 2.000 v.u for the parameters of this

work. Major improvements are generally associated with less

common ions and are presumably the result of higher quality

and/or of more data now being available. For example: for

some less-common transition metals, the RMSD for Os8+

changes from 0.608 to 0.233 v.u., and Re7+ from 0.923 to

0.191 v.u.; for some actinide ions, Np5+ changes from 0.820 to

0.061 v.u., and Np6+ changes from 1.209 to 0.083 v.u.

The RMSD for the hydrogen ion improved slightly from

0.035 v.u. (for the parameters of Grabowski, 2000) to
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Figure 5
Anion bond-valence sums for the parameters of Brown & Altermatt
(1985; dark red) and the parameters given in this paper (yellow), with
sample sizes of 296 and 511 anion coordination polyhedra, respectively.
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0.033 v.u., which reaffirms that one pair of bond-valence

parameters is sufficient to model the ion.

12. Deviations from the valence-sum rule

Of the 462 configurations of ions and coordination numbers

examined here, 55 have overall mean bond-valence sums that

deviate from the valence-sum rule by more than 0.1 v.u., 11 by

more than 0.2 v.u. and 2 by more than 0.3 v.u. In terms of

relative deviation from the valence-sum rule, 57 configurations

have overall mean bond-valence sums that deviate by more

than 2% per unit of charge, 12 by more than 5%, and 2 by

more than 10%. The larger deviations are usually unavoidable

by using any set of parameters, and are usually for (1) the low/

high coordinations of ions observed in many different coor-

dination numbers (e.g. Tl+, alkali metal ions), (2) structure

refinements of dubious quality, and (3) configurations with

very little data. The deviations are significantly higher when

using other sets of parameters, and show that the addition of

the coordination-based RMSD minimization of the GRG

method of derivation is valuable.

13. Summary

(1) Evaluation of 244 pairs of bond-valence parameters for

128 cations bonded to oxygen shows a wide variation in the

quality of fit to the valence-sum rule, based on 180 194

(filtered) bond lengths from 31 489 coordination polyhedra

from 9367 crystal-structure refinements.

(2) We have evaluated two common methods for the deri-

vation of bond-valence parameters: (1) the graphical method,

and (2) fixing B and solving for Ro. We conclude that both (1)

fixing B at 0.37 Å, and (2) fixing B and solving for Ro. We

conclude that both (1) and (2) are not ideal, and we introduce

a new method of derivation, the GRG (Generalized Reduced

Gradient) method, that leads to better agreement with the

valence-sum rule for both cation and anion bond-valence

sums.

(3) We have evaluated 19 two-parameter equations and 7

three-parameter equations to model the bond-valence–bond-

length relation. We conclude that (1) several equations can

describe the relation to a similar degree of accuracy; (2) we

have likely reached a plateau in the degree of fit for two-

parameter equations; and (3) the equation of Brown &

Altermatt (1985) is best on the basis of fit and practicality.

(4) We have derived new bond-valence parameters for 135

cations bonded to O2� using the GRG method. These para-

meters give better bond-valence sums for the cations, with a

mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge)

for 129 ions and 31 515 cation coordination polyhedra,

compared with 0.136 v.u. (5.7% per unit of charge) for what

we have determined to be the set of best published parameters

over 128 ions and 31 489 coordination polyhedra.

(5) The parameter Ro/hRiji is correlated with ion valence

(R2 = 0.673) and ionization energy (R2 = 0.751), indicating that

the potential correlation between Ro and B does not adversely

affect the derivation of bond-valence parameters provided an

effective method of derivation is used.

(6) There are small but consistent improvements in the

overall RMSD for most ions in comparison to the set of best

published parameters, and excellent improvements in the

coordination-based agreement between bond-valence sum

and oxidation state. Moreover, some ions show a striking

improvement in fit compared with published parameters,

likely due to the availability of higher quality data: for

example, Os8+ changes from 0.608 to 0.233 v.u., Re7+ from

1.000 to 0.276 v.u. and Np6+ from 1.209 to 0.078 v.u.

(7) The parameters derived here give the best anion bond-

valence sums (RMSD of 0.103 v.u., 5.1% per unit of charge)

compared with those obtained from the set of best published

parameters (0.120 v.u. and 6.0% per unit of charge) for a set of

122 structures containing 122 unique cations. Furthermore, we

conclude that the derivation of bond-valence parameters on

the basis of cation coordination polyhedra is sufficient,

provided the resultant parameters are verified to work for the

anion bond-valence sums a posteriori.
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