Chapter 3 F. C. Hawthorne and G. A. Waychunas
SPECTRUM-FITTING METHODS

INTRODUCTION

When one records a spectrum, in the simplest case one gets an
analogue representation of signal intensity as a function of energy.
From this, one can approximately measure band positions and estimate
qualitative intensities. However, a major thrust in the spectroscopy
of minerals is to measure site-occupancies and/or chemical composition.
For this one needs derivative results more precise (and hopefully more
accurate) than those obtained by qualitative processing of analogue
data. One needs digitized data and an objective method of deriving
quantitative information from that data. Details of data acquisition
are technique dependent, but much of the data reduction necessary to
obtain quantitative results is common to wmany spectroscopic
techniques. This chapter will provide a general background in the
numerical methods and general philosophy of "curvq—fitting" techniques.

There is often a tendency to treat curve-fitting as a "black-box"
procedure. This is extremely dangerous. It is very easy to make
mistakes, particularly when one lacks a basic understanding of the
general principles. This has happened with distressing frequency in
the mineralogical literature and has damaged the credibility of the
technique, when it is the user rather than the technique that is at
fault. Consequently, all spectroscopic practitioners should be aware
of certain general principles and technique associated with this aspect
of spectroscopy. For this, some knowledge of statistics is essential;
you may refresh your memory at the end of this chapter, where Appendix
A gives definitions of the common statistical quantities used here.

GENERAL PHILOSOPHY

One may summarize the general principles of curve-fitting very
briefly:

(i) From one's physical/chemical knowledge of the experiment, one
sets up a mathematical model that will describe the raw data of the
experiment;

(ii) One then changes the variable parameters of the model to
minimize the deviations between the calculated "data" and the observed
data:

(iii) If the "fit" or agreement between the calculated data and
the observed data is statistically acceptable, then the (mathematical)
model is taken as being a possible description of the experimental
situation. .

Although this sounds very straightforward, it is necessary to
define very exactly what we mean by many of the terms used in this
description; this will be done in the following sections. Before we do

this, there is a little matter of terminology. This procedure of
curve-fitting is trequently referred to bv the term deconvolution.

This is wrong; deconvolution is a specific mathematical operation in
Fourier analvsis (that is discussed in detail later in this chapter).
Our spectrum consists of a summation of a series of separate curves
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(spectral bands), which together with a random noise component
constitutes our observed envelope of curves. Thus we resolve the
observed spectrum into its constituent bands, and refer to the process
as spectrum resolution.

SETTING UP THE MODEL

In this section, we use the word model in the most general sense
to mean the mathematical model we set up to describe the data. This
type of model can be divided into three parts:

(i) data reductjon procedures to correct for various experimental
factors that are independent of the other two parts of the model; this
converts the raw data into a form convenient for the ensuing
calculations;

(ii) deciding on an algorithm to model the background, that is the
response of the equipment when no spectroscopic signal is being
observed;

(iii) deciding on a function that adequately models the digitized
spectrum signal, that is the band shape.

Data reduction

This is normally quite a simple procedure in most spectroscopic
techniques, often being restricted to assigning weights to each
observation (this will be dealt with later on). For some methods, a
"split-beam" technique is wused, in which the incoming radiation is
split into two beams, only one of which passes through the sample, the
other passing through a similar path but without undergoing sample
absorption. By suitable subtraction or ratioing methods, complex
background profiles may be removed easily.

Background modeling

This varies tremendously from one spectroscopic method to

another. In some cases, we have a good idea what the background
function 1is, * and this can be modeled as part of the fitting
procedure. In other cases, there is no a priori ideal shape for the
background and a variety of ad hoc methods are used, often at the data
reduction stage. We will examine these in increasing order of
sophistication.

Linear interpolation: this is diagrammatically illustrated in
Figure 1(a). On either side of the band of interest, the background
intensity is counted at specific points B(1) and B(2). A straight line
is drawn between these two points, and the intensity below this line is
taken as the background intensity. This is subtracted from the total
integrated intensity between points B(1) and B(2) to get the intensity
(= area) under the peak.

This method assumes that the background is a linear function of

energy, which 1is often not the case. The effect of this is shown in
Figure 1(b). A concave background can lead to significant
underestimation of the peak intensity. Obviously, different nonlinear

type backgrounds can lead to different sorts of error.

Non-linear interpolation: the principal problem here is to [ind a
suitable analvtical function with which to model background behavior.
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B(2) By B2y B(l1 y

Figure 1. Background subtraction. For linear background (a), a linear interpolation
gives the correct background; for a non-linear background (b), linear interpolation gives
the wrong background and hence the wrong integrated peak intensity.

In some cases, there is insufficient data to warrant such a procedure,
and backgrounds must be "drawn by eye". Obviously, any method that
requires such a procedure cannot be considered as completely
quantitative. On the other hand, a semi-gquantitative method is better
than no method at all. . "

Most analytical background functions involve either polynominals
or circular functions (sines and/or cosines), and may be implemented in
two different ways:

(i) the spectroscopic bands are removed from the data, and the
remaining background points are then fit to the background function;
this background function is then considered fixed. The background
intensity for each data point in the complete data set is calculated
from the background function and then subtracted from the total
intensity at that point. The area under each band then represents the
intensity and energy of the spectroscopic response to the incident
radiation.

(ii) an approximate background function is derived as in (i). The
subtraction of the background intensity is done in the actual
curve-fitting process, with certain of the background terms considered
as variable parameters. Thus the background fitting is iteratively
optimized throughout the fitting procedure. This is the most
satisfactory method, provided that there are enough background data
points to constrain a good fit by the background function. This latter
paint is of considerable importance as there may be high correlation
between background and band function variables if there are
insufficient background data.

Modeling the band shape

Choosing an approximate function to accurately model the band
shape is one of the more difficult aspects of generalized
curve-fitting procedures. What one is essentially doing is looking at
the distribution of (absorption) events as a function of energy.
Consequently, band shapes are normally described by one of the usual
distribution functions. We will take a look at four examples, but it
is the Lorentzian and Gaussian functions that are of most use in
spectroscopic applications.
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The binomial distribution describes the probability P(x.n.P)_(
observing x positive responses from n tries where p is the probabilit
of a positive response for an individual try:

Plx, n, p) = [[')%] 1) 0

where (8) = n!/x!(n-x)!. Although this is the most basic distributic
function, it is not very amenable for general use as n and p ar
usually not known; consequently various approximations to it are used

The Poisson distribution approximates the binomial distributic

for p << 1, where n --> o when np = p = mean value = constant. Son
algebraic juggling gives
Plx, ) = Ei" e’ . (z

The variance may be evaluated thus:

2. S 2 g2 :

o=2[x—u]x,e =p . (:
x=0

This result is of considerable importance to us with regard t
the weighting of observations (see later section). When we make
single observation, consisting of a number of positive responses (i.e.
counts), the distribution of possible results should follow a Poisso
distribution if the number of counts is small (i.e., p << 1). Thu
the variance of the mean value p is p (i.e., equation (3)). If x is on

value taken from this distribution (i.e., a single experimenta
result), we can make the approximation
X=p (e

and thus the variance of the single observation x is x (and thus th
standard derivation of x is 4x).

The Gaussian distribution approximates the binomial distributic
for n ~-> @ and np > 1. It is probably the most useful distributio

function, and many applications have shown that it 1is an ag
description of the distribution of random observations for th

conditions stated (n --> @, np >> 1):

o o= gl el 415

One extremely useful characteristic of this function is that th
most probable estimate of the mean value, p, 1is the average of th
observations x:

p=x (6
and the standard deviation, o, 1is a variable in the function
Another important characteristic of this curve is its half-width, [
the full-width at half-maximum height; this has very importan
spectroscopic implications. The half-width is defined as the range o
x within which the probability P(x,p,0) is half its maximum value.
little algebra shows that

N=23%4o0 . (7
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Another important distribution function is the Lorentzian (or

Cauchy) distribution:
Pl w 1) = & —H2—; (8)

T w-w)? + /27

This function is unrelated to the binomial distribution but has
been found appropriate for describing resonance data; hence it is
perhaps the most important function from a spectroscopic viewpoint.
For purely mathematical reasons, we cannot define a standard
deviation for the Lorentzian distribution; instead we can characterize
its dispersion by its half-width, L , which is defined such that
P(x,u,T) = ¥P(u,u,r') for x-p = [/2; that is, when the deviation from
the mean is equal to one-half of the half-width, then the probability
function is half of its maximum value (which occurs at the mean value

X = u).

A comparison of the Lorentzian and Gaussian curves is shown in
Figure 2, in which both curves have the same half-width. Note that the
Gaussian curve has a higher maximum value, whereas the Lorentzian
curve has a wider tail. Very frequently one finds that none of the
ideal distribution functions adequately models the experimental data.
In this case, "mixtures" of curves can be used, whereby one's model
curve consists, for example, of A Lorentzian character and (1-A)
Gaussian character.

Table 1 summarizes the details of the various distribution
functions we have considered. Although they are the most common in
spectroscopic applications, they are not the only sorts of curves one
can use; and several other functions are also shown.

CRITERION OF "BEST FIT"

Having ‘set up a mathematical model, the next step is to "fit" the
model to the experimental data. This normally involves varying the
parameters of the model until the model shows the best agreement with
the abserved data. This raises the question of what do we mean by the
best agreement or best fit. Intuitively one expects the best
agreement when some function of the deviations between the observed
values and the corresponding values calculated from the model is
minimized. However, what is this function?

Consider that our model (Fig. 3) is of the form

y=mx+c . (9)

Intuitively one might expect that the best fit occurs when the
sum of the deviations from the observed data are minimized. However,
this is not a good measure, as positive and negative deviations tend to
cancel each other out. This can be overcome by minimizing the sum of
the magnitudes of the deviations, but this produces numerous practical
problems with regard to the minimization procedure.

Least-squares method

There is no unique method for defining a correct criterion of
best fit. However, if we assume a Gaussian distribution of
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Table 1. Various distribution lunctions

(1) Binominal distribution:

(2) Poisson distribution:
(3) Gaussian distribution:

(4) Lorentzian distribution:

Pxap) = [§) p01-p"

Plxu) = %,: e

S N [_ L[L;_ll. I
Plxp.o) = e ]
Lo 72
Flx-)? + (r72)°
P(xnp) = probability of  observing x positive
responses from n  tries, where p = probability of
response [or an individual Lry

approximates {1) for p << 1, where n --> o when ap
jl = mean value = constant

Plxpl) =

approxumates 0y for n --> w and np >+ |,
0 = standard deviation
unrefated 1o (1} [ = hall-width, a measure of 1the

dispersion of the distribution

a higher maximum whereas the Lorentzian curve has a wider tail;
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Figure 3. A linear model (y = mx + ¢) to the four data points shown in the graph. We
wish to minimize some function of the deviations of the points from the line for it to be
the “best fit". .

probabilities (see equation (5)), we can derive a useful and robust
method: the method of least-squares.
Suppose we wish to fit our experimental observations thus:
y=1kx . (10)

Where our experimental observations are (xi,yi), the discrepancy
6yi between the observed and calculated value is given by

by, =y, - flx) . {1
Let us write the actual relationship (which we cannot know) as
yix) = 1) . (12)

For any value xi of x, the probability of making the observed
measurement yi is given by

P, = l exp[- %[

qJEn

(13)

yl-y(X,l]Z]

The probability of making the observed set of N observations of
vi is the product of the N probabilities of equation (3):

No N ] L & i
P = fIp = B e expl- 4 > ) T

For any estimated function f, the probability that we will make
the observed set of measurements is

P(f} = .ﬁl O—I-JI—Z-;T- exp[- -é :.i; [;]2] {15)

The important point about equations (12) to (14) is that we do
not  know fo(x) and hence cannot evaluate the probabilities in
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equations (13) and (14). However, what we can do is use the method ¢
maximum likelihood to allow us to overcome our ignorance. We make tf
assumption that the observed set of measurements is more likely t
come from the actual parent distribution (equation (12)) rather tha
any other distribution with different numerical parameters for f(x)
Thus the probability of equation (12) is the maximum probabilit
possible with equation (14), and the best estimates for the paramete:
of f(x) are the values which maximize the probablity of equation (15)

In equation (15), maximizing P(f) requires minimizing th
summation term inside the exponential, which is usually designated X2
and sometimes referred to as the residual:

xt= 3

=1

12

N 1 2
- 3 = [yl—f[xl]] . (16

Thus the "best fit" to the data for a specific model is the on
that minimizes the weighted sum of the squares of the deviation
between the observed and 'calculated' data. The method by which thi
fit is found is called the least-squares method, and will be discusse
later.

MINIMIZATION METHODS

We have seen how we decide what is the criterion of minimizatio
(optimal fit); now we need to examine the methods by which suc
minimization is done. These fall into three broad groups, each o
which uses a different general philosophy:

(i) Pattern search methods,

(ii) Gradient methods,

(iii) Analytical solution methods.

Pattern search methods are generally rather crude, and at
usually wused only in conjunction with one of the other two methods
However, it is very instructive to work through some very simpl
pattern search examples, as they give one a feeling for th
convergence process in general (and what can go wrong with it)
something one does not easily get from the less visual methods of (ii
and (iii).

Pattern search

The general idea of these methods is very simple, one just make
a search throughout parameter space such that one always moves Ui
lessen the residual, without using any of the properties of th
algorithm used to model the spectrum.

The simplest method is to divide up parameter space into

network and calculate the residual at nodes of this network. Ons
picks an arbitrary starting point and determines by inspection of th
surrounding grid points, which is the best way to move. Having doni

this, the process is iterated until one cannol move any more, al vhic
time one is, hopefully, at or near the minimum valuc of the rvesidual

A very simple 2-dimensional example is shown in Figure 4. We
tart at point (1,1) and move down the first column until wve can move
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Figure 4. X2-values at network nodes in
parameter space; lines connecting nodes show
paths for various starting points,
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no further at row 7 in Figure 4. Then we inspect one point each way
along row 7, and move in the direction defined by the lesser value
until we can move no further along this row. The process is repeated
until one cannot move at all [point (7,7)]; at this stage, it is
(again, hopefully) at or close to the minimum (that is, the best fit).
If one wishes to be more precise, then one can construct another such
network on a larger scale close to the end-point of the first search,
and repeat the procedure.

Let us repeat this example, but start at point (1,2) instead.
This time we move along row 1 and follow a very different path; we
arrive at the minimum point much more quickly. This illustrates two
important points concerning fitting procedures in general:

(i) the path taken to a minimum can be dependent on one's

starting point;

(ii) some paths to a minimum are much shorter than others.
Consequently, it is of importance to try and optimize one's path to the
minimum to reduce computation time.

Let us repeat the example again, starting at point (1,5). We
move along row 1, eventually converging at point (9,4). Note that
this is a different end-point from the previous two paths. We are still
at a minimum, that is we cannot move according to our criterion of
moving along a row or column to a lower residual. However, the value
of the residual 1is greater than that on the previous paths; we have
converged to a false minimum, it is only a local minimum and not
a global minimum. Thus

(iii) convergence at a false (local) minimum can be a major

problem in all fitting procedures,
and there is no intrinsic way of identifyving whether or not one
has converged only at a local minimum.

The example we have been considering is only a 2-variable problem.
It serves to indicate some of the features of convergence problems,
but is not a practical method. Each of the parameters is varied
independently (i.e., along a row or down a column); consequently, with
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a large number of variable parameters, the path taken through variab
space is extremely convoluted and inefficient.

Simplex methad

A more sophisticated pattern search approach is the simpl
method, which varies all parameters simultaneously, exploiting t
geometric properties of a simplex. A simplex is a geometrical figu
with (n+1) vertices, where n is the number of variable parameter
Figure 5 shows the analogous simplex for a 2-dimensional proble
Optimization proceeds in the following manner. The values of X? a
calculated at the vertices of the simplex (points A,B and C in Fi
5). The vertex with the largest X2 value (B in Fig. 5) is invert
through the centre of the opposite edge (to point D in Fig. 5). Nex
X2 is evaluated at point D, and the process is repeated to form AD
Iteration of this procedure moves the simplex around parameter spa
until it arrives in the vicinity of the minimum, where it cannot move

There are various modifications of the simplex method, where
the amount of movement during inversion is variable; this allows t
simplex to expand or contract depending on how close it is to t
minimum, and can greatly improve the rate of convergence. Simpl
methods can be very useful when inadequate starting models a
available for analytical least-squares methods.

Gradient method

Continuing with our 2-dimensional example developed in t
previous section, a more efficient path down to the minimum would
down the steepest slope (the analogy of a mountain stream is a go
one), and the method is often referred to as the method of steepe
descent.

The gradient VX2 is that vector the components of which are equ

to the rate at which X2 increases in that direction:

< = fi [%%? SJ . (1

o

where i; is a unit vector. The gradient may be obtained exact
by evaluation the partial derivatives of the %2 function, ¢
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approximated from the observed variation of X2 for small incremental
changes in the variables:

2 ~ v23
zmx[aj+wbaj] X%a

7 - 3X°
(Vx ]J - aaj wbaj ’ (18)

where 6aj is an incremental step in aj and w is a weight (= 0.1). A
combination of the two-gradient evaluation methods is optimal, as the
analytical calculation of the partial derivative is slow, but the
approximation is imprecise. Most efficient is to initially calculate
the derivatives exactly, and then increment all variables in the
optimum direction, either approximating X? every (few) increments, or
continuing until X2 begins to rise, whereupon X2 is calculated exactly
again. This method does have problems with irregular surfaces (those
containing curving valleys) and is not good close to the minimum.
Consequently, it has tended to be replaced by analytical solutions.

Analytical solution methods

All of the previous methods miminize X2 and hence are classed as
least-squares methdds. However, common usage often reserves the use of
this term to analytical solution methods.

Linear functions. Let us first consider the case in which our
dependent variable, y(x) is a linear function of the coefficients, aj,

of the fitting function:
n

v = 2 g ). {19)

-0

—

Remember that here we are talking about the function being linear
in the coefficients; thus the equation y = aeb* is linear in a, but not
in b; similarly vy = ax + bx? is linear in both a and b.

At the minimum point of equation (19), the derivative of X? with
respect to each variable is zero:

axé | i =
o 0 (i=1n) . (20)
Writing X? as
X = 5 l X [v- v[x.]]2 - § [ 1 [v $a f.IXJ];] (21
AR - R R

and applying the conditions of equation (20) we get

3X. - i ' .-i; [ 5] [_vI - i a f[x,]]2” k = Iln) . (22)

There are n of these cquations, one for each coefficient ak in the
function of equation (22). Note that the subscript k must be used in
the derivative, as this subscript is independent of j in the function
expression itself; however, they are the same coeticients.
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Taking the derivatijve and using the telation
a n
da, j_zo 3 fx) = f,ix)

together with a little algebraic manipulation gives

1=l o| j=0

& 1A fk[x.]] - ¥ [ a, "zl [ El“ flx) r,.(le]] k = 0n) . (2

The {n+1) unknowns in this series of equations are aj (j=0,n); ¢
there are (n+1) equations of this form (i.e., (k=0,n) in equatic
(23)), then we may solve these equations for a;, the (fitting
parameters of interest in the model.

These equations could be solved by successive subtraclic
(elimination of variables) as one does with simple simultancot
equations. Of course, this is far too clumsy for most uses, a
matrix methods are normally wused. Equation (23) can be much mo:
compactly represented in matrix form:

n
Ry= 2 M, o R=aM |, {2
where Rk is a column vector (the normal vector) given by

N
1 ’
Ro= X [y o) P
]
and Mjk is a svmmetric n x n matrix (the curvature matrix) given by

N
My = > | 5 ) 1) 2

it

The sel of equations (24) are often called the normal_ equation:

Multiplving Dboth sides of equation (24) bv M-1, the inverse of ti
curvature matrix M is

' -1
aMM © = RM " = a . (2
Hence one may write the salution to the normal equations as

a‘ -

S SRoML (2
%=l :

and the principle labor inveolves the inversion of the curvatu
matrix: hence this is sometimes Known as the matrix inversion methoc

It i~ instructive Lo briefly consider the evaluation of I}
nverse  matrix, as it is here that the least-squares method can gy
problems. The inverse of  a matrix is defined as the adjoint of 1l
matris divided by its determinant:

M :
(2

Moo
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If the determinant is zero (i.e., {M| = 0), the inverse of the
matrix is indeterminate and the matrix is singular. When this is the
case, one cannot find a solution to one's problem, the fitting process
failing (diverging) when this happens. This occurs generally because

one of the constituent equations of equation (23) can be expressed
(either exactly or approximately) as a linear combination of some of
the other equations.

Linearization _of non-linear functions. Here we will consider the

case in which there is a non-linear relationship between our dependent
variable y(x), and the coefficients of our fitting function.

We may recognize two cases, one trivial and one not. Consider for
example, the function

y(x) = ae™ . (30)

This is linear in a, but not linear in b. However, we may take
logarithms
Inylx) =lna+bx |, (31)

whereupon £n y(x) is linear in £n a and b, and we may proceed with our
least-squares method as above.

In the second case, linearization is not achieved so easily. For
example, in the case of fitting a Lorentzian curve plus a quadratic
background, we can write

[-Y)

hat §
2

—_— .2
T 6

yo = 4

and we cannot separate out all of the aj parameters to form an
expression involving simple summation. In this case, we may use

Taylor's expansion, which approximates a function y(x) around a point x
= a Ly the following expression:

o
v = vl ¢+ v bea) e e D& s . @)
Il (x-a) is small, then we may ignore terms involving (x-2)", n>1
and wijiting (x-a) as 8a, we get
n dv (x)
= ? ‘0
yix) = y () + | o ba, l (34)

Ihis function is now linear in the parameter increments 6aj, and
we ol urjte X2 directly as a function of 6aj:

e b Lo - £ 5] )

ity ] e

76

As before, taking the derivative and setting it equal to zero (tl}
minimization criterion), we get

N I n N l 8y°[x|] ayolxi] _ .
‘_zl: [ o? [yl_yo[xl]]] = E [ 8a, E [0_12 da, " da, ” (keln) . (3¢
Writing this in matrix form
R = daM , (37
where
N
1
- § 1 & bl o0
and
N[ sy )y (k)
My ,-_S; [ of da 33 (39

Thus we now have a set of n linear equations by which we ca
calculate 6aj, the parameter shifts necessary to move the initia
parameter values to their values for the minimum X2. This set o
equations may be solved by matrix inversion methods as outlined abave.

SOME ASPECTS OF SPECTRUM REFINEMENT
Tactics

Here we will consider some of the tactics involved il
least-squares refinement, as judicious use of these can greatl-
increase refinement efficiency (and decrease frustration. for th:
spectroscopist). o

One starts with a model function to represent the spectrum. Thi:
usually consists of a background function and several line-shap:
functions. Generally the model function is linear in some parameter:

and nonlinear in other parameters. The linear parameters wil!
converge to the neighborhood of their correct values whatever thei
starting values, and thus should be refined first, with the

"nonlinear" parameters held constant; of course, it is sensible t«
use starting values close to the final values just for efficiency ol
computation. The nonlinear parameters in one's model have normally
been linearized by Taylor expansion of the initial nonl inea
equations. We assume that 6aj (= x-aj) is small and hence th
nonlinear terms in the Taylor expansion can be ignored. There arc
two important points with regard to this:

(i) 1if baj are too large (that is we are far from our minimun
value of X2), then the approximation breaks down and thc
process probably will not converge.

(ii) the values we get for aj are also only an approximation, anc

we have to iterate through the procedure until 6aj = 0.
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Thus it is important to have a reasonably accurate starting
estimate for the parameters. Generally one's model function will be
linear in some parameters but not in others. It is usually good
practice to first refine the important linear parameters (background,
perhaps a scaling constant), and then start to refine the nonlinear
parameters. If one's starting parameters are close to the true
values, then one can immediately refine all variable parameters
simultaneously. More often, one is not that close and a more cautious
approach may be necessary, gradually increasing the number of variable
parameters as X? decreases. When the starting model is not good, then
immediate refinement of all variables can cause oscillation and slow
convergence or even divergence. In spectroscopic applications, a
common tactic is to initially fix peak positions and half-widths, and
refine peak areas (or even peak area ratios).

Convergence is attained when the least-squares refinement
pracedure calculates parameter shifts that are much less than the
standard deviations of the variable parameters. At this stage, it is
IMPERATIVE that all variable parameters be refined simultaneously. If
this is not done, covariance terms will be missing from the dispersion
(variance-covariance) matrix, and derivative parameter standard
deviations will be wrongly calculated (i.e., underestimated by
omission of covariance terms in equation A(12), see Appendix A).

Correlation and constraints

A spectrum contains a specific amount of information, and it is
not possible to get out of the spectrum refinement procedure more
information than the spectrum contains. However, what we can do is
input external information into the fitting process such that we can
extract the information in the spectrum in a form that we want. This
procedure is very common in spectrum fitting, and involves the use of
linear constraints in the fitting process. In the simplest case, a
variable, ak, is constrained to be related to a set of other variables:

3= 50, fla) (=) . 0

The set of functions bif(ai), (i=1,n; ifj) 1is the external
information put into the fitting process. Usually what this does is
to greatly decrease variable correlation in the fitting process; this
leads to more precisely determined variables, but it should be
realized that their accuracy depends on the correctness of the
constraint equations used. An example of this is shown in Figure 6.
Mossbauer spectra of a series of minerals was used to determine
Fe3*/Fe?* ratios, using the constraint that all the half-widths of the
Fe?* peaks were equal. Figure 6 shows that the half-widths of the Fe3¢*
doublet is strongly correlated with the Fe3t/Fe?* ratio, with weak Fe3*
doublets showing very wide half-widths. It seems probable that the
half-width constraint for the Fe?* peaks is not exact, and that the
Fe3* doublet 1is absorbing the error associated with this; the weaker
and less well defined the Fed* doublet, the more it can widen and
absorb error from the Fe?' doublets. Thus one has to be very careful
in the use of such constraints.
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Figure 6. Half-width of Fe3* doublet as a function of Fed*'/(Fe?*.Fe?¢) for a series of
isostructural minerals examined by Mdssbauer spectroscopy.

In spectrum fitting procedures, constraints can involve

(i) constraining peak half-widths,
(ii) constraining peak intensities,
(iii) constraining peak positions,
(iv) constraining peak shapes,

(v) constraining peak splittings.

Often, the first two types involve constraining parameters to bc
equal (equal half-widths is a very common constraint); however, it it
sometimes advantageous to constrain such parameters to have constant
ratios.

The use of constraints in spectrum fitting is often essential t«
get any result at all. However, one must be very careful about the
results; if the constraints are not appropriate, then the results will
be wrong despite (possibly) having high precision.

False minima and model testing in least-squares fitting

It was noted earlier that there is no mathematical way to test
least-squares minima for global validity. Rather, the general method
is to attempt convergence from a variety of starting points in
parameter space. This is frequently not an option if many constraints
must be used for convergence, or if the fit is extremely sensitive to
the values of particular parameters.

Another strategy involves making assumptions about the nature of
false minima. In least-squares refinement, false minima occur because
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of the existence of a relative minimum for a particular subset of the
data set. If these data could be given zero weight in the refinement
procedure, the true global minimim would be obtained. Although the
subset responsible cannot be determined by analytic tests, it's effect
can be overvhelmed or circumvented. The former is achieved by
increasing the number of independent data. This effectively dilutes
the possibility of finding a relative minimum in parameter space. The
latter can be done (sometimes) by separating the data at random into
multiple sets and refining each set separately. It would be most
unlikely that each data subset would lead to the same minimum in the
same region of parameter space unless the minimum were truly global.

Another consideration in the detection of false mimina is the
reasonableness of the refined parameter values. If these can be
subjected to model tests that independently affirm likelihood, or if
constraints can be used, the possibility of false minima are reduced.
It is also possible to put a restriction on refined parameters such
that they will not adopt unreasonable values, (e.g., negative bond
lengths). In the latter case, the refinement is said to be restrained
(Prince, 1982).

Signal-to-noise effects in fitting

Up to now, we have considered only one goodnes-of-fit parameter,
X2, This allows us to determine the probability that the model we fit
is more (or less) representative of the data than some other fit.
This is done by reference to Px(X2,v), the integral of the X2
probability distribution function (Bevington, 1969). However, it will
not allow us to compare fits to data of differing signal/noise ratios.
This is because X? is sensitive to the absolute size of the residuals.
Fits of the same model to indentical data sets with different ratios
of signal/noise will show a strong dependence of X2 on the

signal/noise ratio (Waychunas, 1986). The easiest way around the
problem is to attempt all trial models on all data sets and compare
the X2 values obtained only for a given data set. Because this is

time consuming or impractical, one must either make allowances in X2
or develop a new goodness-of-fit parameter insensitive to signal/noise
variations. One such parameter was derived by Ruby (1973) and is

called MISFIT.

Variations on X2 goodness—-of-fit parameter

The MISFIT goodness-of-fit parameter is defined as the ratio of
two values calculated from a test fit, M = D/S, where D is the
discrepancy or distance of the fit from the actual data, and S is the
signal or total spectrum above a baseline. MISFIT is thus a
fractional assessment of the fit quality, and in an ideal case, should
be independent of the magnitude of S.

The quantity D is derived from X2, and has the formulation

(Y.[1) - Y, (1))y?
D- 3 [[ 7 ] 1} (1)
where Yd(1) are the experimental data points,

Yc(1) are the calculated model data points,
N is the total number of data points.
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S is defined as

: i‘ ‘[[Y 0 - Yg(m] ] @
=t
where Yo is the baseline value.

Unlike X2, MISFIT is not compared with a distribution functio
but with its own uncertainty, AMISFIT. This is a simple comparisc
which has obvious meaning. If AMISFIT is small relative to MISFI1
then we know the percentage error in the fit. We then seek 1
minimize MISFIT by adopting improved models. If AMISFIT i
significant relative to MISFIT, then we are not testing the model ve:
well (i.e. the data are too poor). This use of AMISFIT is critice
for MISFIT to have any utility over X2. AMISFIT is defined as

aM = () oo+ v3 + 00 M) (42

Some confusion in the use of MISFIT may occur, as Ruby (1973
actually devised two formulations based on differing assumptions
Either form works fairly well, but both may diverge to large values a
very low S values and large data point variances. These deviation
have been discussed by Waychunas (1986).

Another  function which measures goodness-of-fit is th
crystallographic R-factor and similar functions. The R-factor i
defined (Hamilton, 1964) as

N
Z W‘ [lFliObs - IFIcalc]2

«l '
% obs+2 ! [44
AU

=
1t

where |F|i°bs and [F|ic3l¢ refer to the observed and calculated value
of some function |F| at data point i, having veight wi.

In the limit of a perfect fit, R goes to zero. The R-factor i:
scaled by the size of the observed points, so that it is relativel:
insensitive to the magnitude of differing data sets. R-factor

calculated for fit models can be tested for significance by evalualing
the ratio R

L
2

R
R=g = Lo F s 1F (4s

n-p pa-pt

where p is the number of fitted parameters,

n is the number of data points,

F is the well-known probability distribution,

Q2 is the significance level (1-confidence level to which the

R-factors are Lo be tested.

For example, suppose one has 70 data points and must fit 10 parameter:
to a confidence level of 95%. From tables of the I distribution,
Fio, 60, 0.05 = 1.992¢. R is thus found to bhe 1.1541,. f .
satisfactory R value obtained from fitting procedures is 10.50%,
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then a value of 12.12% represents a poorer fit in 95% of the possible
cases. Similarly, an R value of 9.10% represents a better fit in 952
of all cases. A similar application of the P distribution can be used
with X2 values (Bevington, 1969).

It is also possible to devise weighting schemes for
goodness-of-fit parameters, such that some data points do not
contribute significantly to the fit parameter regardless of their true
variance. This effectively results in selective fitting of some
partition of the spectral data set. Such action would damage the
utility of a statistical analysis of the goodness-of-fit parameter
magnitude, but may aid least-squares fitting by improving chances for
minimization of the fit parameter.

Variatjons in spectral line shape

When treating any aspect of mineralogical spectroscopy, we will
frequently be concerned with the spectral line shape. We will need to
understand the significance of broader lines in the spectrum of one
material over another, of asymmetry in line shapes, and the types of
lipe shape variations that are the result of particular physical
processes in the sample or in the spectrometer. The ability to assume
a particular line shape allows us to constrain fitting procedures and
extract parameters that are much simpler to manipulate and compare.
The basic experimental line shapes were noted earlier, viz. Gaussian
and Lorentzian or Cauchy. These lines are symmetric about their
centroids, and represent the distributions of energy emitted or
absorbed by a particular atom or atomic system in the spectroscopic
process. It is usually possible to calculate the minimum possible line
width. Such a 1line width is never actually observed because of the
effects of the spectrometer itself, or of non-ideal conditions in the
sample. The line width and shape are affected by:

Excited-state lifetime. The natural line width for a
spectroscopic line is determined by the lifetime of the excited state
via the Heisenberg wuncertainty principle: T*6E > h/2n, where T
is the lifetime of the excited state, h is Planck's constant and OE is
the energy uncertainty. The longer lived the excited state, the more

sharply defined is the transition energy.

Doppler and collision effects. These effects are primarily
relevant to the spectroscopy of independent molecules rather than
atoms and molecules in solids. However, Gaussian line-broadening can
occur due to the Doppler shifts created by rapid thermal vibrations at

high temperatures.

Saturation effects. The line shape can be altered if excitation
of a system is so poverful that the excited state is saturated (i.e.,
the population of excited atoms or electrons is equal to that in the
pround (unexcited) state). Under such conditions, the absorption
coefficient of the sample is dependent on the intensity of the
incident radiation, instead of being an inherent characteristic of the

sample.

Relaxation effects. The excited states of a system will decay
with a characteristic rate that depends on the physical processes
affecting the particular state. Oplical spectra wusually record
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electronic states with lifetimes of about 10-8 s, so that a fa
relaxation process occurs. In this process, energy from the excit
state is removed and delivered to the crystal structure as vibration
or to other electronic centers such as excited electrons or exciton
Much slower relaxation rates may be found in NMR and certain far-
excited states. Saturation broadening is increasingly more likely f.
slower relaxation rates.

Besides leading to a change in the line shape of a given excit:
state transition, relaxation processes can create "mixing" of sever:
excited (or ground) states, or averaging of physical parameters. TI
latter effects can create very complex line shapes, such as the parti:
evolution of multiline spectral features into singlets. In Figure °
the effect of averaging nuclear magnetic hyperfine spin states is shos
in the Mdssbauer spectrum of FeFs. The low-temperature spectri
consists of a six line pattern representing allowed transitions to tl
ground state from each of the hyperfine magnetic states in a stat:
magnetic field (see Chapter 7). This static field is due to magneti
ordering of the Fed* electronic spins. As the temperature is increast
toward the magnetic disordering point (the Néel point), the electroni
spins begin to decouple and spin fluctuations occur. Tt
time averaged field seen by the Mgssbauer hyperfine states is weake
and varies in direction. This reduces the splitting of these states
and the spectrum begins to collapse. Above the Néel point, tt
electronic spins are not coupled and there is no separation of tt
various hyperfine states. Temperature changes near the Néel point hav
dramatic effects on the observed M8ssbauer spectra, but there is littl
effect over other temperature ranges.

In very dilute Fe3* minerals and compounds, a related effec
occurs but usually over a larger temperature range. In such materials
there is no definite magnetic ordering point, but at low temperature
the electronis spins on each individual Fe3* will couple to produc
@yperfine state splitting. As the individual ions are well separate
in a dilute system, there is little relaxation due to spin-spi
exchange and the relaxation rate is slow. Raising the temperatur
increases fluctuation of the Fe3* spins, but there is no sudden los
of coupling as would occur with long-range magnetic order. Henc
there is a gradual change in the observed Mbtssbauer spectrum (Fig. 8).

Relaxation due to fluctuations in chemical shifts can affect hot
NMR and Mossbauer spectra. One example of this in the latter i
electron hopping. If near-neighbor Fe2* and Fe3* jons exchange th
6th 3d electron between them, the oscillating valence is manifested o
the Mdssbauer nuclei as a fluctuating chemical shift (isomer shift)
At slow oscillation rates, discrete spectral lines due to each valenc
state are observed, but these smear into one another as the rat
increases. At hopping rates faster than the lifetime of the Mdéssbaue
excited state, only one valence-averaged set of features remains (se
Chapter 8). The NMR analog could Dbe an atom whose chemical shii
fluctuates as it diffuses through a crystal or liquid. The relaxalio
spectra for  these hopping and diffusion cases might look like Uhe
tdealized spectra in Figure 9.

A very complete treatment of relaxation effects in spectroscop
can be found in Poole and Farach (1971).



Counting rate

102 T : T T T : :
iCo Mma? k% c
- o

o8 - .
— ée2°K <
>
§ 96 (d) i
g
5 aa- 4
2
g e2f ]
g
€ 9Of | 7
3
(]

€s r J 4

g6 f q -

sa 2 : L L 1 2

-2 -08 -C4 o 0.4 08 1.2

Cecoler velociry (cm/sec)
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Figure 8. (a) Mdssbauer spectra of dilute Fe?* in a nonmagnetic material, Ferrichrome A.
(b) (following page) Calculations of Fed* Mdssbauer relaxation spectra {or differing
values of the relaxation rate t. The values for t are (top to bottom) 10-'2 s, 10-% s,
2.5 x10°%' s, 5.0x 10" s, 7.5x 10°% s, 2.5 x 10°% s, 7.5 x 10°% s and 10-65. The
lifetime of the 37Fe excited state is about 10-8 by compari)son. Relaxation rates faster
than the lifetime result in averaged speclra; after Mickman (1906)
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Distribution of physical _ states. Samples are inherently
inhomogeneous due to chemical variations, grain boundaries,
dislocations and other defects. Depending on the type of spectroscopy
10712 3¢ attempted, these features will contribute to spectral line broadening
or asymmetry. In general, the broadening is of the Gaussian type,
75x 1079 u< suggesting essentially a random distribution of line-shifting
perturbations. However, it is easy to imagine a context in which
broadening and asymmetry are correlated. Suppose a spectroscopic
measurement reveals a spectral line position sensitive to a metal-
oxygen bond distance. If the potential well characterizing this bond
has a hard repulsive potential but very soft attractive potential, we
would expect random strains to create a non-symmetric distribution of
bond distances, and hence an asymmetric line shape. The probability of
a transition may also vary with bond distance or site geometry, and
possibly in a non-linear fashion. Thus the observed line shape is

— 1.
actually a convolution over all of the "micro" states of the system.
: Spectrometer resolution. Even the best spectrometer system has
25 % 10°9 e refolu?ion limits. In many cases, these may derive from diffraction
25 10-8 s criteria, or they may be due to electronic considerations. An example
g of the former occurs in optical and optical-analog spectrometers, in
, , , which the actual spectrum being analyzed is convoluted by various slit
functions. If the natural line-width and homogenaus broadening effects
are small, then the spectrometer output will be spectral lines whose
width is determined by the slit functions. If the opposite is the
case, the output spectrum will closely resemble the true sample
spectrum. An example of electronic resolution limits can be seen in
106 3ec S0y 10-0ne Si(Li) energy dispersive detector spectra, in which the output spectrum
I .0 x s
cmisec ) ?Qectrometer aberrations. Most spectrometers introduce variations
in line shapes that are asymmetric, in addition to the broadening
effects already noted. In modern optical svstems, these effects are
minimized by a variety of strategies. In X-ray spectrometers, the
" possibilities for optical element design are severely limited relative
to visible and IR optics. Thus aberrations can be more significant in

has lines hundreds of times broader than the actual X-ray emission

o X-ray spectra. The separation of spectrometer aberrations from
. ‘///,\‘_/,\\\\~ physical state distributions may be quite difficult.

The manner in which these effects operate on a basic delta

(b)

1079 sec

25x 10

L

Relative absorption

—

spectrum.
a1 function line §pectrum to produce the observed spectrum is one example
(a) (0} (c) of the convolution process. This and other Fourier integral operations
are described in the next section.

Fourier processing of spectral data
’ r2A% /4, .
Fourier methods are an integral part of the spectroscopic art.
_//////ﬁ\\\\\\ The action of any spectrometer syslem convolutes the initial spectrum
with the slit functions and aberration functions of the spectrometer.
The output spectrum is then frequently subjected to smoothing
procedures which are actually convolution operations. Noise can be

removed from the spectrum with autocorrelation or Fourier filtering
procedures.

(d) - (e} ()

Figure 9. Collapse of a doublet spectrum due to increasing rate of fluctuations in the
abcissa parameter: (a) through ()} represent an increase in the rate of 500 fold. Note
that for individual doublet lines, the width is proportional to the {luctuation rate, ve.
but for the averaged singlet (), the width is inversely proportional Lo we. The latter
cffect is sometimes termed “motional narroving”; after Peole and Farach (1971).
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Attempts can also be made to enhance the apparent resolution of a
spectrum via deconvolution and maximum entropy Fourier procedures. In
the former case, we attempt to correct (i.e., remove) the spectrometer
or other convolution effects, and in the latter case, we make
approximations to get around the limited data set (much smaller than
from negative to positive infinity) observed.

Fourier transforms and integrals

The Fourier transform of the function f(x) is usually defined as
(-
Fis) = |_ i) eax 46)

Substitution of F(s) for f(x) into the same integral will result
in the original function. This is the cyclical nature of the Fourier
transform. If F(s) is the Fourier transform of f(x), then f(x) is the
Fourier transform of F(s). The key relation between the transform and
the original function is the change of variable, from x to s. These
variables have reciprocal dimensions. In harmonic analysis and
electronics, the two variables are time and frequency; in vibrational
systems, distance and wavelength; in diffraction analysis, they can be
vectors 1in real and reciprocal space; in  quantum mechanical
operations, position and momentum. The wusual formulae for Fourier
transformation are written slightly differently:

Fis) = | 400 eomsay (47)
{lx) = ]: Fs) e?™sds . {48)

These forms differ in the exponent, so that they are not identical and
may operate differently on particular functions. To keep them
straight, we may refer to the first as a forward transform and the
second as a back transform (but the names can be reversed). Combining
the two results in the Fourier integral theorem,

= =2
flx) = I [[ f(x) e72mrsdy| et?mrids | {49)
- -
For conditions under which this integral can be evaluated, the reader
should consult a text on Fourier methods, (e.g., Bracewell, 1986). In
particular, discontinous functions create problems in evaluation.

Some examples of f(x) and P(s) pairs are shown in Figure 10.

Properties of Fourier transforms

A few of the theorems important to Fourier analysis are stated
here without proof; these can readily be found in most references on
Fourier transforms.

If f(x) has the Fourier transform F(s), then

Similaricty theorem.
This theorem allows scaling of

f(ax) has th2 transform }a;-! F(s/a).
the area under transforms.
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Figure 10. Some examples of Fourier transform pairs. From top to bottom: Gaussian -->

Gaussian, exponential --> Lorentzian, constant --> delta function at position s, truncated

cosine function --> peaks with finite widths and sid¢: lobes at posilion s; after
Bracewell (1986).
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Figure 11. Graphical depiction of convolution: {a) i value of hix) = t{x)¥pu(x)
calculated at one point from f(u)g(x-u), and the fo:= ol the integral hi{x); ()
decomposition of small segments of f(x) i1nto the chara “wristic shape ot g(x), Lhen
superimposed to obtain part of the comolution integral; al* + Pracesellt (1980}
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Figure 12, Exumples of convalution; (a) smoothing elfect ol comolution; (h) canvaelulron
of delta functson spectoum with Gaussian to oblasn Gaussian Liae spectoaw,  af b

Bracesell (1986),
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Addition theorem. If f(x) and g(x) have the transforms F(s) anc
G(s), respectively, then f(x) + g(x) has the transform F(s) + G(s).

Shift theorem. If f(x) has the transform F(s), then f(x-a) ha:
the transform e-i2%asp(g).

Convolution theorem. If f(x) and g(x) have transforms F(s) anc
G(s) respectively, then we define the convolution of the functions as
f(x)*g(x) having the Fourier transform F(s)G(s). This theoren

indicates that we can obtain the convolution of one function with
another by first determining their Fourier transforms separately, ther
multiplying the transforms and back transforming the product. As a
corollary, we can imagine a process to deconvolute two convoluted
functions by division of the Fourier transform of the convoluted
function by the transform of one of the original functions.

Autocorrelation theorem. If f(x) has the Fourier transform F(s)
then its autocorrelation function is defined as

J o) flo v 0w, (50)
which has the Fourier Transform |P(s)!2.

Rayleigh's theorem. If f(x) has the Fourier transform F(s), then

@ 2 * 2

oyl = [ R as . (s
This theorem is important, as it implies that least-squares
minimization in frequency (or reciprocal) space corresponds to the same
type of operation in time (or real) space. Hence we can operate in

either variable space, whichever is more convenient.

Convolution-deconvolution. The most common application of the
Fourier transform in spectroscopy is in convolution and deconvolution
procedures. The convolution of functions f(x) and g(x) is defined as

fxdegl) = [ M) glx-u) qu (52)

Here it is important to realize that the two functions being convoluted
are within the integral, so that a simple multiplication of the
functions does not reproduce the form of the convolution. Secondly,
the second function is reversed and shifted. A graphical
interpretation of convolution is depicted in Figure 11a, in which
each small area segment of f(x) is replaced by an equal area
element having the shape of g(x) and centered on the position of the
original segment. The convolution of the two functions, h(x). is then
equal to the sum of all such contributions at the given rosition.
Figure 11b gives another interpretation of the convolution, and Figure
12 gives several examples of convolutions.

One well-known type of convolution is a smoothing opera-:on. It
consists of replacing each element of the function f(x' with a
Gaussian, rectangular (bLoxcar), or other function of the s:ime area.
Various types of polynomial smoothing functions are frequesilv used
to approximate Gaussian smoothing.
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Deconvolution procedures are most often used to reduce spectral
line width due to spectrometer broadening. However, when line shape
analysis is crucial, such as in MBssbauer spectroscopy, the source line
shape can be removed by deconvolution (Vincze, 1982; Lin and Preston,
1974). If all broadening functions and the natural line width can be
removed from a spectrum, what remains is the distribution of physical
parameters in the sample. As an example, the distribution of isomer
shift and quadrupole splitting can be obtained in this way for
Méssbauer spectra (Window, 1971). Various numerical approximations
to the Fourier transform method have also been evaluated (Wivel and
Morup, 1981). An example of a deconvoluted M3ssbauer spectrum in which
sample thickness effects have been removed (Ure and Flinn, 1971) is
shown in Figure 13.

Fourier filtering

In most spectra, the background consists of a variety of differing
noise signals. The wusual noise is due to counting statistics (i.e.,
noise with a random of Gaussian distribution). Electronic effects may
add periodic noise. Incorrect values in computer memory due to data
transfer or transcription problems may introduce data spikes. Fourier
filtering is a type of deconvolution in which the Fourier transform of
the original spectrum is multiplied by a window function. Typically,
the window function has non-zero values only in the vicinity of
frequency (or reciprocal) space in which the signals of interest
occur. The other frequencies are thus set to zero in the product of
the transforms. Back Fourier transformation then yields a filtered
spectrum; most statistical noise, as it contains a wide distribution
of frequencies, will be removed along with any other periodic noise.
Spikes in the raw spectrum will also be removed. An example of Fourier
filtering is shown in Figure 14.

The advantage of filtering procedures is that often some sense can
Lbe made out of spectral data that would otherwise be too noisy for
further analysis. An additional advantage, used in the analysis of
EXAFS spectra and seismic frequency spectra, is that certain
frequency components can be separated for detailed analysis procedures
without handling the full spectrum. This is of particular value when
one frequency range in the spectrum is subject to less uncertainty
than others.

A major disadvantage of Fourier filtering is the inability to use
normal goodness-of-fit parameters when least-squares fitting a filtered
spectrum. The filtering removes the statistical variations in the
spectrum, so that variances become small or zero. The way around this
problem is to calculate some estimate of fit-quality, such as a
crystallographic R-factor type parameter, in order to compare fitting
models. Then these models can be applied to the original unfiltered
spectrum with the usual X2 parameter.

Correlation functions

The autocorrelation function has been defined above. Another tvpe
uf correlation function is the cross correlation function defined as

[: falu) glu+x) du (53)
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betveen % and 6 A-! are due to the second small peak ir R space at about 2.8 A). After

Wavchunas et al. (1986).

93

94

These functions are extremely important in the analysis of
diffraction patterns. For example, the autocorrelation function of
the electronic charge density in a crystal is equivalent to the
generalized Patterson function (for a complete derivation, see Cowley,
1981). Note that from the definition of the autocorrelation function,
its Fourier transform is the square of the absolute value of the
Fourier transform, F(s), of the original function. This means that
the autocorrelation transform can carry no information about the phase
of F(s). This is one description of the so-called phase problem in
X-ray crystallography.

The autocorrelation function is a measure of the correlation
between the values of a function evaluated at points differing by x.
This aspect can be used to remove noise from periodic functions or
spectra. The autocorrelation function of a periodic function with
random noise is equivalent to the sum of the separate autocorrelation
functions of the function and the noise. The periodic function will
give rise to a periodicity in the autocorrelation from which it can be
evaluated, but the noise will produce only a smooth background curve.

Fourier "ripples" -- limitations of finite data sets

Fourier transforms are defined over the range -o to +o; as a
result, the use of data sets any shorter causes perturbations in the
transform. The endpoints of the data set act as rapid impulse
functions and generate sinusoidal ripples in the transform.
Transforms of single lines in spectra will thus not produce infinite
oscillations in s space. Similarly, a short wave train in frequency
space will transform to a broad peak with side lobes in x space.
Thus for finite data sets in either x or s space, the forward
Fourier transform - back Fourier transform process will introduce
complicating oscillations. These are often called Fourier "ripples".
An example of such ripples can be seen in the EXAFS Fourier transform
(called a pair-correlation function) in Figure 14b. The peak at 1.6 A

has side lobes at 1.0 A and 2.1 A. These annoying features may
interact in phase with side lobes from adjacent peaks in a
spectrum, creating strange non-physical beats. Because of this,

every effort should be made to extend the range of data in X and s
for Fourier operations. The existance of severe ripples for small data
sets may preclude use of convolution-deconvolution operations.
However, it may be possible to extend the effective data range by
making particular assumptions about the uncollected data. One way of
doing this is described in the next section.

Maximum _entropv methods

A type of spectral analysis much used with geophysical frequency
spectra is the maximum entrépy method (MEM). The name derives from
the fact that by making reasonable assumptions, it is possible to
reconstruct some of the frequency space that is not part of the
original data set. The new enhanced data set spans a large region in
frequency space, and thus its Fourier transtorm will have narrower
lines and generally enhanced resolution over an original spectrum.

The assumptions in  the MEM arce mainly that in any limited data
set, the unmeasured frequency components are unlikely to be all zero,
or all have perfect periodicity to infinitv. The actual case lies
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somewhere in between, and can be eslimated by generating a spectral
distribution function with the maximum entropy. This function must be
constrained to agree with that part of the spectral distribution
function which can be measured. The MEM analysis has been applied to
various forms of spectra with very short data ranges, with mixed
results. Misapplication of the technique can result in spectra with
high resolution but spurious features. A good review of progress in
MEM with geophysical applications is that of Ulrych and Bishop (1975).
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APPENDIX A: SOME STATISTICAL DEFINITIONS

ACCURACY: a measure of how close the experimental result is to the
“true" value.

PRECISION: the measure of how exactly the result is determined (i.e
reproducibility) without any reference to a “true" value.

RANDOM ERROR: indefiniteness of result due to finite precision of the
experiment.

SYSTEMATIC ERROR: reproducible imaccuracy caused by faulty experimental
technique or a faulty model.

PARENT POPULATION: hypothetical infinite set of "data" points of which
the experimental data points are assumed to be a random sample.

PARENT DISTRIBUTION: probability distribution controlling the (random)
sample data assumed to be drawn from the parent population.

EXPECTATION VALUE: denoted by < >, it is the weighted average of a
function f(x) over all values of x:

@y = pim [ § 3] = 3 [reopeg)] = [T ropeec L aw

isl s

—

where P(x) is the probability function that defines the probability of
obtaining a specific value of x in any random experiment.

MEAN VALUE: for a series of N observations, the sample mean value is
the average of the observations, x; for the parent distribution (see
above), the parent mean value, p, is the limit of x as N -> @; thus

1 N
tx X = 5 ;; X A(2)

MEDTAN VALUE: for the parent population, the median p}is that value ol
xi for which the probability of any observation being less than the

median is equal to the probability of it being areater than the
median.
. N i -
Ply, <) = Ply, 2 1y) = 5 A3
5 ; 2

MOST PRORABLE VALUE: for the parent population, the most probable
value pmax is that value of x for which the parent distribution has
its greatest value:

) - o

f {“:“.Jx] - Plk lln:aa] Ald]
Note that for a svmmetlrical pavenl distribution function, all of these

parent values are coincident.
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AVERAGE DEVIATION: this is defined as the average of the magnitudes of
the deviations from the mean of the parent distribution (cf., equation

A(2)):

s tim [ LS k- ] AlS
o= |y 2 mu] .
about the mean value.

VARIANCE: like the average deviation, the variance, o?, is a measure of
the dispersion of the observations, defined as

PP R _2]_-[1%2]_2 6
ot = [y o oew] -y [y 2] -0 AG)
This is a very convenient measure (more so than the average deviation)

as the expression (xi-u)? occurs in several distribution functions
(e.g., Gaussian function). We can rewrite it as

= (- W=D A7)

For a finite set of observations, the sample variance is defined as

N 2
&zﬁgm-m~. Al8)

This is normally modified (Bevington, 1969, p. 19) to the form

azéai-iu-qz Al9)
N1 & '
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b

where s? is called the sample variance.

COVARIANCE: this is defined by analogy with variance as

1=

2 _ gim L
0 llILI’N

o= x - Ny, - 9] . A(10)

where x and v are different variables. If the deviations in x and y
are random, then ¢ij? = 0. However, if the deviations are correlated,
then 0:3j2 #0 and is a measure of the degree of correlation between x
and y.

STANDARD DEVIATION: the standard deviation is defined as the square
root of the variance
0= do° . Al

Thus it is the root-mean-square of the deviations, and is a measure of
the uncertainty of a result assuming random error only.

The standard deviation is a very important quantity because it
allows us to perform hypothesis tests to determine the significance
(or othervise) of a result.

PROPAGATION OF ERRQR: let xi(i=1,n) bhe a set of experimental resulls,
cach with an associated variance oi?, and let y be some parameter that
is related to the experimental results by the funclion
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y = flx;, X, X)) - A(12)

When calculating y, we must assign a standard deviation or we
cannot assess the significance of the result. If oy? is the variance
of y,

noa a{ a{
2. $ 2 91 9
0y = 2 2 o & A13)

—

where 0112 and 032 are the variances of xi and xj, and 0ij? is the
covariance of xi and xj.



