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Nets | Frameworks [ Beryl | Milarite | Steacyite

Square-planar vertex converts it into a tetrahedral vertex. The simpler nets
of each type are enumerated for the 6% 3.122, 4.82 and 4.6.12 2D nets;
these nets have higher Symmetry and less geometrical distortion than the

Introduction

Parts I—VIII of this series (Smith, 1977, 1978, 1979, 1983; Smith and
Bennett, 1981, 1984; Smith and Dytrych, 1984; Bennett and Smith, 1985)
have progressively enumerated 4-connected 3-dimensional nets, primarily
by considering different possible linkages between congruent 3-connected
2-dimensional nets. In this ninth paper, we introduce a new operation, the
insertion of a 2-connected vertex into some edges of a 3-connected 2-
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dimensional net. Each 2-connected vertex is converted into a 4-connected
one by merging it with a 2-connected vertex from an adjacent modified 2 D
net. Two families of 3D nets are produced by arranging the four edges
incident at each new 4-connected vertex in either a tetrahedral or square-
planar geometry. The first family is of particular relevance to nets of
silicates and other tetrahedrally-coordinated materials, and the second
family provides a theoretical basis for possible frameworks incorporating
both tetrahedral and square-planar chemical units. Furthermore, addition
of two branches to each square-planar unit produces an octahedron.
Members of the first family of nets are represented by at least 16 minerals
containing various elements including Li, Be, Mg, Fe?* and Fe3*, as
well as Si, Al and P which are particularly important in molecular-sieve
technology.

Enumeration: General relations

We consider only the regular and semi-regular 3-connected plane nets 63,
3.12%,4.8% and 4.6.12. An edge will be identified by its adjacent polygons;
thus 4.8 is common to a square and an octagon in the 4.82 net, and 62 is
an edge in the 6° net.

A piece of a plane net is represented (Fig. 1a) by six 3-connected
vertices connected by edges of equal length. A 2-connected vertex r (filled
circle) is inserted into an edge pg. The simplest way to generate a 4-
connected 3D net is to place congruent nets (dashed lines; vertices p’,q")
directly above and below the initial net. The vertices pgp’q’r are then
adjusted so that r lies at the center of the square pgp’q’ (Fig. 1b). Each
vertex (e.g. p) retains two edges from the initial 3-connected 2 D net (e.g.
ps, pt). The “half-edge” pr is elongated into an edge of equal length to ps
and pt, and a new edge p’r is added. The new vertices r and r’ are also 4-
connected. In plan (Fig. 1a, right), the square pqq’p’r appears as two line
segments with pr = rqg = (ps = pt)/[/i. From the topological viewpoint,
of course, equality of the edges is not necessary, and only the connectivity
is important. From the chemical viewpoint, equality of the edges is also
not necessary; in particular, vertices p, ¢ and r would be expected to be
occupied by different chemical species because of the difference in angular
orientation.

In order to obtain a similar angular environment for all the vertices,
each piece of a 2D net is rotated about r in an opposite direction to the
two adjacent nets (Fig. 1c, d). The vertices pgp’q’ adopt a tetrahedral
arrangement about r, which would become regular for a particular value
of prq’. For an actual material of composition TO,, where T is a species
tetrahedrally-coordinated to oxygen, the regularity of the tetrahedra
around T, vertices at p, p’, g and ¢’, and around T, vertices at r, ' is
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Fig. 1. The insertion operation and the geometrical relationships for square-planar and
tetrahedral linkages. (a) Plan of the insertion of vertex r into edge pg of a piece of a 2D
net, and conversion of 7 into a square-planar linkage between vertices pand g of an upper
net (continuous line) and p’ and ¢’ of a lower net (dashed line). (b) Elevation of the
square-planar linkage. (c) Plan of the relative rotation of adjacent parts of 2D nets
required to give a tetrahedral arrangement of p, ¢, p’ and q" about r. (d) Elevation of the
tetrahedral linkage, with tapering of lines to show the perspective. () Plan of a piece of
a TO, framework showing the tetrahedral linkage around the T, site at r

determined by the T — O — T angles (Fig. 1¢). In this paper, we shall consider
first the connectivity of each new 3D net, and then the geometrical conse-
quences for any chemical material based on each net. Particularly important
is whether local rotation of pieces of adjacent 2 D nets enforces a different
connectivity on vertices in the resulting 3 D net.

Each net produced by the above procedures can be changed into another
net by applying a o-transformation (Shoemaker, Robson and Broussard,
1973) in the plane of each prototype 2D net. Addition of a mirror plane
converts each 4-connected vertex of type p, g, s and ¢ into a pair of 4-
connected vertices connected by a vertical edge. Because application of a
o-transformation to vertex r would produce two 3-connected vertices joined
by a vertical edge, it is not considered here.

Finally, there is a simple restriction on the fraction of split edges in a
3-connected 2D net. Each 3-connected vertex must retain two out of the
three edges, as the remaining third edge is converted into two edges to give
a 4-connected net.
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Enumeration for the 6° net

The general restriction on the fraction of split edges results in an upper
limit of three for introduction of 2-connected vertices into any hexagon of
edges, and a ratio of one 2-connected vertex to two 3-connected vertices in
the whole 63 net. There are three simple ways to satisfy these conditions:
(i) three 2-connected vertices in two-thirds of the hexagons of a net, and
none in the remaining one-third, (i) two 2-connected vertices in all the
hexagons, and (iii) three 2-connected vertices in half of the hexagons, and
one in the remaining half.

For the first procedure, there is only one possible arrangement (Fig. 2 a).
Assignment of 2-connected vertices at /, m and n inexorably yields the
sequence o—w which completes the circuit around hexagons 1—6, and
leaves hexagon 7 without any 2-connected vertices. When extended to the
complete 2D net, there are twice as many hexagons with three 2-connected
vertices as none, and the arrangement has hexagonal lattice symmetry.

There are two arrangements for the second procedure. A unique
arrangement (Fig. 1b) results when the 2-connected vertices are inserted
into opposite edges of any hexagon. Thus the choice of p and ¢ in hexagon
1 enforces the choice of r in hexagon 2, and so on in that direction. In
hexagon 3, s and ¢ must be chosen, and so on for u, v, and w in hexagons
4 and 5. Another unique arrangement (Fig. 1c) results when the two 2-
connected vertices are separated by an unmodified edge. Assignment of p

218s

Fig. 2. Plans of the simple nets obtained by insertion of square-planar 4-connected vertices
between parallel 6° nets. Each plan represents two nets: the one listed by the number ()
and a second net (n + 1) obtained by a o(/) transformation in the plane of each 6° net.
Each unmodified edge is shown in heavy line, and each modified edge is increased in
length by ‘/5 and shown by a narrow line segment straddling the square-planar vertex
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and g in hexagon 1 enforces the choice of r and s in hexagon 2, ¢in 3, u in
4,vin 5, win 6 and so on.

The third procedure also gives a unique arrangement, and the concept
of infinite path provides the simplest demonstration. Returning to Figs. 2b
and 2c, the unmodified edges form infinite paths along the a and &
directions, respectively, whereas in Fig. 2a, the unmodified edges form
circuits, each of which can be regarded as an infinite path. The occurrence
of an infinite path in the unmodified edges results from the presence of an
unmodified edge between an adjacent pair of those vertices which are each
attached to a modified edge. For the third procedure (Fig. 2d), modify
edge mr between hexagons 1 and 2. Hexagon 2 must contain either 1 or 3
modified edges. Choice of the former requires that the line segments /m,
mn, no, op, pq, qr and rs generate part of an infinite path. Line segment gv
must be modified, and hexagon 3 cannot have three modified edges because
rs has already been constrained. Hence the infinite path must continue
around hexagon 3 through vertices ¢, u and v. Hexagon 4 is forced to match
hexagon 2. Hexagons 5—9 are forced to contain three modified edges, and
so on. Choice of three modified edges in hexagon 2 results merely in the
interchange of the two types of hexagons.

Finally, there is an infinity of nets when three or four types of hexagons
are allowed instead of the one or two types in the three simple nets. Radial,
rather than lattice, symmetry occurs in some of these complex nets. Details
will be given in another paper.

The properties of the simple nets of Fig. 2 are given in Table 1, and the
nets are labeled with s for square-planar. Each 2 D projection corresponds
to two 3D nets. Net 278 s corresponds to square-planar edges around
each inserted vertex. Adjacent 2D nets are translationally equivalent and
superimposed in projection. For a fixed edge of length /, the dimensions of
the hexagonal cell are ¢ = (2 + 1/5) Le=1 ]/f;thesecorrespond toa =
10.6 A and ¢ = 454 for / = 3.2 A. Net 279 s is produced by the o-
transformation and has @ = 10.6 A and ¢ = 11+ [/5) = 7.7A. Cor-

responding nets (278 and 279) with tetrahedral geometry around each
inserted vertex have doubled ¢ and smaller a because of the rotation of
adjacent 2 D nets (Fig. 3a). The space group symmetry is lowered from P6/
mmm for nets 278 s and 279 s to P6/mcc for 278 and 279. The circuit
symbols for the tetrahedral vertices consist of six numbers, but those for
the square-planar vertices consist of only four. Because the cell repeats
depend not only on the lengths of the edges of the framework but also on
the angles between the edges, only approximate values for the tetrahedral
nets are given in Table 2.

Nets 280 s and 281 s (Fig. 2d) are orthorhombic, as are nets 282 s
and 283 s (Fig. 2b) and nets 284 s and 285 s (Fig. 2c). Also hexagons are
distorted in projection if all edges of the nets are of equal length, as also
are the hexagons 1 —6 in Fig. 2a.
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Fig. 3. Tetrahedral nets generated by rotation about the square-planar vertices in Fig. 2.
Only the nets with the least geometrical distortion are shown

Derivation of the tetrahedral nets from the prototypes in Fig. 2 is
not straightforward. Each tetrahedral vertex of type T, (Fig. 1¢) can be
generated in two orientations related by a clockwise and an anticlockwise
rotation from the “neutral” square-planar geometry. Fig. le was
deliberately drawn with an opposite rotation to that of Fig. 1c to illustrate
the choice. There is an infinity of nets if there is no coupling between the
rotations around adjacent square-planar vertices. Details will be given
elsewhere, and Fig. 3 shows only the nets with the least geometrical distor-
tion (Table 2). Thus in net 278, the regular hexagonal geometry is retained
for each horizontal 6-ring. In net 282, the rotations are identical in each
vertical row of the diagram, and are reversed between adjacent rows;
this allows congruency of equivalent edges as each hexagon is sheared
homogeneously. In nets 280 and 284, adjacent rotations are coupled to give
the least geometrical distortion, but the edges are not congruent. For
convenience of drawing, the split-edges were not elongated by ]/5 as was

done in Fig. 2.

Net 278 is the tetrahedral framework of the beryl structure (Table 3;
Fig. 4a) in which each 6-ring of silicate tetrahedra represents unmodified
vertices of the 6 nets (Fig. 3) and each BeO, tetrahedron corresponds to
an initial 2-connected vertex modified by linkage and rotation. This net
also corresponds to indialite (Table 3), in which all tetrahedra are occupied
by both Si and Al. Ordering of the Al into specific tetrahedra of low
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Fig. 4. Plans and elevations of the crystal structures of (a) beryl and (b) milarite. The
operation of the o-transformation is shown; the SigO,q ring in beryl has horizontal
mirror symmetry, and the o-transformation generates two such hexagonal rings, one
either side of the horizontal mirror, that fuse at the mirror plane to form an Si;,0;,
double-ring

cordierite (Table 3) lowers the symmetry from hexagonal to orthorhombic.
The ordering patterns in beryl and cordierite are just two out of the infinite
number of possible arrangements for ordering of the tetrahedral species.
The corresponding coloring of the vertices is explored elsewhere.

Net 279 is represented by the structure of milarite (Fig. 4b) and 12
other minerals listed in Table 3. The horizontal o-transformation converts
each 6-ring of the beryl structure into a double 6-ring. Both the beryl and
milarite structure types contain cavities within the tetrahedral framework
which can contain molecules including H,0, Ar and CO,, and cations (e.g.
K and Ca in milarite). There is considerable flexibility in the geometrical
and chemical properties, but the extent of the ranges (e.g. for substitution
of Li for Be in Cs-rich beryl; Hawthorne and Cerny, 1977) has not been
explored.

No structures were found which matched nets 278 —285 s (Table 1).
Synthesis should be tried for appropriate chemical compositions involving
mixed species known to adopt tetrahedral and square-planar coordination.
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(a)

Fig. 5. Nets generated from the 3.122 2D net. (a) Plan of nets 286 s and 287 s in which
each 122 edgeis converted into a square-planar vertex. (b) Plan of a polyhedral representa-
tion of a TO, framework based on nets 286 and 287. Each line connects a pair of adjacent
O positions

Enumeration for the 3.122 net

From the possible nets, only the ones analogous to those of beryl and
milarite are displayed in Fig.5. Insertion of a vertex in every edge of type
122 gives rise to nets 286 s and 287 s (Table 1; Fig. 5a) and nets 286 and
287 (Table 2; Fig. 5b). The first diagram is a plan of the edges connecting
the tetrahedral and square-planar vertices. The second diagram shows the
outlines of tetrahedra in a TO, framework, in which tetrahedra viewed
down a diad rotation axis link the tetrahedra of the rotated 3-rings. All
these nets have large channels bounded by non-planar 18-rings with a free
diameter comparable to that for a planar 14-ring.

Enumeration for the 4.82 net

Fig. 6 shows the four simple ways in which two-connected vertices may be
introduced into edges of the 4.82 net. Conversion of each two-connected
vertex into a square-planar vertex connecting parallel 2D nets produces
3D nets 288 s, 290 s, 292 s and 294 s (Table 1). A horizontal sigma trans-
formation produces the 3 D nets 289 s, 291 s, 293 s and 295 s (Table 1). The
first two nets of each quartet retain the tetragonal symmetry from the 4.82
net, but the other nets are orthorhombic. Conversion of each square-planar
vertex into a tetrahedral vertex produces an infinity of 3D nets, and only
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Fig. 6. Four simple ways of inserting 2-connected vertices into alternate edges of the 4.82
net

those with tetragonal symmetry are listed in Table 2. Net 290 and its o-
product net 291, are obtained from nets 290 s and 291 s by rotation of 4-
rings in a clockwise direction in odd-numbered layers and an anticlockwise
direction in even-numbered layers. Fig. 7 shows a plan in which a TO,
framework is represented by the O —O edges. Net 288 and its o-product
net 289 are similarly obtained from nets 288 s and 289 s by rotation of 8-
rings, and the drawing in Fig. 7 shows the T—T edges.

The nets 288 —291 are closely analogous to those of the beryl and
milarite type obtained from the 6* net. They have the same ¢ dimension
and stoichiometry (T5T40;,, 288 and 290; T5T5020, 289 and 291). For
net 291, 8-coordinated tetragonal antiprismatic sites alternate with 12-
coordinated sites down the centers of the channels in a framework of type
TO,. The corresponding stoichiometry, ' ZJABIB[T,Tg0,0), together with
the space group, P4/mcc, and cell dimensions (Table 2) match with those
(Table 3) of steacyite, KTh[(Na,Ca)SigO0}. In detail, the (Na,Ca) in the
T’ position has four short bonds to the tetrahedrally-arranged oxygens and
four longer bonds to the adjacent four bridging oxygens of the SigOs
groups. Thorium and K occupy the A and B sites respectively, and vacancies
seem to play an important role in the structure.
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Fig. 7. Two simple tetrahedral nets obtained from the 4.82 net. For net 290, the lines
show Q —O edges for a TO, framework. For net 288, the T—T linkages are shown. Each
dot is a converted square-planar vertex. Both diagrams show projections down the
tetragonal axis

296s 298s 300s

Fig. 8. Three simple ways of inserting 2-connected vertices into alternate edges of the
4.6.12 net

Fig. 9. Three simple tetrahedral nets obtained from the 4.6.12 net. Each line joints two
vertices. Each dot is a tetrahedral vertex converted from a square-planar vertex
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Enumeration for the 4.6.12 net

This 2D net yields three simple nets upon introduction of a 2-connected
vertex into either a 4.6 edge (net 296 s; 12-rings preserved), a 4.8 edge (net
298 s; 6-rings preserved) or an 8.12 edge (net 300 s; 4-rings preserved).
These nets (Fig. 8) are converted into nets 297 s, 299 s and 301 s, respec-
tively, by a horizontal o-transformation. Relative rotation of adjacent nets
allows conversion of each square-planar vertex into a tetrahedral vertex
(nets 298 —301; Fig. 9). In addition to these two groups of six 3D nets,
there is an infinity of nets with symmetry lower than hexagonal, as is
obvious by applying the procedures used for the preceding sections. Because
all these nets are complex and inelegant, they are not depicted here. Further-
more, there are additional ways of twisting the square-planar vertices to
obtain tetrahedral linkages in a TO, framework.

All six of the new tetrahedral nets (296 —301) have large cylindrical
channels. Those of 296 and 297 are bounded by circular planar 12-rings,
while those of 298 —301 are circumscribed by non-planar 18-rings. The
non-planarity reduces the effective free diameter of these 18-rings to a value
which depends on the degree of distortion, but which is comparable to that
for a circular ring of between 10 to 12 vertices.

Conclusions

A family of 4-connected 3 D nets is formed by (i) insertion of 2-connected
vertices into the alternate edges of regular and semi-regular 3-connected
plane nets such that circuits or infinite paths of 3-connected vertices are
preserved, (ii) linkage of parallel nets of this type by conversion of each
2-connected vertex into a square-planar 4-connected vertex, (iii) further
evolution of each such new 4-connected 3D net by a o-transformation
through the plane of each original 3-connected 2 D net. This family of nets
with both tetrahedral and square-planar vertices is not yet represented by
any natural or synthetic material, and would provide a challenging target
for syntheses using starting components of appropriate crystal-chemical
properties.

A second family of nets is obtained by conversion of each square-planar
vertex into a tetrahedral one. The required relative rotations of local regions
of each 3 D net can be accomplished in an infinity of ways if no account is
taken of geometrical distortion. We have deliberately chosen to enumerate
only those nets in which the choice of the relative rotations produces the
least overall distortion. Two such nets, derived from the original 6° net, are
represented by the beryl and milarite structures. A third tetrahedral net,
obtained from the 4.82 net, is the basis of the steacyite structure. Three
tetrahedral nets obtained from the 4.6.12 net contain cylindrical channels
bounded by either a circular 12-ring or a non-planar 18-ring.
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