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Olivier Charles Gagné,a*‡ Patrick H. J. Mercierb and

Frank Christopher Hawthornea

aGeological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada, and bNational

Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada. *Correspondence e-mail:

ogagne@carnegiescience.edu

Within the framework of the bond-valence model, one may write equations

describing the valence-sum rule and the loop rule in terms of the constituent

bond valences. These are collectively called the network equations, and can be

solved for a specific bond topology to calculate its a priori bond valences. A

priori bond valences are the ideal values of bond strengths intrinsic to a given

bond topology that depend strictly on the formal valences of the ion at each site

in the structure, and the bond-topological characteristics of the structure (i.e. the

ion connectivity). The a priori bond valences are calculated for selected rock-

forming minerals, beginning with a simple example (magnesiochromite, = 1.379

bits per atom) and progressing through a series of gradually more complex

minerals (grossular, diopside, forsterite, fluoro-phlogopite, phlogopite, fluoro-

tremolite, tremolite, albite) to finish with epidote (= 4.187 bits per atom). The

effects of weak bonds (hydrogen bonds, long Na+—O2� bonds) on the

calculation of a priori bond valences and bond lengths are examined. For the

selected set of minerals, a priori and observed bond valences and bond lengths

scatter closely about the 1:1 line with an average deviation of 0.04 v.u. and

0.048 Å and maximum deviations of 0.16 v.u. and 0.620 Å. The scatter of the

corresponding a priori and observed bond lengths is strongly a function of the

Lewis acidity of the constituent cation. For cations of high Lewis acidity, the

range of differences between the a priori and observed bond lengths is small,

whereas for cations of low Lewis acidity, the range of differences between the a

priori and observed bond lengths is large. These calculations allow assessment of

the strain in a crystal structure and provide a way to examine the effect of bond

topology on variation in observed bond lengths for the same ion-pair in different

bond topologies.

1. Introduction

The bond-valence model (Brown, 2002, 2016) is used

extensively in crystallography and mineralogy to

validate structural arrangements in crystals, and to

interpret many aspects of crystal structure in terms of

constituent chemical composition and bond topology.

There are two distinct aspects of the bond-valence

model: (1) relating observed bond lengths to bond

valences through experimentally determined bond-

valence curves (e.g. Brown & Shannon, 1973; Brown

& Altermatt, 1985; Brese & O’Keeffe, 1991; Gagné &

Hawthorne, 2015), and (2) using bond-valence theory

to understand chemical and topological aspects of

atomic arrangements.

There are two important theorems in the bond-

valence model (Brown, 2002, 2016): [1] the valence-

sum rule, which states that the sum of the bond

valences at each atom is equal to the magnitude of the

atomic valence, and [2] the loop rule which states the
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sum of the directed bond valences around any circuit (closed

path) of bonds in a structure is zero. One may write equations

describing the valence-sum rule and the loop rule in terms of

the constituent bond valences. These are collectively called the

network equations, and can be solved to calculate a priori bond

valences for a crystal structure. A priori bond valences are the

ideal values of bond strengths intrinsic to a given crystal

structure, and depend strictly on the formal valences of the ion

at each site in the structure, and the bond-topological char-

acteristics of the structure (i.e. the ion connectivity). From

knowledge of the a priori bond valences of a crystal structure,

one may use the bond-length—bond-valence correlation of

the bond-valence model (above) to calculate the a priori bond

lengths of the crystal structure. This approach has not been

used very extensively; where it has been used, it has been

applied to relatively simple structures, e.g. (H5O2)2SO4,

CaMgSi2O6, K2S5O16, Na2B4O7, Na2PO3F, CaCrF5 and TeI4

(Brown, 1977), KVO3 (Rutherford, 1990), Ca2B2Si2O8,

Sr3Ti2O7, Ba2FeSi2O7, Sr3Zr2O7, Y2SiBe2O7 and KFeFPO4

(Urusov & Orlov, 1999), tourmaline (Bosi & Lucchesi, 2007),

scapolite (Hawthorne & Sokolova, 2008), milarite (Gagné &

Hawthorne, 2016a). Here, we use a priori bond-valence

calculations to calculate a priori bond lengths in a series of

rock-forming minerals of different complexity [as measured

by the topological information content; Krivovichev (2012,

2013)] and degrees of complication.

Our motivation for making these calculations is not to try

and accurately predict observed bond valences. A priori bond

valences are calculated from the network equations that

describe the valences of ions at the sites in the structure and

the connectivity of the chemical bonds involving those ions. As

a result, the a priori bond valences are the ideal bond valences

arising from the topology of the structure. However, the

structure also has to conform to the symmetry of its space

group, and embedding the topological structure into a space

group causes strain (Brown, 2002, 2016). That strain is the

difference between the a priori bond valences and the

observed bond valences, and to calculate this strain it is

necessary to derive the a priori bond valences. Here, we

provide a readily accessible method to do this on the large

scale that is necessary to quantitatively understand the general

relation between structure topology, space-group symmetry

and strain.

Bond-valence parameters used in this work are taken from

Gagné & Hawthorne (2015) and Lewis acidities are taken

from Gagné & Hawthorne (2017b).

2. Predicting bond length via bond-strength methods

The prediction of bond lengths has long fascinated miner-

alogists and crystallographers. Today, bond lengths are routi-

nely predicted and rationalized via the addition of the

constituent ionic radii (Shannon, 1976) based on the

assumption that these values are transferable between crystal

structures [see Gagné & Hawthorne 2017(a) for a discussion

of the effect of structure type on mean bond length]. More

sophisticated predictions of (individual) bond lengths take

into account local coordination (e.g. Baur, 1970, 1971, 1981;

Brown & Shannon, 1973), and are typically rooted in the

consideration of a crystal structure as a topological network

where nodes and edges are represented by atoms and bonds,

respectively. Mackay & Finney (1973) proposed modelling

crystal structures as networks subject to Kirchhoff’s circuit

laws, and solved Kirchoff’s voltage and current equations to

obtain the fluxes (bond strengths) for BaTiO3. This approach

was reformulated within the framework of the bond-valence

model by Brown (1977), who realized that Kirchhoff’s voltage

law does not apply to chemical networks. Brown proposed the

‘equal-valence rule’ as an alternative, where the bond valences

incident at an ion tend to be as nearly equal as possible. A

justification based on the equal capacitance of bonds based on

the principle of maximum symmetry is given by Brown (2016).

Although the equations derived from Kirchhoff’s voltage law

and Brown’s equal-valence rule are in practice identical, the

equal-valence rule is at an advantage of being more physically

grounded.

Brown (1977) proposed an iterative approach in solving for

the a priori bond valences of a crystal structure, which consists

of averaging the cation and anion Pauling bond strength of

individual bonds, and changing these values by small incre-

ments (in cycles) until the valence-sum rule is obeyed for all

cation and anions of the structure. O’Keeffe (1990) and

Rutherford (1990) proposed a more direct approach to the

solution of the network equations that essentially consists of

solving a system of equations via matrix manipulations. To

deal with negative bond valences sometimes encountered in

structures with very weak bonds (e.g. a negative value for the

K—O1 bond in KVO3), Rutherford introduced weighting

factors for the bond valences of the loop equations to have the

a priori bond valences more closely match the observed bond

valences; this is equivalent to allowing non-integer values in

the connectivity matrix for the loop equations). However, this

practice is unreliable as it allows one to obtain any desired

solution for the a priori bond valences; although the valence-

sum equations remain satisfied, one (or more) loop equation

deviates significantly from 0, by an arbitrary amount. O’Keeffe

(1990) used a different weighting scheme whereby the bond

valences of the loop equations are weighted according to their

Pauling bond strength. Although using such weighting

produces closer agreement with observed bond valences, one

cannot then use the difference between the resulting a priori

and observed bond valences as a measure of structural strain.

For this reason, we use the method of Brown (1977), in which

the loop equations are constrained to be equal to 0 and the

bond valences are unweighted.

The methods of O’Keeffe (1990) and Rutherford (1990)

may be reformulated without the introduction of weighting

factors (discussed further below). Urusov & Orlov (1999) used

this approach to solve for the a priori bond valences of

Ca2B2SiO8 and to calculate its a priori bond lengths. The same

method was used by Gagné and Hawthorne (2016a) to solve

for the a priori bond lengths of 14 milarite-group minerals.

Methods alternative to the use of loop equations include the

resonance-bond model (Rutherford, 1998) and the method of

mineralogical crystallography
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maximum entropy (Rao & Brown, 1998), but these have seen

little use.

3. Solution of the network equations

There are two cases arising in solving the network equations of

a crystal structure: (1) valence-sum equations are sufficient for

solution (i.e. loop equations are redundant linear combina-

tions of valence-sum equations), and (2) a combination of

valence-sum and loop equations is necessary for solution. We

discuss the two cases below.

3.1. Calculation of a priori bond valences from valence-sum
equations

The valence-sum rule states that the sum of the bond

valences at each atom is equal to the magnitude of the atomic

valence. One may write a set of equations describing the

valence-sum rule in terms of the constituent bond valences.

This gives a system of equations involving the bond valences,

and one may calculate bond valences from these network

equations; these are known as a priori bond valences.

The n equations of the valence-sum rule may be written in

general form as follows:
P

j sij ¼ Vi ði ¼ 1 to nÞ; ð1Þ
where the summation involves all bonds from the central ion i

to the coordinating ions j for the n crystallographically distinct

ions in the structure. We will now look at various sets of

equations and their solution for minerals of increasing

complexity.

3.1.1. Magnesiochromite. Magnesiochromite, ideally

MgCr3+
2O4, is cubic, space group Fd3m, has the normal spinel

structure, = 1.379 bits per atom (Krivovichev, 2013); Mg is

tetrahedrally coordinated and has only one symmetrically

distinct Mg—O bond; Cr3+ is octahedrally coordinated and has

one symmetrically distinct Cr3+—O bond. The bond-valence

table is shown in Table 1. The bond valences are represented

by the variables a and b. The formal charges of the cations at

the cation sites are written as siteV: MgV and CrV and the

charges of the anions are constrained to be equal to their

formal valences. As there is only one symmetrically distinct

bond for each of the Mg and Cr3+ coordination polyhedra,

there are three valence-sum equations:

4a ¼ MgV ¼ 2 ½v1�

6b ¼ CrV ¼ 3 ½v2�

aþ 3b ¼ 2 ½v3�
One of the valence-sum equations is linearly dependent of

the others because of the constraint of electroneutrality.

Hence there are two unknowns and two independent equa-

tions. The a priori bond valences are as follows: Mg—O: MgV/4

= 2/4 = 0.5 v.u.; Cr3+—O: CrV/6 = 3/6 = 0.5 v.u.; a + 3b = 2 = OV.

The resulting a priori bond lengths (using the bond-valence

parameters of Gagné & Hawthorne, 2015) are shown in Table 2

together with the observed bond lengths and bond valences

calculated from the structure of Nestola et al. (2014).

3.1.2. Grossular. Grossular, ideally Ca3Al2Si3O12, cubic,

space group Ia3d, IG = 1.595 bits per atom; Ca is [8]-coordi-

nated with two crystallographically distinct Ca—O distances,

Al is [6]-coordinated with one crystallographically distinct

Al—O distance, and Si is [4]-coordinated with one crystal-

lographically distinct Si—O distance. There are four distinct

cation–oxygen distances, but the two distinct Ca—O distances

are topologically identical, and hence we must treat Ca as

having eight topologically identical bonds. In the resulting

bond-valence table (Table 3), there are four valence-sum

equations:

8a ¼ CaV ¼ 2 ½v1�

6b ¼ AlV ¼ 3 ½v2�

4c ¼ SiV ¼ 4 ½v3�

2aþ bþ c ¼ 2 ½v4�
Again, one of the valence-sum equations is constrained to

be linearly dependent of the others because of the constraint

of electroneutrality. There are three unknowns and three

mineralogical crystallography
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Table 1
Bond valences for magnesiochromite.

Mg Cr �an

O1 a�4# b�6#�3! 2
�cat 2 3

Table 2
A priori and observed bond valences for magnesiochromite.

Site

A priori
bond valence
(v.u.)

A priori
bond length
(Å)

Observed bond
valence
(v.u.)

Observed bond
length
(Å)†

Mg a 0.5 1.915 0.445 1.967
Cr b 0.5 1.904 0.475 1.994

† Bond lengths from Nestola et al. (2014).

Table 3
Bond-valence table for grossular.

Ca Al Si �an

O a�8#�2! b�6# c�4# 2
�cat 2 3 4

Table 4
A priori and observed bond valences for grossular.

Site

A priori
bond valence
(v.u.)

A priori
bond length
(Å)

Observed
bond valence
(v.u.)

Observed
bond length
(Å)†

Ca a 0.25 2.474 0.365, 0.239 2.319, 2.493
Al b 0.5 1.905 0.479 1.921
Si c 1 1.624 0.942 1.647

† Bond lengths from Meagher (1975).

electronic reprint



linearly independent equations, which again is sufficient to

calculate the a priori bond valences from the valence-sum

equations: Ca—O: CaV/8 = 2/8 = 0.25 v.u.; Al—O: AlV/6 = 3/6 =

0.5 v.u.; SiV/4 = 4/4 = 1 v.u.; 2a + b + c = 2 = OV. The resulting a

priori bond lengths are shown in Table 4 together with the

observed bond lengths and bond valences calculated from the

structure of Meagher (1975).

3.2. Calculation of a priori bond valences from the valence-
sum equations and the loop equations

3.2.1. Diopside. Diopside, ideally CaMgSi2O6, monoclinic,

space group C2/c, = 2.522 bits per atom; Ca is [8]-coordinated

with four crystallographically distinct Ca—O distances, Mg is

[6]-coordinated with three crystallographically distinct Mg—O

distances, and Si is [4]-coordinated with four crystal-

lographically distinct Si—O distances. However, there are two

pairs of Ca—O bonds (to O3) that are crystallographically

distinct but topologically identical and hence there are only

three Ca—O bond valences (a, b and c) in the bond-valence

table (Table 5). There are two pairs of Mg—O bonds (to O1)

and two Si—O bonds (to O3) that are similarly merged in the

bond-valence table which thus has eight bond valences a

through h.

The valence-sum rule for the cations gives us the following

equations:

2aþ 2bþ 4c ¼ CaV ¼ 2 ½v1�

4dþ 2e ¼ MgV ¼ 2 ½v2�

f þ gþ 2h ¼ SiV ¼ 4 ½v3�
The valence-sum rule for the anions gives us the following

equations:

aþ 2dþ f ¼ 2 ½v4�

bþ eþ g ¼ 2 ½v5�

2cþ 2h ¼ 2 ½v6�
These six equations are constrained by charge balance, and

hence there are five linearly independent valence-sum equa-

tions, and the system is underdetermined. As a result, we must

make use of the loop rule, which states the sum of the directed

bond valences around any circuit (closed path) of bonds in a

structure is zero. The equations for the loop rule may be

written in general form as follows:
P

sij ¼ 0; ð2Þ
where the summation is over the directed bond valences

around any circuit in the directed graph of the bond network

of the structure. This rule introduces the idea of directed bond

valences, whereby bonds from a cation to an anion are

considered positive and bonds from an anion to a cation are

considered negative in sign. The number of linearly indepen-

dent loop equations is equal to the difference between the

number of crystallographically distinct bonds and sites in the

crystal (Rutherford, 1990). Thus to solve for the a priori bond

valences of diopside, we need three linearly independent loop

equations of the form of equation (2). Consider the structure

of diopside shown in Fig. 1. Three loops are shown by the

heavy coloured lines in this figure and indicated by the

symbols L1–L3. The loop equations are as follows:

Loop 1 (red): Ca ! O1 ! Mg! O2 ! Ca, resulting in the

following loop equation:

a� dþ e� b ¼ 0 ½L1�
Loop 2 (black): Ca ! O1 ! Si ! O2 ! Mg ! O1 ! Si

! O3 ! Ca, resulting in the following loop equation:

a� f þ g� eþ d� f þ h� c ¼ 0 ½L2�
Loop 3 (green): Ca ! O2 ! Si! O3 ! Ca, resulting in

the following loop equation:

b� gþ h� c ¼ 0 ½L3�
Thus we have eight equations and eight unknowns, and we

may solve these equations for the a priori bond valences.

3.2.2. Solution of the network equations for diopside. For

large systems of equations, it becomes efficient to represent

mineralogical crystallography
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Table 5
Bond valences for diopside.

Ca Mg Si �an

O1 a�2# d�4#�2! f 2
O2 b�2# e�2# g 2
O3 c�4#�2! h�2#�2! 2
�cat 2 2 4

Figure 1
The crystal structure of diopside showing the loops L1, L2 and L3 as
heavy coloured lines and the paths P1, P2 and P3 as heavy coloured lines
outlined by a nimbus of contrasting colour.
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the network equations in matrix form Ax = b, where the A

matrix contains the coefficients of the network equations, the

left-side column vector x contains the a priori bond valences

(unknown) and the right-side column vector b contains the

formal charges of the ions at the sites, together with the zeros

associated with the loop equations. For diopside, this gives

2 2 4 0 0 0 0 0

0 0 0 4 2 0 0 0

0 0 0 0 0 1 1 2

1 0 0 2 0 1 0 0

0 1 0 0 1 0 1 0

1 �1 0 �1 1 0 0 0

1 0 �1 1 �1 �2 1 1

0 1 �1 0 0 0 �1 1

2
66666666664

3
77777777775

a

b

c

d

e

f

g

h

2
66666666664

3
77777777775

¼

2

2

4

2

2

0

0

0

2
66666666664

3
77777777775

ð3Þ

where rows 1–3 and 4–5 of the A matrix are for the valence-

sum equations of the cations ([v1]–[v3]) and anions ([v4]–

[v5]), respectively, and rows 6–8 are for the loop equations

([L1]–[L3]), with a sum of 0 in the column matrix b. We

arbitrarily omitted valence-sum equation [v6] based on

redundancy caused by the constraint of electroneutrality;

however, any one of the six valence-sum equations could have

been omitted (we list equations in the A matrix in the above

order from hereon). From here, we solve for x via the

following manipulation: A�1Ax = A�1b = x. Table 6 shows the

results of this calculation, together with the a priori bond

lengths calculated using the bond-valence parameters of

Gagné & Hawthorne (2015), and the observed bond lengths

and bond valences calculated from the structure of Clark et al.

(1969).

3.2.3. Generalization of the loop rule. As noted above, the

loop rule involves the summation of directed bond valences

around any circuit in the digraph of the bond network of the

structure. As noted by Mackay & Finney (1973), this is the

structural analogue of Kirchoff’s second rule. However, an

electrical network is not an exact analogue of the network of

chemical bonds and ions in a crystal structure; in the latter,

many vertices (corresponding to ions) are symmetrically

equivalent. This in turn would indicate that the loop rule, i.e.

summation of directed bond valences around any circuit in the

digraph is zero, is just a special case of the more general rule

that the summation of directed bond valences around any path

with symmetrically equivalent terminal vertices is zero. We

tested this idea and found that we get the same solution for the

a priori bond valences irrespective of whether we use loops or

paths with symmetrically equivalent terminal vertices. Thus we

may replace the loop equations [L1]–[L3] above by the

following path equations [P1]–[P3] (where each path has

symmetrically equivalent terminal vertices):

Path 1 (red): Ca ! O1 ! Si! O2 ! Ca, resulting in the

following equation:

a� f þ g� b ¼ 0 ½P1�
Path 2 (black): Mg ! O1 ! Si ! O2 ! Mg, resulting in

the following equation:

d� f þ g� e ¼ 0 ½P2�
Path 3 (green): Ca ! O(1) ! Si! O(3) ! Ca, resulting in

the following equation:

a� f þ h� c ¼ 0 ½P3�
The paths are shown on Fig. 1 by the heavy coloured lines

outlined by a nimbus of contrasting colour and indicated by

the symbols P1–P3 adjacent to the starting ions for each path.

Replacing loop equations [L1]–[L3] in equation (3) by path

equations [P1]–[P3] gives the same solution for the a priori

bond valences. Thus we may generalize the loop rule of the

bond-valence model as follows: the sum of the directed bond

valences along any path of bonds in a structure is zero where

the path begins and ends on symmetrically equivalent terminal

ions. Moreover, the term ‘loop equations’ are not sufficiently

general to encompass both loops and paths with symmetrically

equivalent terminal ions; we suggest replacing the word loop

by path, i.e. path equations; a loop is subsumed in this defini-

tion, as a loop is a path that begins and ends on the same

terminal ion.

3.2.4. Derivation of the linearly independent paths with
symmetrically equivalent terminal ions. Brown (2002)

described the derivation of linearly independent path equa-

tions via a spanning tree method, for CaCrF5. However, we

find this method becomes impractical for complicated struc-

tures. Alternatively, visually navigating crystal structures for

loops and paths is time-consuming. Below, we describe a

working method that allows the derivation of all linearly

independent (and no linearly dependent) path equations of a

crystal structure from its bond topology table in a matter of

seconds (for a trained user), for crystal structures of any level

of complexity.

The general idea is the following: derive cycles in the bond

topology table by navigating through the variables (disre-

garding multiplicity), alternating vertical (+) and horizontal

(�) moves and producing the shortest cycles possible (length

4, 6, 8, [ . . . ]). The sampling order of starting points is from left

to right, up to down, and the first two moves must be right and

down (by convention); the other moves are arbitrary and

depend on the minimum path length achievable. One may not

go to variables above the starting row, and the path is to be

closed by going up to the starting variable. Thus the left-most

variable of row 1 is the first starting point, from which a path

equation is derived, if possible; upon failure, e.g. for the right-

mineralogical crystallography
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Table 6
A priori and observed bond valences for diopside.

Site

A priori
bond valence
(v.u.)

A priori
bond length
(Å)

Observed
bond valence
(v.u.)

Observed
bond length
(Å)†

Ca a 0.325 2.367 0.330 2.360
b 0.425 2.257 0.337 2.352
c 0.125 2.758 0.202, 0.138 2.561, 2.717

Mg d 0.300 2.141 0.357, 0.318 2.064, 2.115
e 0.400 2.014 0.369 2.050

Si f 1.075 1.596 1.058 1.602
g 1.175 1.561 1.108 1.584
h 0.875 1.676 0.902, 0.850 1.664, 1.687

† Bond lengths from Clark et al. (1969).
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most variable of any given row, one moves to the next starting

point. This is to be repeated using all variables as starting

points.

The above method follows a certain set of arbitrary rules,

some of which arise from dealing with a system of equations

that follows the rules of permutability (for rows and columns).

It is possible to derive a different but similar set of path

equations by either permuting rows and columns, or using

slight modifications of the above method. However, all sets of

equations will have the same solution for the a priori bond

valences.

Alternatively, one may derive all possible cycles of length 4,

6, 8, [ . . . ] in the bond topology table, followed by reducing all

gathered equations to linearly independent ones via standard

methods.

We may now go back to diopside, and use these rules to

derive three path equations from the bond topology table. We

start at the first row and first column of the bond-valence table

(Table 5):

Ca ! O1 ! Mg ! O2 ! Ca; a� dþ e� b ¼ 0 ½P1�
Next we move to the first row second column:

Mg ! O1 ! Si ! O2 ! Mg; d� f þ g� e ¼ 0 ½P2�
There is no linearly independent equation possible starting

from the last column of the first row, and we move on to the

second row, first column:

Ca ! O2 ! Si ! O3 ! Ca; b� gþ h� c ¼ 0 ½P3�
This brings the total to three equations, and a quick check

shows that no other starting points in rows 2 and 3 can yield

new equations according to the given set of rules. The a priori

bond valences that result from using these three path equa-

tions are the same as those using the three path equations

derived visually (above), as well as those using loop equations

[L1]–[L3].

3.2.5. Forsterite. Forsterite, ideally Mg2SiO4, orthorhombic,

space group Pbnm, = 2.522 bits per atom; there are two Mg

sites, both of which are [6]-coordinated and one tetrahedrally

coordinated Si site. The topologies of the magnesiochromite

(spinel) and forsterite (olivine) structures are the same.

However, when dealing with the olivine structure, it is

necessary to keep the topologically equivalent octahedrally

coordinated sites M1 and M2 different. This is not important

for forsterite–fayalite (Mg,Fe2+)2SiO4 where the octahedrally

coordinated cations are disordered, but it is important for

olivine minerals such as monticellite (CaMgSiO4) and

kirschsteinite CaFe2+SiO4 in which Mg and Fe2+ occur at M1

and Ca occurs at M2. The resulting strain issues would be lost

without retention of M1 and M2 as separate sites. This issue

does not arise where topologically identical sites are occupied

by O2� where the sites may be merged in the bond-valence

table. Mg2 has two symmetrically distinct pairs of bonds to O3,

but these bonds are topologically identical and hence they are

merged in the bond-valence table. The bond-valence table

(Table 7) has nine independent bond valences a through i,

there are six valence-sum equations, but one is linearly

dependent of the others. There are nine unknowns and five

independent equations, and hence the system needs four

additional path equations. Using the above rules, these paths

may be derived:

Mg1 ! O1 ! Mg2 ! O2 ! Mg1; a� dþ e� b ¼ 0 ½P1�

Mg2 ! O1 ! Si ! O2 ! Mg2; d� gþ h� e ½P2�

Mg1 ! O2 ! Mg2 ! O3 ! Mg1; b� eþ f � c ¼ 0 ½P3�

Mg2 ! O2 ! Si ! O3 ! Mg2; e� hþ i� f ¼ 0 ½P4�
Omitting the O3 valence-sum equation as redundant, we

have:

2 2 2 0 0 0 0 0 0

0 0 0 1 1 4 0 0 0

0 0 0 0 0 0 1 1 2

2 0 0 1 0 0 1 0 0

0 2 0 0 1 0 0 1 0

1 �1 0 �1 1 0 0 0 0

0 0 0 1 �1 0 �1 1 0

0 1 �1 0 �1 1 0 0 0

0 0 0 0 1 �1 0 �1 1

2
6666666666664

3
7777777777775

a

b

c

d

e

f

g

h

i

2
6666666666664

3
7777777777775

¼

2

2

4

2

2

0

0

0

0

2
6666666666664

3
7777777777775

; ð4Þ

where rows 1–3 and 4–5 of the A matrix are for the valence-

sum equations of the cations and anions, respectively, and

rows 6–9 are for the path equations [P1]–[P4]. Table 8 shows

the solution to these equations, together with the a priori bond

lengths calculated using the bond-valence parameters of

Gagné & Hawthorne (2015), and the observed bond lengths

and the bond valences calculated from the structure of Smyth

& Hazen (1973).

3.2.6. Fluoro-phlogopite. Ideally KMg3AlSi3O10F2, simplest

polytype monoclinic 1M, space group C2/m, = 2.822 bits per

atom for fluoro-phlogopite; there is one K site that is [12]-

coordinated, two Mg sites that are [6]-coordinated by four O2�

and two F� anions, one T site that is [4]-coordinated and

occupied by Si4+ and Al3+. There is one site that may be

occupied by F� which is coordinated by three Mg2+ ions. K+

has two sets of symmetrically equivalent bonds to O1, each

with a multiplicity of 4; however, these two sets of bonds are

topologically identical. Similarly, K has two sets of symme-

trically equivalent bonds to O3, each with a multiplicity of 2;

these two sets of bonds are also topologically identical.

Topologically identical bonds are merged in the bond-valence

table (Table 9) used for the a priori bond-valence calculation.

Mg2 has two sets of symmetrically equivalent bonds to O3,
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Table 7
Bond valence for forsterite.

Mg1 Mg2 Si �an

O1 a�2#�2! d g 2
O2 b�2#�2! e h 2
O3 c�2# f�4#�2! i�2 2
�cat 2 2 4
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each with a multiplicity of 2; however, these two sets of bonds

are topologically identical and are merged in Table 9.

The bond-valence table for fluoro-phlogopite (Table 9) has

nine independent bond valences a through i and there are

eight bond-valence equations of the type (1) to (6), see above.

One of the bond-valence equations is linearly dependent of

the others because of the constraint of electroneutrality.

Hence the system of bond-valence equations is under-deter-

mined and we must include two path equations. These equa-

tions may be derived from the bond-valence table (Table 9) as

discussed above, resulting in the following network equations:

8 4 0 0 0 0 0 0 0

0 0 4 2 0 0 0 0 0

0 0 0 0 4 2 0 0 0

0 0 0 0 0 0 2 1 1

2 0 0 0 0 0 2 0 0

0 2 0 0 0 0 0 2 0

0 0 1 0 2 0 0 0 1

1 �1 0 0 0 0 �1 1 0

0 0 1 �1 �1 1 0 0 0

2
6666666666664

3
7777777777775

a

b

c

d

e

f

g

h

i

2
6666666666664

3
7777777777775

¼

1

2

2

3:75

2

2

2

0

0

2
6666666666664

3
7777777777775

ð5Þ

where rows 1–4 and 5–7 of the A matrix are for the valence-

sum equations of the cations and anions, respectively, and

rows 8–9 are for the path equations (the valence-sum equation

for the F site is omitted). Note that the above equations apply

to phlogopite if the (OH)� group is treated as a single ion and

the hydrogen bonding is ignored.

Table 10 shows the solution to these equations, together

with the a priori bond lengths, the observed bond lengths and

the bond valences calculated from the structure of Gianfagna

et al. (2007).

3.2.7. Tremolite, fluoro-tremolite. Ideally Ca2Mg5-

Si8O22(OH,F)2, monoclinic, space group C2/m, = 3.699 bits per

atom for tremolite and 3.773 bits per atom for fluoro-tremo-

lite; there is one Ca site that is [8]-coordinated, three Mg sites

that are [6]-coordinated, two Si sites that are [4]-coordinated,

and one site containing OH, the donor O of which is coordi-

nated by three Mg atoms. There are no topological degen-

eracies among the bonds in tremolite. The H+ ion forms an

OH� group with O3, making a hydrogen bond with O7 and

possibly a hydrogen bond with O6. We will examine the effect

of hydrogen bonds on a priori bond-valence calculations by

solving the system of equations both with and without the

consideration of hydrogen bonds. Here, it is most efficient to

show the bond topology table with the maximum number of

hydrogen bonds and to derive all network equations

(including paths that use the hydrogen bonds). For cases

where these hydrogen bonds are not considered, the matrices

are updated without the relevant variables and their resulting

paths (not shown here).

The bond-valence table (Table 11) has 23 independent

bond valences a through w (variable w is listed before variable

v in the bond topology table to indicate that it is

the longest and weakest, thus most questionable bond).

There are 14 bond-valence equations, one of which is depen-

dent because of electroneutrality. The system of bond-valence

equations is under-determined and we must derive 23 �
(14 � 1) = 10 path equations to solve for the

a priori bond valences. Following the method above, we get
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Table 9
Bond valences for fluoro-phlogopite.

K Mg1 Mg2 Si/Al �an

O1 a�8#�2! g�2#�2! 2
O2 b�4#�2! h�2! 2
O3 c�4# e�4#�2! i 2
F d�2# f�2#�2! 1
�cat 1 2 2 3.75

Table 10
A priori and observed bond valences for fluoro-phlogopite.

Site

A priori
bond valence
(v.u.)

A priori
bond length
(Å)

Observed
bond valence
(v.u.)

Observed
bond length
(Å)†

K a 0.083 3.035 0.092, 0.045 2.996, 3.284
b 0.083 3.035 0.092, 0.045 2.995, 3.283

Mg1 c 0.333 2.095 0.343 2.082
d 0.333 2.095 0.388 2.027

Mg2 e 0.333 2.095 0.352, 0.344 2.071, 2.081
f 0.333 2.095 0.380 2.037

Si/Al g 0.917 1.660 0.933 1.651
h 0.917 1.660 0.933 1.651
i 1.000 1.626 0.928 1.653

† Bond lengths from Gianfagna et al. (2007).

Table 8
A priori and observed bond valences for forsterite.

Site

A priori
bond valence
(v.u.)

A priori
bond length
(Å)

Observed
bond valence
(v.u.)

Observed
bond length
(Å)†

Mg1 a 0.333 2.095 0.341 2.084
b 0.333 2.095 0.354 2.068
c 0.333 2.095 0.306 2.132

Mg2 d 0.333 2.095 0.274 2.182
e 0.333 2.095 0.368 2.051
f 0.333 2.095 0.255, 0.355 2.214, 2.067

Si g 1.000 1.624 1.023 1.615
h 1.000 1.624 0.928 1.653
i 1.000 1.624 0.972 1.635

† Bond lengths from Smyth & Hazen (1973).

Table 11
Bond valences for tremolite.

Ca Mg1 Mg2 Mg3 Si1 Si2 H �an

O1 e�2# h�2# k�4# m 2
O2 a�2# f�2# i�2# q 2
O3 g�2#�2! l�2# u 2
O4 b�2# j�2# r 2
O5 c�2# n s 2
O6 d�2# o t w�2# 2
O7 p�2! v 2
�cat 2 2 2 2 4 4 1
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where rows 1–7 and 8–13 of the A matrix are for the valence-

sum equations of the cations and anions, respectively, and

rows 14–23 are for the path equations (the valence-sum

equation for the O7 site is omitted). The path equations are

derived as indicated above; [L2] and [L5] have path length 6,

[L3] has path length 8, and the remainder have path length 4.

Next, we consider hydrogen bonding. We may update

equation (6) to study the case of one hydrogen bond to O7

(thus removing variable w and updating the network equa-

tions accordingly), and no hydrogen bond (removing variables

v and w and updating the network equations accordingly).

Table 12 shows the solutions to these equations for the

different scenarios for the hydrogen bond, together with the

corresponding a priori bond lengths, the observed bond

lengths and the bond valences calculated from the structure of

Papike et al. (1969). The O—H and H� � �O distances are taken

from the neutron diffraction refinement of Hawthorne &

Grundy (1976).

3.2.8. Albite. Ideally NaAlSi3O8, triclinic, space group C1, =

3.700 bits per atom; there is one Na site, surrounded by nine

O2� anions at distances of < 3.5 Å, one Al site and three Si

sites, all of which are tetrahedrally coordinated. Na has two

symmetrically distinct bonds to O1, but these bonds are

topologically identical and are merged in the bond-valence

table (Table 13). The coordination number of Na is not easy to

determine. hNa—Oi distances for coordination numbers [7],

[8] and [9] are all �0.1 Å larger that the corresponding grand

hNa—Oi distances given by Gagné & Hawthorne (2016b) for

ordered mineral and inorganic crystal structures. Here we will

calculate the a priori bond valences for Na coordination

numbers [7], [8] and [9] to see how sensitive the calculations

are to different choices of coordination number.

Again, here we show the bond topology table with the

maximum number of bonds (coordination number [9] for Na)

and derive all network equations as such. Variable x and w in

the bond topology table of albite (Table 13) indicate the eighth

(w) and ninth (x) shortest Na—O interatomic distances. The

bond-valence table (Table 13) has 24 independent bond

valences a through x. There are 13 bond-valence equations,

one of which is dependent because of electroneutrality, and we

must derive 24 � (13 � 1) = 12 path equations to solve for the

a priori bond valences of albite with [9]-coordinated Na.

Following the method above, we get

where rows 1–5 and 6–12 of the A matrix are for the valence-

sum equations of the cations and anions, respectively, and

rows 13–24 are for the path equations (the valence-sum

equation for the O8 site is omitted). The path equations are

derived as indicated above; [L2], [L4], [L6] and [L8] have path

length 6, and the remainder have path length 4.
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Table 12
A priori bond valences and bond lengths for tremolite without and with
hydrogen bonds.

Site

A priori
bond valence
(v.u.)

A priori
bond length
(Å)

Observed
bond
valence
(v.u.)

Observed
bond
length
(Å)†

None � � �O7 � � �O7,
O6 �2

None � � �O7 � � �O7,
O6 �2

Ca a 0.309 0.329 0.341 2.388 2.362 2.348 0.303 2.396
b 0.411 0.418 0.428 2.271 2.264 2.254 0.364 2.321
c 0.140 0.126 0.138 2.711 2.753 2.716 0.122 2.767
d 0.140 0.126 0.093 2.711 2.753 2.878 0.213 2.540

Mg1 e 0.386 0.329 0.269 2.030 2.100 2.189 0.357 2.064
f 0.307 0.269 0.263 2.131 2.190 2.200 0.346 2.078
g 0.307 0.402 0.468 2.131 2.011 1.944 0.342 2.083

Mg2 h 0.247 0.263 0.300 2.227 2.199 2.142 0.305 2.134
i 0.325 0.324 0.306 2.105 2.108 2.132 0.342 2.083
j 0.428 0.413 0.394 1.984 1.999 2.021 0.400 2.014

Mg3 k 0.307 0.269 0.263 2.131 2.190 2.200 0.352 2.071
l 0.386 0.463 0.475 2.030 1.949 1.938 0.363 2.057

Si m 1.060 1.139 1.168 1.601 1.573 1.563 1.055 1.603
n 0.970 0.997 0.973 1.636 1.625 1.634 0.974 1.634
o 0.970 0.997 0.928 1.636 1.625 1.653 0.981 1.632
p 1.000 0.867 0.931 1.624 1.680 1.652 1.018 1.617

Si2 q 1.059 1.079 1.091 1.602 1.594 1.590 1.018 1.617
r 1.161 1.168 1.178 1.566 1.563 1.560 1.099 1.587
s 0.890 0.876 0.888 1.669 1.675 1.670 0.923 1.655
t 0.890 0.876 0.843 1.669 1.675 1.690 0.881 1.673

H u 1.000 0.733 0.589 0.918 1.050 1.144 0.901 0.959
v --- 0.267 0.139 --- 1.481 1.760 0.013 2.762
w --- --- 0.136 --- --- 1.769 0.013 2.784

† Bond lengths from Papike et al. (1969). OH and H� � �O distances from Hawthorne &
Grundy (1976).
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Next, we consider the two long interatomic distances (x and

w). We adjusted equation (7) to study albite with [7]- and [8]-

coordinated Na by removing these variables and updating the

network equations accordingly. Table 14 shows the solutions

to these equations for the different coordination numbers of

Na, together with the corresponding a priori bond lengths, the

observed bond lengths and the bond valences calculated from

the structure of Harlow & Brown (1980).

3.2.9. Epidote. Ideally Ca2(Al2Fe3+)[Si2O7][SiO4]O(OH),

monoclinic, space group P21/m, = 4.187 bits per atom; there

are two Ca sites that are [7]- and [8]-coordinated, respectively,

three Al sites that are octahedrally coordinated, three Si sites

that are tetrahedrally coordinated, and one OH group that

bonds to ions at two Al sites and one [8]-coordinated Ca site.

We may use epidote to further investigate the suitability of

including H� � �O bonds in the bond network, as we have done

for tremolite. Here, only one hydrogen bond seems plausible,

to O4. Thus we calculate the a priori bond valences for epidote

with and without a hydrogen bond to O4. Including the

hydrogen bond to O4, the bond-valence table (Table 15) has

32 independent bond valences a through af. There are 19

bond-valence equations, one of which is dependent because of

electroneutrality. The system of bond-valence equations is

under-determined and we must derive 32 � (19 � 1) = 14 path

equations to solve for the a priori bond valences. Following the

method above, we get

where rows 1–9 and 10–18 of the A matrix are for the valence-

sum equations of the cations and anions, respectively, and

rows 19–32 are for the path equations (the valence-sum

equation for the O10 site is omitted). The path equations are

derived as indicated above; [L3], [L8], [L9], [L12], [L14] have

path length 6, [L5], [L10] have path length 8, and the

remainder have a path length 4.

Table 16 shows the solution to equation (8) and its slightly

modified form without hydrogen bond (removing variable af

and adjusting the network equations accordingly, not shown

here), together with the corresponding a priori bond lengths,

the observed bond lengths and the bond valences calculated

from the structure reported by Gatta et al. (2010).
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Table 14
A priori and observed bond valences for albite with Na coordination
numbers [7], [8] and [9].

A priori bond
valence (v.u.)

A priori bond
length (Å)

Site [7] [8] [9] [7] [8] [9]

Observed
bond valence
(v.u.)

Observed
bond length
(Å)†

Na a 0.135 0.127 0.121 2.495 2.521 2.545 0.123, 0.091 2.537, 2.672
b 0.089 0.078 0.069 2.680 2.736 2.792 0.179 2.369
c 0.180 0.170 0.165 2.367 2.392 2.406 0.145 2.464
d 0.192 0.187 0.177 2.339 2.351 2.374 0.047 2.959
e 0.192 0.187 0.177 2.339 2.351 2.374 0.153 2.440
f 0.077 0.062 0.052 2.745 2.842 2.914 0.043 2.997
w – 0.062 0.052 – 2.842 2.914 0.024 3.266
x – – 0.065 – – 2.819 0.015 3.465

Al g 0.710 0.710 0.711 1.768 1.768 1.768 0.745 1.749
h 0.755 0.753 0.755 1.744 1.745 1.744 0.765 1.739
i 0.767 0.769 0.767 1.738 1.737 1.738 0.769 1.737
j 0.767 0.769 0.767 1.738 1.737 1.738 0.755 1.744

Si1 k 1.012 1.035 1.048 1.616 1.610 1.606 1.080 1.594
l 1.018 1.025 0.992 1.617 1.614 1.627 1.066 1.599
m 1.000 0.970 0.980 1.624 1.636 1.632 1.007 1.621
n 0.962 0.970 0.980 1.639 1.636 1.632 1.026 1.614

Si2 o 0.974 0.985 0.984 1.634 1.630 1.63 0.977 1.633
p 1.065 0.077 1.080 1.599 1.595 1.594 1.085 1.592
q 1.000 0.969 0.968 1.624 1.636 1.637 1.018 1.617
r 0.962 0.969 0.968 1.639 1.636 1.637 1.013 1.619

Si3 s 0.937 0.936 0.947 1.649 1.650 1.645 0.935 1.650
t 0.982 0.975 0.943 1.631 1.634 1.647 1.018 1.617
u 1.041 1.044 1.055 1.608 1.607 1.603 1.080 1.594
v 1.041 1.044 1.055 1.608 1.607 1.603 1.055 1.603

† Bond lengths from Harlow & Brown (1980).

Table 15
Bond valences for epidote.

Ca1 Ca2 Fe Al1 Al2 Si1 Si2 Si3 H �an

O1 a�2# l�2# p�2# v�2# 2
O2 g�4#�2! m�2# ab�2# 2
O3 b�2# h�2# s�2# y�2# 2
O4 n q�2#�2! af 2
O5 c r�2#�2! ac 2
O6 d t�2#�2! ad 2
O7 e i w 2
O8 j�2#�2! o z 2
O9 f�3#�3! x aa 2
O10 k u�2#�2! ae 2
�cat 2 2 3 3 3 4 4 4 1

Table 13
Bond-valence table for albite: Na CN = [7], [8] and [9].

Na Al Si1 Si2 Si3 �an

O1 a�2#�2! g k 2
O2 b o s 2
O3 c h p 2
O4 x l t 2
O5 d i u 2
O6 w m q 2
O7 e j v 2
O8 f n r 2
�cat 1 3 4 4 4
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4. Discussion

4.1. Agreement between observed and a priori bond lengths

It is important to realize that the calculation of a priori bond

valences and bond lengths is not a prediction. It is a calcula-

tion that allows quantitative assessment of the strain in a

crystal structure, an important quantity that Gagné &

Hawthorne (2017a) suggest is strongly related to the variation

in mean bond length for ion pairs in crystal structures.

4.2. Structures in which the a priori bond valences obey the
equal-valence rule exactly

The a priori bond valences for magnesiochromite, grossular

and forsterite are equal to the Pauling bond strengths

(Tables 1, 2 and 4) and there are no bond valence require-

ments driving any distortion of the bond lengths via the effect

of the distortion theorem (Brown, 2016; Urusov, 2014; Bosi,

2014; Gagné & Hawthorne, 2017a). Nevertheless, there are

significant differences between the a priori bond lengths and

those observed experimentally. In particular, the observed

mean bond lengths are greater than the mean a priori bond

lengths for all olivine-group minerals, for magnesiochromite

and for the Al and Si polyhedra in grossular. There is a

significant effect of structure type on the agreement between a

priori and observed bond lengths and mean bond lengths. This

effect was discussed by Bosi (2014) for a handful of minerals

and by Gagné & Hawthorne (2017a) for a large number of

minerals and synthetic compounds. In particular, Gagné &

Hawthorne (2017a) showed close agreement (R2 > 0.99)

between the a priori and observed mean bond lengths for 14

milarite-group minerals, and found negligible agreement for

single ion configurations in many different structure types. For

the minerals examined here, we see

that within a particular structure

type, the agreement between the a

priori and observed mean bond

lengths show systematic deviation

from the a priori mean bond lengths.

Fig. 2(a) compares the a priori and

observed hX—Oi and hY—Oi
distances for the garnet structures

pyrope, almandine, spessartine,

calderite, andradite, eringaite, gros-

sular and uvarovite. Both the hX—

Oi (X = M2+) and hY—Oi (Y = M3+)

distances are greater than the a

priori distances for cations of higher
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Table 16
A priori and observed bond valences for epidote without and with
hydrogen bonds.

Site

A priori
bond valence
(v.u.)

A priori
bond length
(Å)

Observed
bond valence
(v.u.)

Observed
bond length
(Å)†

None � � �O4 None � � �O4
Ca1 a 0.207 0.167 2.551 2.639 0.259 2.459

b 0.252 0.299 2.472 2.401 0.357 2.329
c 0.207 0.156 2.552 2.667 0.207 2.552
d 0.155 0.213 2.670 2.540 0.098 2.856
e 0.444 0.455 2.239 2.229 0.387 2.295
f 0.092 0.122 2.881 2.767 0.069 3.002

Ca2 g 0.214 0.184 2.538 2.600 0.219, 0.116 2.528, 2.788
h 0.158 0.163 2.663 2.650 0.164 2.646
i 0.350 0.318 2.337 2.375 0.437 2.246
j 0.209 0.186 2.548 2.596 0.066 3.018
k 0.062 0.250 3.042 2.474 0.218 2.530

Fe3+ l 0.408 0.412 2.088 2.059 0.264 2.225
m 0.509 0.565 2.009 1.943 0.508 1.986
n 0.662 0.479 1.914 2.003 0.581 1.937
o 0.504 0.567 2.012 1.941 0.727 1.855

Al1 p 0.416 0.481 1.977 1.921 0.460 1.939
q 0.669 0.548 1.791 1.870 0.587 1.844
r 0.415 0.470 1.977 1.930 0.438 1.958

Al2 s 0.564 0.500 1.858 1.905 0.569 1.854
t 0.467 0.413 1.931 1.979 0.473 1.926
u 0.469 0.587 1.930 1.842 0.546 1.870

Si1 v 0.969 0.939 1.636 1.648 0.935 1.650
w 1.206 1.227 1.551 1.544 1.148 1.570
x 0.855 0.894 1.685 1.667 0.974 1.634

Si2 y 1.027 1.038 1.613 1.609 1.018 1.617
z 1.078 1.062 1.594 1.601 1.091 1.590
aa 0.868 0.862 1.679 1.682 0.974 1.634

Si3 ab 1.063 1.068 1.600 1.598 0.994 1.626
ac 0.962 0.904 1.639 1.663 0.900 1.665
ad 0.911 0.961 1.660 1.639 0.957 1.641

H ae 1.000 0.576 0.918 1.153 0.870 0.977
af – 0.424 2.551 1.284 0.084 1.973

† Bond lengths from Gatta et al. (2010).

Table 17
Strain indices (v.u.) for the minerals/coordinations considered in this
work.

Global instability
index

Bond strain
index

Magnesiochromite 0.188 0.036
Grossular 0.190 0.066
Diopside 0.108 0.095
Forsterite 0.076 0.042
Fluoro-phlogopite 0.087 0.028
Phlogopite (no H� � �O) 0.039 0.038
Phlogopite (H� � �O1,O1,O2) 0.039 0.123
Fluoro-tremolite 0.081 0.042
Tremolite (no H� � �O) 0.074 0.038
Tremolite (H� � �O7) 0.073 0.078
Tremolite (H� � �O7,O6,O6) 0.073 0.091
Albite [7] 0.101 0.048
Albite [8] 0.102 0.047
Albite [9] 0.101 0.047
Epidote (no H� � �O) 0.126 0.079
Epidote (H� � �O4) 0.116 0.095

Figure 2
Comparison of mean a priori bond lengths with observed bond lengths for (a) selected garnet structures,
and (b) selected olivine structures. Broken line is x = y.
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Lewis acidity (Al3+, Mg2+) and less than the a priori distances

for cations of lower Lewis acidity (Sc3+, Ca2+). Fig. 2(b)

compares the a priori and observed hM1—Oi and hM2—Oi
distances for the olivine structures forsterite, fayalite, glau-

cochroite, liebenbergite, monticellite, tephroite and synthetic

�-Ca2SiO4. Both the hM1—Oi and hM2—Oi distances are

greater than the a priori distances; the hM2—Oi distances

scatter about a line that is parallel to the 1:1 line, but the

hM1—Oi distances converge toward the a priori distances for

cations of lower Lewis acidity (Ca2+).

Here we see an important feature of the relation between a

priori and observed bond lengths. In the milarite-group

minerals, the bond-length correlations differ in detail for the

different sites, particularly the B site (Gagné & Hawthorne,

2016a). We see the same behaviour here. In the olivine-group

silicate minerals, there are separate linear correlations

between the a priori and observed hM1—Oi and hM2—Oi
distances. The situation is even more exaggerated in grossular,

where there are separate linear correlations for hX—Oi and

hY—Oi and the slopes of those correlations deviate signifi-

cantly from 1.0. In the absence of any driving force for

violating the equal-valence rule from a priori bond-valence

requirements, deviations from the equal-valence rule must

come completely from the constraints of embedding the graph

representing the ions and bonds into three-dimensional

Euclidean space within the constraints of the space-group

symmetry adopted by the crystal (Brown, 2016). This indicates

that further investigation of the way in which this embedding

affects the metric aspects of crystal structures should at first

focus on structures in which the a priori bond valences obey

the equal-valence rule exactly. We suggest that distance-least-

squares (Meier & Villiger, 1969) may be a profitable way to

approach this problem.

4.3. The effect of hydrogen bonds

The calculations for tremolite with various scenarios for

hydrogen bonds can give us an insight into the effect of

hydrogen bonds on the calculation of a priori bond valences.

The calculations were done (1) ignoring hydrogen bonds, (2)

with one hydrogen bond to O7, and (3) with one hydrogen

bond to O7 and two hydrogen bonds to O6. Agreement

between the a priori and observed bond lengths is closest

when the hydrogen bond(s) is ignored (70%), and the agree-

ment for the remaining bonds is �10% for one and three

hydrogen bonds, with complete disagreement for the

hydrogen bonds themselves no matter what the model used. In

particular, where hydrogen bonds are taken into account, the a

priori bond lengths for H� � �O7 and H� � �O3 (�2) are 1.760

and 1.769 Å, whereas the corresponding observed values are

2.762 and 2.784 Å. Thus it is apparent that including hydrogen

bonds in the a priori bond-valence calculation leads to larger

disagreement between the a priori and observed bond lengths

for tremolite. The calculations for epidote are somewhat

different. Agreement between the a priori and observed bond

lengths is approximately the same when the hydrogen bond is

ignored and when it is included. Also, there is complete

disagreement for the hydrogen bonds themselves no matter

what the model used: the a priori H+� � �O2� bond lengths are

2.551 Å where the hydrogen bond is omitted and 1.284 Å

where the hydrogen bond is included in the calculation,

whereas the observed H+� � �O2� bond length is 1.973 Å.

Brown (1992, 2016) noted that the equal-valence rule is

poorly obeyed in structures containing ions with electronic

anisotropies, as the latter can lead to large differences in

individual bond lengths within coordination polyhedra. This is

the case for H+ where for [2]-coordination, the bond valences

are generally very asymmetric with maxima at 0.859 v.u.

(0.983 Å) and 0.138 v.u. (1.764 Å) (Gagné & Hawthorne,

2018). We can see this effect in the relative agreement for the

calculations for tremolite and epidote. In tremolite, the

H+� � �O2� bond is longer at 2.762 Å and in epidote the H� � �O
bond is shorter at 1.973 Å, and the infrared spectra in the

principal OH-stretching region indicate major differences in

the strength of the hydrogen bonding: tremolite (3674 cm�1)

(Hawthorne et al., 1996) and epidote (3100–3150 cm�1)

(Liebscher, 2004). Thus the H environment in tremolite

deviates much more from the equal-valence rule than does the

H environment in epidote, and the results for tremolite show a

greater difference between the a priori and observed bond

lengths than does epidote for the calculations incorporating

the H+� � �O2� bond. Thus H+—O2� bonds generally do not

follow the equal-valence rule (Brown, 2016) (which would

require two bonds of 0.5 v.u.), and should not be included in

the bond network when calculating a priori bond valences and

bond lengths.

4.4. The effect of uncertain cation coordination numbers

In structures containing alkali metals and alkaline-earth

metals with larger coordination numbers, it can be unclear as

to what is the most appropriate coordination number. To look

at the effect of using different cation coordination numbers on

the calculation of a priori bond valences, we used albite with

Na+ in coordination numbers of [7], [8] and [9] (Table 14). By-

and-large, the effect on the [AlSi3O8] framework was quite

small: the agreement between the a priori and observed bond

lengths for the framework cations is approximately the same

for the different coordination numbers of Na+, and the

average difference between them is �0.01 Å. On the other

hand, the mean range in calculated values for the Na+—O2�

bonds is 0.07 Å and the maximum range is 0.17 Å, and the

maximum difference between the a priori and observed bond

lengths is �0.60 Å. It is apparent that the Na—O distances are

more susceptible to strain than the higher-valence bonds

involving [AlSi3O8] framework cations, which are of higher

Lewis acidity. In general, this suggests that a priori and

experimental bond lengths will be closer for cations of high

Lewis acidity than for cations of low Lewis acidity [see Gagné

& Hawthorne (2017b) for values of Lewis acidity].
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4.5. Overall comparison of a priori and observed bond
valences and bond lengths

A comparison of the a priori and observed bond valences is

shown in Fig. 3(a). The data scatter closely about the 1:1 line

with an average deviation of 0.04 v.u. and a maximum devia-

tion of 0.16 v.u. (for the Fe—O8 bond in epidote). Fig. 3(b)

shows a comparison of the a priori and observed bond lengths.

Again the data scatter about the 1:1 line, with an average

deviation of 0.048 Å and a maximum deviation of 0.620 Å (for

the Na—O5 bond in albite). The scatter of the corresponding a

priori and observed bond lengths is strongly a function of the

Lewis acidity of the constituent cation. Fig. 4 shows that for

cations of high Lewis acidity, the range of differences between

the a priori and observed bond lengths is small, whereas for

cations of low Lewis acidity, the range of differences between

the a priori and observed bond lengths is large.

4.6. Strain in crystal structures

A priori bond valences are calculated by applying the

valence-sum rule and the path rule to a bond network with

specific formal charges at specific vertices. We may calculate a

priori bond lengths from the a priori bond valences and embed

the resulting bond network into three-dimensional Euclidean

space. However, the metric aspects of the bond network are

not necessarily maintained in this process, particularly as the

structure not only has to fit into three-dimensional Euclidean

space but it also has to conform to the symmetry constraints of

its space group. The degree-of-fit between an a priori structure

and the corresponding observed structure is designated as

strain, and various definitions have been proposed for this. In

particular, the Global Instability Index (GII; Salinas-Sanchez

et al., 1992), and the Bond Strain Index (BSI; Preiser et al.,

1999) are used to denote this strain. GII is the root-mean-

square deviation of the bond-valence sums from their atomic

valences, averaged over all atoms in the formula unit

GII ¼ � P
j sij � Vi

� �2�1=2
;

where sij is the observed bond valence of ion i with coordi-

nation number j and V is the formal valence of ion i.

BSI is the root-mean-square deviation between the a priori

and observed bond valences, averaged over all bonds in the

formula unit

BSI ¼ ��
Sij � sij

�2�1=2
;

where Sij is the a priori bond valence.

A requirement of calculating BSI is that the a priori bond

valences must be calculated, and hence BSI has not seen a lot

of use as a measure of structural strain. Nevertheless, BSI is a

better measure of strain than GII, as GII does not consider the

path equations in the calculation of strain. Table 17 gives GII

and BSI for the structures examined here. There is a complete

lack of correlation (R2 = 0.00) between GII and BSI for all

above bonding scenarios combined, and very weak correlation

(R2 = 0.201) when omitting structures with hydrogen bonds

and the higher coordinations of Na in albite. On the other

hand, Gagné & Hawthorne (2016a) showed good correlation

(R2 = 0.65) between GII and BSI for 14 milarite-group

minerals.

Bosi (2014) and Gagné & Hawthorne (2017a) have

suggested that the principal reason for the variation in mean

bond length in structures for a specific ion-pair is the result of

strain in those structures. It is apparent that the response of

different bond topologies to the competing constraints of (1)

trying to attain exact accord with the valence-sum rule and the

path rule of bond-valence theory, and (2) being constrained to

the exact symmetry requirements of various space groups may

be very different. If the effect of bond topology on interatomic

distances is to be understood, these differences need to be

quantitatively understood.

5. Summary

(1) The loop rule of bond-valence theory states that the sum of

the directed bond valences around any circuit (closed path) of

bonds in a structure is zero. We have found that the sum of the

directed bond valences along any path of bonds in a structure

is zero where the path begins and ends on symmetrically

equivalent terminal ions. Thus we suggest renaming the loop

rule to the path rule: sum of the directed bond valences along

mineralogical crystallography

Acta Cryst. (2018). B74, 470–482 Gagné et al. � A priori bond-valence and bond-length calculations 481

Figure 3
Comparison of (a) a priori bond valences with observed bond valences,
and (b) a priori bond lengths with observed bond lengths for the
structures examined here. Blue triangles are for the Na—O bonds of
albite. Broken line is x = y.

Figure 4
Difference between a priori and observed bond lengths as a function of
Lewis acidity, showing how the range of differences between a priori and
observed bond lengths in the structures examined here decreases with
increasing Lewis acidity of the constituent cation.
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any path of bonds in a structure is zero where the path begins

and ends on symmetrically equivalent terminal ions. This more

general definition is inclusive of circuits (or loops), as the

terminal ions are related by the identity operation.

(2) The valence-sum equations and the path equations of a

crystal structure can be solved simultaneously by a simple

matrix manipulation to give a priori bond valences that can be

converted into a priori bond lengths using bond-valence

curves.

(3) For some low-complexity structures (spinel, garnet), a

priori bond valences may be calculated from the valence-sum

equations alone. For more complex structures (forsterite,

diopside, fluoro-phlogopite, tremolite, albite and epidote), the

valence-sum equations need to be supplemented by path

equations to calculate a priori bond valences.

(4) For some structures, there may be some uncertainty as

to the coordination number of one or more cations. The effect

of using different cation-coordination numbers was examined

for low albite with assigned coordination numbers [7], [8] and

[9] for Na+. Using different coordination numbers for Na+ had

little effect on the [AlSi3O8] framework, and differences

between the a priori and observed bond lengths are greater

than the differences between a priori bond lengths calculated

for different coordination numbers for Na+. A similar effect is

seen for structures containing hydrogen bonds.

(5) The a priori and observed bond valences and bond

lengths scatter closely about x = y with an average deviation of

0.04 v.u. and 0.048 Å and maximum deviations of 0.16 v.u. and

0.620 Å, respectively. The scatter of the corresponding a priori

and observed bond lengths is strongly a function of the Lewis

acidity of the constituent cation. For cations of high Lewis

acidity, the range of differences between the a priori and

observed bond lengths is small, whereas for cations of low

Lewis acidity, the range of differences between the a priori and

observed bond lengths is large.

(6) A priori calculation of bond valences and bond lengths

allows assessment of the strain in a specific structure and

provides a way to examine the effect of bond topology on

variation in observed bond lengths for the same ion pair in

different bond topologies.
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