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ABSIRA T

In general, the structures of the borate minerals are ba$ed on BQ3 and B$a polyhedra, which occur as discrete oxyanions or
polymerize to form finite clusters, chains, sheets and frameworls. The B-Q bonds (Q: unspecified anion) are of much higber
bond-valence than the interstitial bonds, and thus borate ninerals readily lend themselves to hierarchical classification based on
the topological character of ttre FBB (fundamental building block) and the structural unit. Here, we derive topologically and
metrically possible finite clust€rs of the form [BnQ.], where 3 3 n 3 6, and identify those clusters that occur as FBBs of the
structues ofborate minerals. In addition, we have developed graphical and algebraic descriptors ofthe topological and chemical
aspects of tle clusters and their mode of polymerization. ln fhe structures of the borafe minerals based on FBBs with 3 3 z 5 6,
all FBBs are polyhedral rings or decorated polyhedral rings. Moreover, three-membered polyhedral rings are almost completely
dorninant; the only exception is the four-membered polyhedral ring in borcarite. Three-membered polyhedral rings occur in the
following order of preference: <A2fl> >> 4Afl> > <3fl> > <34>. Only a small number of the topologicaly and metrically
possible clustg$ occur as FBBs in borate minerals; Nature seems to produce sfiuctural diversity by using only a small number
of FBBs and then polymerizing them in many different ways.

Keywords: borate minerals, hierarchy of structures, fundamental building block, crystal structure, boron, structure classification.

Sol,IIr,IaIRs

En g6n6ral, les structures des min6raux borat6s ont comme unit6s de base des polybdres B03 et BO4, presents sous forme
d'anions distincts ou en agencements polym6ris6s, qui sont soit des regroupements limit6s de polybdres, des chalnes, des
feuillets ou des trames. I,es liaisons B-$ ($: anion non sp6cifi6) possOdent une valence de liaison beaucoup plus 6levde que
les liaisons interstitielles, de lelle sort€ que les min6raux boratds se pret€nt tout natuellement tr un sch6ma de classification
hidrarchique fond6 sur le caractbre topologique du bloc structural fondamental et de I'unite structurale de base. Nous d6rivons
ici tous les agencements finis possibles selon les critdres topologiques et m6triques approprids pour les agencemetrts de tylre
;BrQ.l, dans lesquels 3 3 z 3 6, et nous identifions les agencements qui servent de bloc structural fondamental dans les structures
de mindraux borat6s. En plus, nous ddveloppons les atnibuts graphiques et alg6briques requis pow d6crire les aspects
topologiques et chimiques des agencemsnts et leur mode de polymdrisation. Dans touts structure d'un mindral borat6 impliquant
un bloc structural fondamental avec 3 3 n 3 6, ce bloc constitue un armeau de polybdres, ddcor6 ou non. De plus, les an:reaux i
trois membres sont fortement pr6dominants. La seule exception, en fai! est la borcarite, qui contient un anneau l quatre
polybdres. Les anneaux i trois polybdres se rencontrent avec une fr6quence dans I'ordre <A2fF >> 4 D> > <3!> > <34>.
ks min6raux boratds ne contiennent qu'un nombre restreint des agencements topologiquement et m6triquement possibles. La
diversit6 structurale s'explique donc par un petit nombre de blocs structuaux fondamentaux, qui sont polym6risds de plusieurs
fagons dans les structures.

(Traduit par la R6daction)

Mots-cl€s: min6raux borat6s, hidrmchie des strucfires, bloc structural fondamental, strucn[e cristalline, bore, classification
structurale.

* Present address: Department of Earth and Planetary Sciences, Univenity of New Mexico, Albuquerque, New Mexico 87131-
1116. U.S.A.
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Boron has an ionic radius of 0.1 I A (Shann61 1976;,
and hence can occur in both niangular and tetrahedral
coordination where bonded to oxygen. BQ3 (Q: O2-,
OH-) groups have an average B-Q bond-valence
approximately equal to 1 valence unit (y.u.), and BQa
groups have an average B-{ bond-valence approxi-
mately equal to t/e, v.u. Hence, both BQ3 and BQo
groups can polymerize by sharing comers without
violating the valence-sum rule (Brown 1981). Such
polymerization is very common in both minerals and
synthetic inorganic compounds, and gives rise to great
structural diversify. In general, a borate structure
contains clusters of corner-sharing BQ3 and BQa
polyhedra, which occur as discrete polyanions
or polymerize to form larger clusters, chains, sheets or
frameworks. The excess charge of the array of borate
polyhedra is balanced by the presence of low-valence
interstitial cations. In the structures of most borate
minerals, the B-$ bonds are of much higher bond-
valence (> 0.7 v.u.) ftan ths ls6nining cation-$ bonds
(< 0.3 v.u.). Thus, the borate structures readily lend
themselves to classification on tJre basis of the
geometry ofthe clusters ofborate polyhedra.

The utility of organizing crystal structures into
hierarchical sequences has long been recognized.
Bragg (1930) first classified the silicate structures
according to the geometry of the polymerization of the
(Si,Al)O4 tetahedr4 and this scheme was generalized
to include sfructures based on polymerized tetrahedra
by Znltai (1960) and Liebau (1985). Such hierarchical
classifications serve to order our knowledge and to
facilitate comparison of crystal structureso which is
infrinsically quite diffrcult. Howevero much additional
insight can be derived from such sftuctural schemeso
particularly regarding the underlying controls on
bond topology (Hawthorne 1983, 1994) and mineral
paragenesis (Moore L965, L973, Hawthorne 1984).
There have been several classifications proposed
specifically for borate structures @dwards & Ross
1960, Christ 1960, Tennyson L963, Ross & Edwards
1967, Heller 1970, Christ & Clark 1977). Previous
classifications were reviewed by Christ & Clark
(1977). Their classification has proven very usefirl over
the past fifteen years, and has been widely used. The
basis of the Christ & Clark (1977) scheme is the degree
of polymerization within the simplest sffuctural unit.
They porfayed this with the descriptor n.iA + JT,
where n is the total number of boron atoms within this
unit, which contains i BQ3 and j BQ, polyhedra.
Although this is usefirl information, it does not give
any indication about the topology of the cluster of
polyhedra nor about the degree to which the cluster is
translated throughout the crystal structure. These two
stuctural features are the ones we incorporate in the
present scheme of classification, as they are essential
to the understanding of the hierarchy of the borate

structures and, ultimately, the paragenesis of borate
minerals.

The schemz of Christ & Clark ( 1977)

In their crystal-chemical classification of borate
structures, Christ & Cluk (1977) emphasized the
importance of polymerization of BQ3 tiangles and B$,
tetahedra to form clusters that are compact, insular
gtoups, referred to as fundamental building bloclcs
(FBB). The FBBs forrn the basis of the classification
scheme of Christ & Clark (1977). Their structural
classification is based on three principal criteria: (1) the
number of boron atoms in the FBB, (2) the number of
BQ3 niangles and BQo tetrahedra in the FBB, and (3)
the mode of polymerization between the FBBs, giving
isolated, moffied isolate4 chains, moffied chains,
sheets and modified sheets. Cbrist & Clark (1977)
proposed a notation (n:iA, + jT) for each FBB, which
gives the total number of boron atoms in the FBB, as
well as the number of B$3 triangles (A) and BQa
tetrahedra (Q. For example, the FBB 5:2A+37has five
boron atoms in the FBB, of which two occur as B0"
triangles, and three as BO4 tetrahedra.

The occurrence oflarge FBBs

In developing their classification, Cbrist & Clark
(1977) considered the structures ofthe hydrous borate
minerals available at that time, as well as the structures
of some anhydrous minerals and hydrous and
anhydrous synthetic inorganic compounds. They noted
that the FBBs of borale structures are generally small,
as neruly all sfuctures known at that time were based
upon FBBs with six or less boron atoms. The one
exception was preobrazhenskite, the structure ofwhich
is based on FBBs containing nine boron atoms. Since
the work of Cbrist & Clark (1977), however, several
borate structures that contain even larger FBBs have
been reported. Cttice et al. (1994) solved the structures
of pringleite {Cae[B2sO2s(oH)ra][BoOo(OID6].13H2O]
and ruitenbergite { Car[B2eO2s(OH)rs] [B6Oo(OH)o]
.13H2O), both of which contain FBBs with 12 boron
atoms. Several synthetic compounds have 12 or more
boron atoms in the FBB [i.e., Ag6fBpOls(OII)6].3H2O
(Skakibaie-Moehadam et al. 7990), Nax[B,2Oro(OII)n]
(vlenchetti & Sabelli 1 979), Na6[Cu2 { B 16024 (OtD 10 } I.l2H2O @ehm 1 983), K6[UO2 { B r6Oz(OID8 } ]. I 2H2O
@ehm I 985), and K5H{ CuaO[820O32(OtD8] ].33H2O
(Heller & Pickardt 1985)1. These more complex
structures present a problem for the Christ & Clark
(1977) scheme of classification, which cannot uniquely
distinguish FBBs with its nomenclature. For example,
the FBBs v/ith twelve boron atoms in pringleite,
ruitenbergite, Na3[B,rOro(OH)a] and A96[8,rO,,
(OI{)61.3H2O all contain six BQ3 triangles and six BQ,
tetrahedra. and the notation for these FBBs is thus
l2:6L+67. However" examination of the FBBs of these



structures (Frg. 1) shows that the FBBs in pringleite
and ruitenbergite are twelve-membered rings of poly-
hedra with alternating BQ3 triangles and BQo tenahedr4
whereas the FBBs in Na3[B12O26(OH)a] and
Ag6[B12O13(OH)6].3H2O each contain six three-
membered rings of polyhedra containing BQo
tetrahedra and one BQ3 triangle, and these rings form a
larger ring by sharing 804 tetrahedra (Fig. 1). In the
classification of Christ & Clark (LW7), structures
based on FBBs with identical numbers of BQ3 triangles
and BQa tetrahedra always have identical descriptors,
even where the structural arrangements are very
different; their notation does not indicate the topo-
logical characteristics of their linkage. This is of
general significance; Burdett (1986) has shown that the
energy difference between two structures can be
expressed in terms of the first few disparate moments
of the elecffonic energy density-of-states of the two
structures. In stuctural terms (Hawthorne 1994), the
important terms in the formulation of energy involve
differences in coordination number lwhich are
described in the notation scheme of Christ & Clark
(1977)l and differences in local linkage of the poly-
hedra [which arc notf. Thus it is desirable to incor-
porate information on local linkage of polyhedra into
a description of FBBs.

A Pnoposnn Drscnrpron pon
Fuluawrrret Butr-Dtr{c BLocKs IN BoRATFS

In this series of papers, we intend to develop a
hierarchy ofborate structures based on a FBB that we
define as a stongly bonded clusier ofborate polyhedra
that is repeated by the tanslational symmetry operators
to give the sfructural unit (Hawthorne 1983, 1985). As
a part of the development of the hierarchy of borate
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structures, a descriptor for borate FBBs that includes
information on connectivity of the polyhedra is
required. In developing such a descriptor, it is
necessary to sFike a balance betweetr the amount of
information conveyed and the complexity of the
descriptor. dthough our method does not always result
in a unique descriptor for the FBB, considerably more
information is included than in previous schemes.

B-B graphs

The representation of large polyhedral clusters is
considerably simplified by omitting the anions, as
is common in topological considerations of crystal
structures (Smith 1977, 1988, Hawthorne 1983, 1990).
Such graphs are used to show B-B connectivity
relationships; B-$-B bonds are shown as a single line
connecting the boron atoms, and nonbridging anions
me omitted completely. Inforrration on the coordina-
tion number of the boron atoms is retained by using
different symbols (A and [) for the nodes of the graph.
B-B graphs are used extensively in this paper;
examples are shown in Figure 2o where they may be
compared with the conventional representations
involving all the atoms of the cluster.

FBB descriptor

Borate FBBs must contain either BQ3 triangles or
BQ4 tetraledra, or both. Examination of borate
structures shows that many FBBs also contain rings of
BQ, polyhedra. The importance of three-membered
rings is sriking; almost all large FBBs contain these
rings. Thus, it is necessary that the descriptor also
denotes the occurrence of rings in the FBBs.

The FBB descriptor proposed here is based on: (1)

FUNDAMENTAL BTJILDING BLOCKS IN BORATE MINERALS

b)

Frc. l. Examples of the FBB 12:6L+4T: a) pringleite, b) Nar[Bt2O2e(OH)a].
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Flc. 2. Examples of borate clusters, including B-B connec-
tivity diagrams and descriptor. For each cluster, t'wo sets
of symbols are given; the first is as proposed here, the
second is as proposed by Christ & Clark (1977).
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the number of borate polyhedra in the FBB, (2) the
number of BQ3 triangles and BQo tetrahedra in the FBB,
(3) the connectivity of the polyhedral groups in the
FBB, (4) the presence of rings in the FBB, and
(5) the connectivity of the rings within the FBB. The
descriptor has the general form A.'8, where A is
the number of BQ3 triangles and BQo tetrahedra in the
FBB, and B is a character string that contains the infor-
mation for points (3) to (5) above.

Numbers of borate polyhedra in the FBB

In many cases, the numbers of BQ3 triangles and BQa
tetrahedra in the FBB are uniquely defined by the
character string B. However, for some of the larger
FBBs, the character sring only uniquely defines the
total number of borate po$efta in the FBB and not
the numbers of BQ3 triangles and BQa tetrahedra.
Symbol A of the descriptor gives the numbers of BQ3
tiangles (A) and BQa tetrahedra (n) in the form iAjn,
where I and j are integers representing the number of
BQ3 triangles and BQa tetrahedra respectively.

Linlcage between borate polyhedra in the FBB

Simple linleage: The simplest FBBs contain only one
BQ3 triangle or BQ4 tefahedron, and A.'B is written as
lA:A or ttr:n Gigs. 2a,b). Many FBBs contain more
than one borate polyhedron, and polymerization of
adjacent polyhedra involves corner-sharing only.
Borate polyhedra (symbolized by A and n) that share
comers within 1trs IrB3 occur adjacent to each other in
the FBB descriptor. Thus, a FBB written as lAln:An
contains one BQ, triangle and one BQa tetrahedron that
share one anion @g. 2c). Where more thqn two
polyhedra occur in the FBB, the order in which the
symbols are written should be consistent with the
linkage in the FBB. Compare lA2tr:lAn and
h2n:Ann Gigs. 2d,e); in the first case, the central
BQ, triangle shares an anion with each of two BQa bm-
hedra; in the second case, the central BQa tefrahedron
shares a ligand with a BQ3 triangle on one side, and a
BQo tetrahedron on tle other. The new descriptor
distinguishes between these two cases @gs. 2d,e).

Rings of po$hzdra: Rings of either or both n and A
occur in most FBBs that contain fhree or more borate
polyhedra. Where the polyhedra share vertices to form
a ring, the ring is enclosed in the delimiters < >. For
example, the FBB 1A2[:<A2n> contains one BQ3
triangle and two BQ4 tefahedra that share anions to
form a tbree-membered ring (Fig. 20. Some cluslen
contain a number of polyhedral rings of various sizeso
which generales some ambiguity in developing the
descriptor of the cluster. Such clusters will be
described using the smallest possible rings that permit
a frrll description of the cluster; in most cases, these
will contain only tlree or four polyhedra. Such rings as

<y'21> commonly link to one or more A or n or to
other rings. The FBB 2MZI<MJ>L' has such a
linkage (Fig. 2e). Compare the FBB 2A2tr:<AnA!>,
a four-memberedring of altemating A and fl (Fig. 2h);
the proposed descriptor distinguishes these clusters.

Linkage of rings of polyhedra: Where two rings are
linked together, the number of borate polyhedra that
the two rings have in common is indicated by -, =, =o
etc. for ore,two, three or more polyhedr4 respectively.
The FBB 2MZ<L2I.>=<A2!> contains two
<A2J> rings, and the rings have two borate polyhedra
in common (Ftg. 2i). This particular linkage shows
why the A part of the descriptor is required. It can be
shown (Appendix A1) that there are nine possible
arangements of four borate polyhedra that consist of
two three-membered rings with two polyhedra in
common, as illustrated in Figure 3. Clusters 3a and 3i
are obviously distinct in all aspects of their topology
and descriptor. Clusters 3d, 3e and 3f have the same A
symbol QMn) and hence the same stoichiometry, yet
they have a different topology. Cluster 3d consists of
two 4,An> rings that have two BQ3 triangles in
common, cluster 3e consists of two <42[> rings that
have two BQo tenahedra in common, and cluster 3f has
both a 4A[> and a <A2E> ring, which have a BQ3
triangle and BQa tetrahedron in common; the B symbol
distinguishes clusters 3d, 3e and 3f. Clusters 3b
and 3d have the same B symbol but have different
stoichiometry and topology; cluster 3b consists of two
<2A!> rings with a BQ3 triangle and a BQ* tetahedron
in common, whereas cluster 3d consists of two 4,Ll)>
rings with two BQ3 triangles in common. TheA symbol
distinguishes clusters 3b and 3d. Only a combination of
the A and B symbols can distinguish all possible
topological linkages involving four polyhedra with two
three-membered rings and two shared polyhedra.

[n]-connzcted anions, polyhedra and rings: In borate
sffuctures, most oxygen atoms are not bonded to more
than two boron atoms. However, in some cases, an
oxygen atom is bonded to three boron atoms (e.9.,
tunellite: Bums & Hawthome 1994a) or four boron
atoms (e.g., the high-temperature form of boracite,
Sueno et aL 1973). Alsoo borate polyhedra may be
connected to more than two other polyhedr4 and rings
of polyhedra may be connected to many other poly-
hedra or rings ofpolyhedra. The descriptor developed
above does not permit the descriptions of these
possibilities, as any one symbol in the linear character
string (B) cannot be more than [2]-connected. It is
necessaxy to introduce further descriptors for such
clusters.

Any anion (Q), polyhedron, or ring ofpolyhedra that
is more than [2]-connected in the character string B
may be enclosed in the delimiters I l. For example, an
anion connected to three borate polyhedra is [0],
whereas a ring of three corner-sharing B$n tetahedra
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o)
4A:<3A>=<34>

b)
3Atr:4Atr)=(2Atr>

3Au:<3A>=44tr>

d)

2ME:4Ltr>=<2An>

e)
2L2tr:<L2E)=<A2p>

2ME:4Ltr>=<A2E!>

s)
A3tr:i712u>=<A2o>

43tr:<3o>=<L2tt>

4tr:<3tr>=<3n>

Ftc. 3. Possible clusters of four borate polyhedra that contain
two tfuee-membered rings with two polyhedra in
common.

that is [3]-connected is [<3L]l.A list of the polyhedra
or clusters that are connected to the central unit follows
the [ ] delimiters; each cluster that is separately
connected to the central unit is terminated by the
symbol l; note that the order of the listing of these
clusters is not importanl.

Consider an oxygen atom that is shared among three
BQo tetrahedra @i9.4). The descriptor for this cluster
is 3n:[0]n I nlnl, indicating that it contains three BQa
tetrahedra, each of which is connected to a central
anion. The cluster given in Figure 2k also contains an
oxygen atom that is shared among three BQ, tetrahedra.
In this case, the cluster also contains two <A2n> rings
that have one BQa tetrahedron in common. The
descriptor is 28n:[0]<A2J>l<L2Z>l; note that
the sharing of one BQ, tetrahedron between the <A2!>
rings is not explicitly indicated in the descriptor, but as
the cluster only contains three BQ, tetrahedr4 the rings
must share one BQa tetrahedron. For the cluster given
in Figure 21, the descriptor is 2A3n:<A2n>-<42tr>,
and there are two rings of polyhedra that have one
BQ, tetrahedron in common, but with no [Q] anion
presenL

Two clusters that contain six borate polyhedra are
shown in Figures 2m and 2n, but the connectivity of
these clusters is quite different. In Figure 2m, the
cluster contains three <A2n) rings, of which each is
connected to a central oxygen atom, The descriptor
is 3A3n: [0]<A2n>kA2n>kA2n>1, which indicates
that three <tr9IJ> rings share a central anion; as the
cluster contains 3A3n, each ring must have two BQa
tetrahedra in common with other rings. The cluster in
Figure 2n also contains 3A3n, but in this case there are
four three-membered rings of polyhedr4 one <3[>
and tbree <d2Z>. The cental €n> ring connects to
the three <d2Z> rings by sharing two borate poly-
hedra, and thus the descriptor is 3A3n:[4n>]=
<A2n>l=<A2n>l=<A2f bl.

Inrge FBBs

The new descriptor effectively distinguishes
between the larger FBBs in phases such as pringleite,
ruitenbergite, Na3[B12O2q(O]Dnl and AgolBrzora(ol0o]
'3H2O @g. l). The FBBs in pringleite and ruitenber-
glte are 6A6n:<nAlAnAnAnAnA>, indicating
that they are twelve-membered rings of polyhedra
made of an altemation of BQn tetrahedra and BQ3
triangles. The FBBs in Nas[B12O2e(OH)a] and
A96[81201s(OH)6].3H2O are 6A6tr: <<A2n>-
<L?Z>-<A2fl>z A2 Z>-<Mn>--<A2n>->, indi-
cating that the FBB contains six three-membered rings
of polyhedra, each of which contain one BQ, triangle
and two BQo tetrahedra; these six rings link to form a
larger ring of <A2n> units (Fig. 1). The B strings are
ratler cumbersome in this form; they may be
condensed in a very simple fashion by noting that the
symbol has translational symmetry. It is common in

h)

t)
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mathematics to represent a repeating string of figures
by the symbol . (e.9., % = 0.333o). We can use a
similar symbolism here. The unique sequence is
written, followed by the symbol r to show that it
repeats to the length of the B string as indicated by
the A term. Thus 6A6!:<nA!AnAnAnAnA>
becomes 6A6n:<nA.>, and 6A6[:<<A2[>-
<l2]>-<l2[J>--<A2I>-<A2f.>--<L2Z>-> be-
comes 6A6I:<<A2I>-.>.

Hvonocmq Bor.pnqc

The majority of borate minerals are hydrous, and
hydrogen bonding is ubiquitous in these structures
(e.9., Bums & Hawthorne L993a" b, 1994a, b, c, d,
1995). In some cases (e.g., Gice et al. 1994), it is
desirable to include information on the identities of the
anions in the FBB. In general, borate triangles and
tetrahedra are BO3-(OH), and BOa-,(OH),, respec-
tively, and the symbols for borate triangles and tetra-
hedra in the descriptor may be modified by adding z as
a superscript, giving the symbols N and n'.

TABUr-A,noN oF PoLyHEDRAL Clusrms ro n = 6

Most FBBs contain six or less borate polyhedr4
although there are exceptions. Upon examination of
possible clusters of polyhedr4 it is apparent that there
are numy topologically possible clusters of six or less
borate polyhedra that have not yet been observed as
FBBs in a mineral or an inorganic compound. This may
be due to the relatively.small size of the sample (the
structures of 102 minerals are known); for example,
the 4n:<4n> FBB has only been identified in
borcarite (Burns & Hawthorne 1995). In other cases,
the postulated anangement of borate polyhedra may be

Fig.4a

3u:4I1>

I-l

LI

T\T
lJl xxi

energetically unfavorable. One of the goals of this
work is to identify all topologically possible clusters
(within certain imposed boundary-constraints) without
specific emphasis placed upon those clusters (i.e.,
FBBs) that have already been observed in minerals.

Enumeration of possible clusters

In deriving possible borate clusters, we consider
only BQ3 and BQn polyhedra. As edge- or face.sharing
borate polyhedra have not been observedo we consider
only corner-sharing between borate polyhedra. We
omit clusters with any [1]-connected polyhedra; thus
chains (there are seventy-one chains for 3 S z 3 6) and
decorated clusters are not included. Here, we limit
tabulation to clusters in which all borate polyhedra are
at least [2]-connected. Thus we include the clusters
3E:<3n> and ltr9;f;<d9;Z>, but exclude
4n:4E>n and 1A3[:<A2E>!, considering the
ll]-connected polyhedra as decorations on the cluster
to which they link.

Initially, all geometrically possible clusters (with the
exceptions listed above) were derived as shown in
Appendix 42, with the (temporary) restriction that
these clusters contain only n; the complete set of
clusters can then be derived by permuting ! and A.
These thirty-nine clusters are given in Figures 4 and 5,
along with the corresponding B-B graphs and their
descriptors.

Some of the clusters permit considerable flexibility
in selecling a suitable descriptor. In these cases, the
symboli of the descriptor are organized so as to
emphasize the presence of the smallest rings within the
larger cluster, while still grving a complete description
of the cluster. We recommend that the form of the
descriptor in Figures 4 and 5 be adopted in general,
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The graphs of the clusters for 3 3 n < 5 ate grven in
Figure 6. In a later paper, we vTill sxamine possible
factors that control the existence (or otherwise) ofthese
clusters as FBBs in borate structures.

5tr:{<tr>=<3tr>}=<4tr>

Flo. 4. The possible 2- or higher connected clusters for 3 < n 3 5 containing only !.

suitably modified for the presence of A and decorations
where necessary.

Other possible clusters were obtained by permuting
A for n in the thirry-nine clusters ofFigures 4 and 5.
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Ftc. 5. The possible 2- or higher connected clusters for n = 6 conaining only fJ.

Ttn Occunnmcce or FBBs u.r nm Srnuctup;es
oF BoRATE Mnunars

In the second paper of this series, we intend to
arrange all borate minerals within a hierarchy of
structures. In this paper, we restrict our discussion
to the FBBs tlat occur in the stuctures of borate
minerals, and ignore the overall connectivity of the
structure. The purpose of what follows is the identifi-
cation of FBBs that occur in mineral structures.

Graphical representation of all sterically possible
3 < n 3 6 clusters fall into ttrirty-nine sets if the coor-
dination of the boron is ignored; these are gtven in
Figures 4 and 5. We have identified fifty-one borate
mineral sfuctures with FBBs of 3 3 n < 6. and the fre-
quency of occurrence of the eleven sets with 3 < n < 5
is shown in Figure 7. In the case of n = 6, observed
FBBs fall into two sets: 6B:[g]<38>l<38>l<38>l
(11 occurrences) and 68:<3B>=<48>-<38> (1 occur-
rence). The observed FBBs with 3 < n ( 5 fall into only
four of the eleven sets, and only three of the sets have
multiple examples. Borcarite is the only mineral that
contains a FBB in the set 49:.<48>. Inspection of
Figure 7 shows that <3B> rings of polyhedra are
dominant in FBBs; the 4E:<4n> FBB in borcarite is
the only FBB that is not based on three-membered
rings of polyhedra.

6n:[$]<3n> l<4tr> I

Within each set of clusters (Figs. 4, 5), tlere are
several different possible FBBs with different numbers
of A and n. The frequency of occurrence of each
specific FBB within the three sets corresponding to
3B:<3B>, 4B:<3B>=<38> and 5B:<3B>-<3B> is
given in Figure 8. For n = 6, FBBs in the set
6B:[0]<3B>l<38>l<38>l are of two kinds: ten are
3A3n:[0]<A2n>l<A2n>l<42!>1, and one is
6n:[Q]4n>l4n>k3n>1. First, consider only those
FBBs within the set 3B:<3B>. There are fourteen
examples in minerals: nine are <A2n>, two are <3n>,
two are <3A>, and one is 4AE>. Thus, for FBBs
containing only one three-membered ring of polyhedra,
the combination <A2Z> seems favored relative to the
other possible combinations.

Examination of larger EBBs shows that the <Mn>
ring is a major component of these large clusters. In the
FBB set 4B:<3B>=<38>, all seven occurrences of
the three-membered rings are <A2Z>.In the FBB set
5B:<3B>--<3B>, there is more variability; of the
nineteen examples, both of the three-membered rings
are <tr2Z> in nine structures, one ring is <A2fl>
and the other is <2AZ> in five structures. and in
five structures neither of the rings is <ME>.
There are eleven examples in the FBB set
6B:[0]<38>l<38>l<3B>l; in ten of these, all tbree of
the rings of polyhedra are <y'ZZ>, and only one does
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Ftc. 6. All possible 2- or higher connected clusters for n = 3, 4,5,

not contain a <A2n> ring.
The frequency of three-membered rings of poly-

hedra in borate structures is remarkable. Of the
fifty-one borate minerals with 3 S n < 6, only oneF:BB
in one mineral is not based solely upon three-
membered rings. In addition, thirty-five structures
contain FBBs based only ot the <A2n> three-
membered ring, five contain FBBs based on
three-membered rings of the form <MD> and a ring
of the form 4LfJ>, and only eleven (excluding
borcarite) contain no <A2n> ring. We must conclude
that <A2[> rings are strongly favored (energetically)
in FBBs with 3 < n < 6" aad that the tlree-membered
rings occur in the following order of preference:
<L2J> >> 4^n> > <3n> > <3A>.

The origin of this preference is not readily apparent.
Possible factors affecting the observed frequency of
ring topologies are: (1) local bonding effects within the
ring may make the <tr2IJ> ring more stable than other
three-membered or z-membered rings, (2) long-range
structural effects may favor the inclusion of <A2!>
rings rather than the other possibilities, and (3) the
<AzJ> ring may be favored in the precursor fluid
medium (under certain pH, Eh conditions), thereby
making it more readily available for incorporation
into a growing crystal. We are currently investigating
local bonding effects in borate clusters using
molecular-orbital calculations.

Many clusters with 3 S n S 6 @gs. 4, 5) include
rings other than the favored three-membered rings, and
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with the exception of the FBB 4[:<4n> in borcarite,
none of tlese have been observed in mineral structures.
However, there are also several sets of clusters with
3 3 n 3 6 that contain only three-membered rings
(Figs. 4, 5) that have not yet been found in any borate
mineral structure.

Sumuanv

(1) We have developed a new representation and
descriptor for borate clusters that includes information
on the total number of boron atoms. the coordination of
the boron atoms (A: triangular, n: tenahedral), the
connectivity of A and n, the presence of rings, and
the connectivity within and between the rings.
(2) We have derived all clusters that are at leasr
[2]-connected, but not more than [4]-connected, which
have tbree to six polyhedra.
(3) In the structures of borate minerals containing
borate FBBs with 3 S z S 6, FBBs incorporating only
three-membered rings of polyhedra are almost domi-
nant. One FBB that is a four-membered ring of poly-
hedra is known (in borcarite).
(4) Three-membered rings of polyhedra occur in borate
mineral sfuctures in the following order of preference:
<A2n> >> 4^fl> > <3n> > <3A>.
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AppnrDx I

Consider the B-B graph shown in Figure Al; let us
call this graph G. This is a labeled graph in which
vertices represent borate polyhedra ofunspecified type,
and edges represent linkage between these polyhedra
such that the polyhedral cluster represented consists of
two three-membered rings with two polyhedra in
comrnon. The problem is to determine how many
distinct clusters of borate triangles and tetrahedra are
possible; this reduces to determining how many
distinct black (tetrahedron, E) and white (triangle, A)
colorings of the graph in Figure A1 are distinct.

The automorphism group, P, of a graph is the
collection of all permutations of the vertex labelings
that preserve isomorphism. The collection of all
possible pennutations of the vertex labelings is the
symmetric group .So (where n = 4 in Fig. A1). P is a
subgroup of So, and the complementary disjoint
subgroup ofSn defines all labelings ofthe graph G that
are distinct. The disjoint cycle decomposition and
cycle structure of P for G of Figure A1 is given in
Table A1. The correspoading cycle index of G,
denoted Z(P) is given by

, N
Z@) =L 2 ilrXrcvt =\15+x|+pS 1l^t1

ll,l DEI, lp,l" I - '

following standard nomenclature in combinatorial
theory (Brualdi 1991, Cohen 1978). From the
unweighted version of P6lya's theorem, the number of
distinct schemes, lSl, is given by Z(P:rn), that is, by
substitution of the number of different colors (i.e.,Zor
L: m = 2) for the dummy variable s/ez);

Ftc. A1. A labeled B-B graph, G, in which the vertices
represent polyhedra and the edges denote linkage between
polyhedra-

TABLE AI. DISJOINT CYCLE
DECOMPOSITION AND CYCLE STRUCTURE

OF THE AUTOMORPHISM GROUP P OF
THE CRAPH G IN FICURE A1

Disjoiru cycle
decomposition

Cycle structurc*

(1) (2) (3) (4)

(2) (4) (1 3)

(1) (3) (2 4)

(r 3) (2 4)

si

! l  J 2

s? rl
t

x s are dummy variables &aI carry the cycle
structure of the disjoint cycle decomposition.

N =1 124+2.22.2+221 =g
4 '

There are thus nine distinct possible arangements of
four borate polyhedra that consist of two three-
membered rings with two polyhedra in common.

AppnNox tr

We wish to derive all geomefically possible clusters
of z tetrahedra (specifically for n = 4 to n = 6) subject
to the condition that tetrahedra link by sharing corners
only and that each oxygen is not bonded to more than
two boron atoms. We will begin by deriving all
topologically possible clusterso and then will discard
those clusters in which the tetrahedra are inter-
penetrant, deformed beyond chemical feasibility, are
not at least two-connected, are greater than four-
connected, or which form disconnected rings. The
linkage between polyhedra is defined by the edge set of
the corresponding gaph, and hence we are concemed
with the combinatorial characteristics of the edge set of
the graph. First, it is necessary to emphasize that this
is a topological problem rather than a geometrical
problem (as was the case in Appendix I). Hence the
relevant automorphism group for the vertex set is
the symmetric group ,Sr. This has a corresponding
permutation group, Pry W = n(n-lY2l, that permutes
the edge set, and it is the cycle structure of P" that can
be used, together with the weighted version of P6lya s
theorem, to calculate the inventory of topologically
distinct ,urangements. A convenient way to deal with
the structure of the edge set is to allow the operations
of S, to permute the elements of the vertex set, and
to derive the corresponding operations of P1y by exam-
ining the resulting structure of the adjacency matrix.

(M)
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Ftc. A2. A graph with z = 4 (left), the adjacency matrix for tle
graph (middle), and the conesponding general adjacency
matrix (right).

Figwe A2 shows a specific graph with n = 4, the
adjacency mahix ofthat graph, and the corresponding
general adjacency manix that we use here.

Consider first the case for n = 4. T\e disjoint cycle
decomposition and elements of the cycle structure
for So are shown in Table A2, together with the
corresponding elements for Pry. The resulting cycle
structure for Pu is thus

1 -z(p)=h tsf+eslsl+8,s1+6sls|l (A3)

The number of distinct rurangements, lSl, can now be
derived from tle unweighted version of P6lya's
theorem by substituting the number of possible values,
mo of the matrix elements for s, in the cycle structure:

lSt = Z(p:m) =fi1m6+Sm!+tt#l (,{4)

TABLE 42. DTSTOINT CYCLE DECOMPOSITIONS AND CYCLE
STRUCTURES OF 51 AND P6

The elements of the adjacency matrix, l4 b ...fl, caa
be chosen from the set {0,1}, indicating no linkage or
linkage, respectively, between tetrahedra. T\us m = 2
and

$ =+126+9.2a+14,*)= LL (A5)

Thus there are 1l topologically distinct clusters for
n = 4.We may derive information on their structure by
using the weighted version of P6lya's theorem. The
matrix elements [a, b ....J] are chosen from the set
{0,1}; let us assign weights {u,v} to the set {0,1}. We
can then derive the inventory of arrangements, invlSl,
by substituting the weight functions

k
wr,= Z,w(r)k = vkarV lel,n (.{6)- = l

for the dummy variables s{til n the cycle index. The
resulting inventory of arrangements is

invls = J l@+v)6+9(u+v)2(u2+f)2+8,la3 +f)2
24 " +6(u2l+tP) (ua+va)i

= u6+usv+2u4tP+3u3f+2u2va+mf+v6 (A7)

Each term in the inventory corresponds to a certain
number of edges, and the coefficient of each terrn
denotes how many topologically distinct arrangements
occur with that uumber of edges; thus the term 2ua$
indicates that there are two distinct arrangements with
two (v = 2) edges. Now we require that all vertices be
at least two-connected; a necessary-but-not-sufficient
condition for this is that there be at least four edges in
the graphs, and this means that we are only concemed
with inventory terms for which the exponent of v is
greater than or equal to 4 (1e., r, the number ofvertices
in the vertex set of the graph): 2*v4, a,f and v6. These
graphs are shown in Figure .A.3. Note that one of the

FIc. ,{3. Graphs for possible borate clusters with n = 4 that
contain at least four vertices. Boxes are drawn around
the graphs of interest, i.e., those that are at least two-
connected and are not gfeater than four-connected.
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arrangements has a one-connected vertex, and hence is
not needed; the other three graphs are relevant, and the
resulting clusters are shown in Figure 4.

Having illustrated the method, we can now take a
short cut in the calculations for z = 5 and n = 6. T\e
different permutations of ,So can be divided up into
conjugacy classes, the structure of which is denoted by
the svmbol

TABLE A3. CYCLE STRUCTURES AND
NUMBER OF ELEMENTS IN S" AND

P"o ,+ t )aFORa=5AND6

Cycle structure Cyclc strucrurc

n
.lI- 4!Lu)
tc--l

ffi
PtoN,*s5

ri

ri ri
rl ri
r? rl
sl sl
sl sl
sl

I

10

15

20

20

30

24

rlo
sl si
r? ri
sl si
sl sl sl
ri s?
J 5

PtsN{.s6

s!
rl sl
.t?'rt
sl
.? "l
sl s| s]
t3
r? rl
sl sl
sl rl
sl

1

15

45

4A

120

4A

90

90

144

na

D l

sl sl
ri rl
s? sl
ri ,i
sl sl s? .rl
s3

sl sl si
sl sl si
si

sl,f

*N = number of elemenls of S" (and P,,".rl
with the cycle structure indicated
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FIc. A4. Graphs for possible borat€ clusters with z = 5 that

contain at least five vertices. Boxes are drawn around
tle graphs of interes! i.e., those that are at least two-
connected and are not gfeater than four-connected. Where
the graphs meet these criteria but are deformed beyond
chemical feasibility, or contain interpenetrant tetrahedxa
or disjoint rings, the boxes are drawn using broken lines.

in which s{k d ars the dummy variables used above,
and.l(k,g) denotes j cycles of length ft in the permuta-
tion g e ,S,. The number of conjugacy classes in ,Sn is
p(n), the number of partitions of the integer n. Thus we
can derive the conjugacy-class structure of S, from
p(n); the corresponding cycle index of S, is thus the
sum of the elements of the conjugacy class of ,S, each
multiplied by an appropriate coefficient that denotes
the number of disjoint cycle decompositions of ̂ ln with
that specific cycle-stucture. The conjugacy classes of
,!5 and 56 are shown in Table A3. How do we derive the
appropriate coefficients? For a specific cycle sfucture
[e.g., s s for 55: a specific example is (L 2 3)(4 5)], we
calculate the number of distinct anangements ffor s s
{e.5., Q 2 !@ 5)}: in this case, the number of distinct
anangements is 5 x 4 x 3/3 for s and 2 x l/2 for s, and
the total number is therefore 5 x 4 x 3 x2l3 x2=201.
The resultant values for 55 and '56 are given in
Table .{3. Now although the conjugacy classes of P1y
are different from those of,So, corresponding conjugacy
classes in the cycle indices of each gloup must have the
same coefficient, and each operation in So has a
corresponding operation in Pp. Thus, to derive the
complete cycle index for P1y, we need only to derive
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the cycle sffucture for one operation within each
conjugacy class. The corresponding conjugacy classes
and associated coefficients for P1e (associated with 55)
and P15 (associated with S) are gtven in Table A.3.
From Table A.3, we can write down the cycle structures
for P1e and P15, and proceed with calculating the
pattern inventory as was done above for n = 4.

For z = 5, the resulting cycle structure for P16 is
r  - ^

z(P) = * [slO+l0srasl+15($+20sls!
+z0sls\s[+30sls]+zaQr1 (A9)

The total number of distinct arrangements is given by
Z(P:2):

Z(P :D = J l2to+10.2a.23 +15.22.24 +20.2.23
120'-

+20'2'2'2+30.2.?]+2a.?]l = 34 (A10)

The corresponding pattern inventory is given by

|  . .  . r .invlSl = 
fi l(u+v)to + t0(u+D4 @2 n?)3

+15(u+v)2QluP)a+20(u+v)Qlaf )3
+20(u+v)(u3+f1@6+l'f)
+30(u2+*)Qf+f)2+24(usuf)21 (A11)
= uro + ue v +ZuB tP +h/ f +6u6 va +6us f
+6t/v6 +4# i7 +Zuz v8 +we +vL0

Requiring that all vertices be two-connected is a
necessary-but-not-sufficient condition that restricts our
interest to arrangements with the exponent of v equal
to or greater than 5; these 20 graphs are shown in
Figure A4. Nine ofthe 20 graphs have a zero- or one-
connected vertex; five graphs require very highly
distorted or interpenetrant tetrahedra. The remaining
six graphs are geometrically possible, and are repre-
sented in Figure 4.

For n = 6, the cycle structure for P15 is

z@ = 
*tsls+l 5slsj+60sf s!++osf sf

+ 1 s0slslsl+ I 2os{slsls}++os!
+Mafi+I20,s\;ff

The total number of distinct arangements is given by
Z(P:2):

Z(P:2) = J 12rs +l5.2tt+60{2s +40.27 +120.2s

+40'2s+144'2j+120'231=156 (A13)

The conesponding pattern inventory is given by

1  - .invls= fr [(u+v)ts +15 (u+v)1 (u2+f1a

+60 (u+v)3 (u2+*)6 +4o (u+v)3 Qlsf)A
+180 (z+v) 1*+*11#a/)3
+120 (u+v) Q.3+*) Q.f+f)2 (u6+v6)
+40 (u3+f)s +144 (us+f)3
+L20 (u3+tf) (u6w6)21
= ul 5 + u\ 4y +2ur3 f . +5 ut21)3 +9 ar I v4
+ 1, 5 ulo tf +21, ue ra *24rt rl a2avf $
+21 u6ve + l, 5 a5 v10 +9 da i | +5 i,3 v12
q27]rt3q*taa:fs

Requiring that all vertices are two-connected is a
necessary-but-not-sufficient condition that restricts our
attention to arrangements with the exponent of v equal
to or greater than 6. Exponents of v greater than 12
must involve arangements with at least one five-
connected vertex and can be discounted. As can be
read from the above pattern inventory, there are
119 relevant arrangements; these are shown in
Figure A'5. Geometrically possible clusters are shown
in Fieure 5.

(Ar2)

(A14)



FUNDAMEIIIAL BTIILDING BLOCKS IN BORATE MINERAIS 1151

@ Eooue survevsGa
UU$OD'E4LAfz

@ |oelooel6Nlia@e@$
e>Eauaess€s4b&

@

@

oo0 €HOH

@e0@ E€L€J
ssffi

@ i-€ies@€ffi@ffi

e€e€@ess

s:Q:@.i
€@@ig__as€oi-ej

Ftc. A5. Graphs for possible borate clusters with n = 6 that contain at least six vertices.
Boxes are drawn around the graphs of interest, i.e., those that axe at least two-con-
nected and are not greater than four-connected. Where the graphs meet these criteria
but are deformed beyond chemical feasibility, or contain interpenetrant tetrahedra or
disjoint rings, the boxes are drawn using broken lines.
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